

SISTEMAS OPERATIVOS INTRODUCCIÓN

DEPARTAMENTO DE CIENCIAS E INGENIERÍA DE LA COMPUTACIÓN

UNIVERSIDAD NACIONAL DEL SUR

AGENDA

- 1. Introducción
 - 1. ¿Qué hace un Sistema Operativo?
 - 2. Organización del Sistema de Cómputo
 - 3. Arquitectura del Sistema de Cómputo
- 2. Estructura del Sistema Operativo
- 3. Operaciones del Sistema Operativo
- 4. Administración
 - 1. Administración de Procesos
 - Administración de Memoria
 - 3. Administración del Almacenamiento
- 5. Protección y Seguridad
- 6. Ambientes de Computación

AGENDA

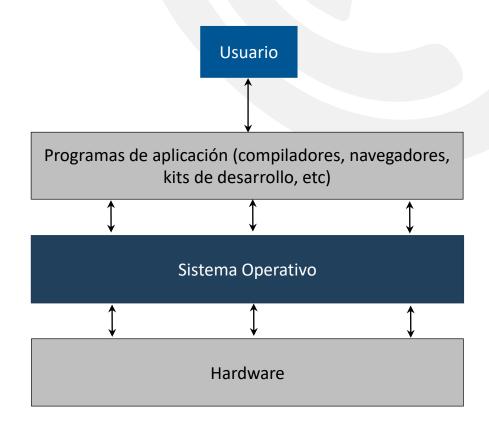
1. Introducción

- 1. ¿Qué hace un Sistema Operativo?
- 2. Organización del Sistema de Cómputo
- 3. Arquitectura del Sistema de Cómputo
- 2. Estructura del Sistema Operativo
- 3. Operaciones del Sistema Operativo
- 4. Administración
 - Administración de Procesos
 - Administración de Memoria
 - 3. Administración del Almacenamiento
- 5. Protección y Seguridad
- 6. Ambientes de Computación

INTRODUCCIÓN

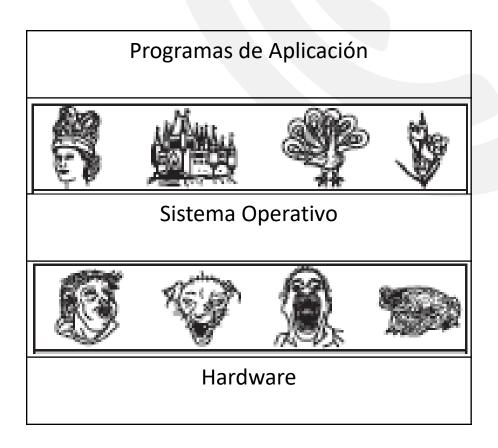
Un programa

- que actúa como un intermediario entre un usuario de una computadora y el hardware de la computadora.
- que actúa como interface entre las aplicaciones y el hardware.


Objetivos del Sistema Operativo:

- Ejecutar los programas de usuario y permitir la solución de problemas del usuario más fácilmente.
- Conveniencia de uso del sistema de la computadora.

Uso del hardware de la computadora de manera eficiente.


COMPONENTES DEL SISTEMA DE CÓMPUTO

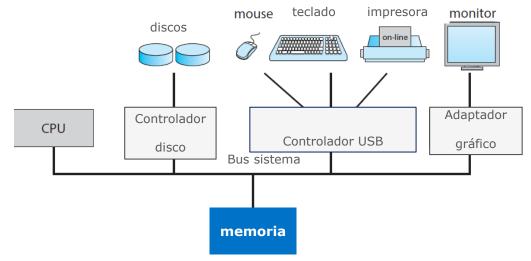
- 1. Hardware
- 2. Sistema Operativo
- 3. Programas de Aplicación
- 4. Usuarios

PUNTOS DE VISTA DE SO

- Usuarios
 - Personal
 - Mainframes
 - Workstations
 - Móviles
 - Embebidos
- Sistema

PUNTOS DE VISTA: SISTEMA

- Alocador de recursos
 - administra todos los recursos.
 - decide sobre requerimientos conflictivos para asegurar eficiencia y uso imparcial de recursos
- Programa de Control
 - controla ejecución de los programas para prevenir errores y el uso impropio de la computadora.


¿QUÉ ES UN SISTEMA OPERATIVO?

"El programa que ejecuta todo el tiempo en la computadora" es el **kernel** o **núcleo**. Todo lo demás es un programa de sistema o un programa de aplicación.

ORGANIZACIÓN DEL SISTEMA DE CÓMPUTO

- Operación del Sistema de Cómputo
 - Una o varias CPUs.
 - Ejecución concurrente de CPUs y dispositivos compiten por ciclos de memoria.
 - La CPU mueve datos desde/hacia la memoria principal a/desde los buffers locales.
 - El controlador de dispositivo informa a la CPU que ha finalizado su operación por medio de una interrupción.

INICIO DE LA COMPUTADORA

- El programa de bootstrap es cargado en el encendido o reboot
 - Típicamente almacenado en ROM o EEPROM, generalmente conocido como firmware
 - Inicializa todos los aspectos del sistema
 - Carga el kernel del sistema operativo y comienza la ejecución

INTERRUPCIONES

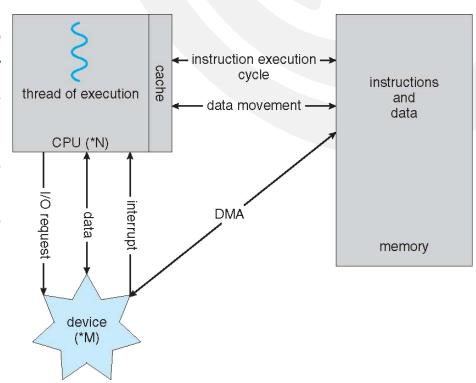
Funcionamiento

- Una interrupción transfiere el control a la rutina de servicio de la misma, generalmente por medio del vector de interrupción, que contiene las direcciones de todas las rutinas de servicio.
- Las interrupciones entrantes son *deshabilitadas* mientras otra interrupción está siendo procesada para prevenir una *pérdida de interrupción*.
- Un *trap* es una interrupción generada por el software causada por un error o por un requerimiento de usuario.

Un sistema operativo es manejado por las interrupciones

INTERRUPCIONES

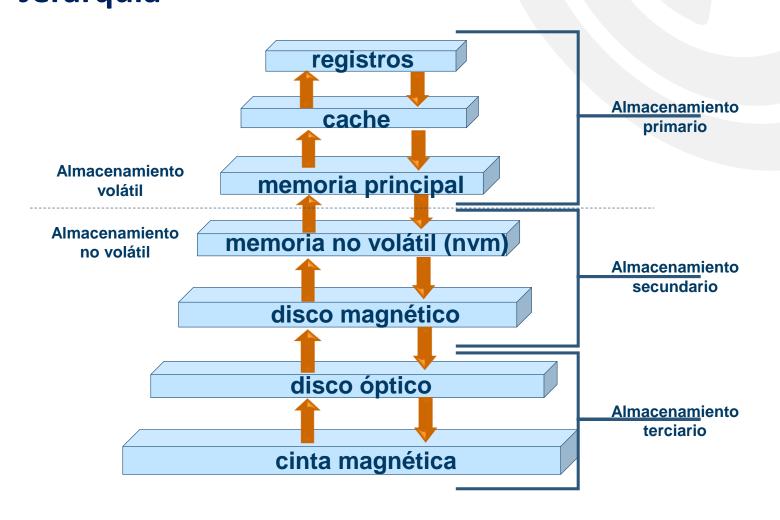
Manejo de Interrupciones


- El sistema operativo preserva el estado de la CPU almacenando los registros y el contador de programa.
- Determina que tipo de interrupción ha occurrido:
 - polling
 - Sistema de interrupción vectoreado
- Segmentos de código separados determinan que tipo de acción deberían llevarse a cabo para cada tipo de interrupción.

DOS MÉTODOS DE E/S

Sincrónico Asincrónico proc que requiere proc que requiere usuario usuario <u>espera</u> driver de disp driver de disp manejador de kernel kernel manejador de int int Hardware Hardware transf de datos transf de datos tiempo tiempo

DIRECT MEMORY ACCESS (DMA)


- Usado por dispositivos de E/S de alta velocidad para transmitir información a velocidades similares a la de la memoria.
- El controlador de dispositivos transfiere bloques de datos desde el buffer de almacenamiento directamente a la memoria principal sin la intervención de la CPU.
- Solo una interrupción es generada por bloque, y no una por byte.

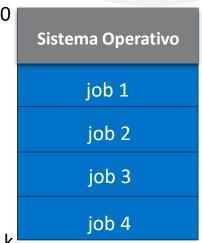
ESTRUCTURA DE ALMACENAJE

- Memoria principal— único medio de almacenaje que la CPU puede acceder directamente.
- Almacenaje Secundario extensión de la memoria principal que provee una gran capacidad de almacenaje no volátil.
- Discos Magnéticos
 - La superficie del disco está logicamente dividida en tracks (pistas), los cuales están subdivididas en sectores.
 - El controlador de disco determina la interacción lógica entre el dispositivo y la computadora.

INTRODUCCIÓN – DISPOSITIVOS DE ALMACENAJE Jerarquía

AGENDA

- 1. Introducción
 - 1. ¿Qué hace un Sistema Operativo?
 - 2. Organización del Sistema de Cómputo
 - 3. Arquitectura del Sistema de Cómputo


2. Estructura del Sistema Operativo

- 3. Operaciones del Sistema Operativo
- 4. Administración
 - 1. Administración de Procesos
 - 2. Administración de Memoria
 - 3. Administración del Almacenamiento
- 5. Protección y Seguridad
- 6. Ambientes de Computación

ESTRUCTURA DEL SISTEMA OPERATIVO

La Multiprogramación es necesaria para lograr eficiencia:

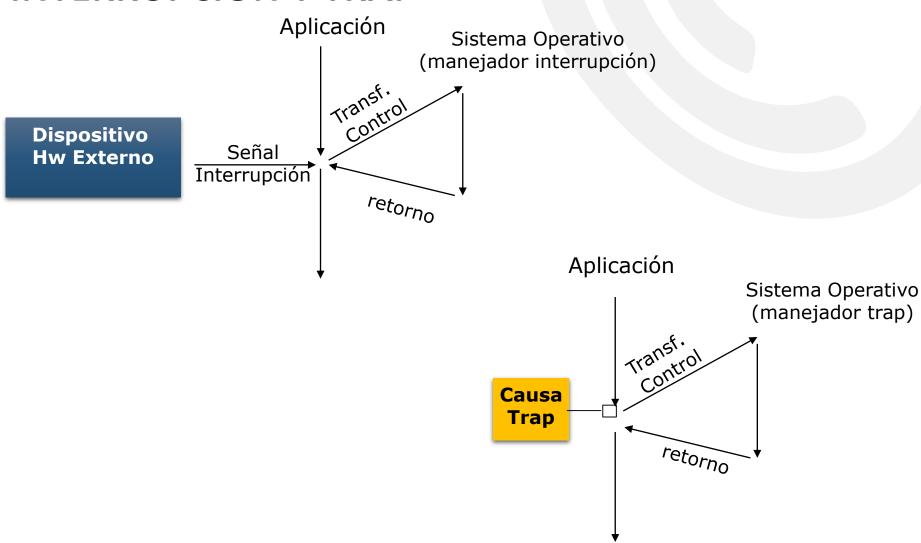
- Organiza las tareas (código y datos) de tal manera que la CPU siempre tiene uno ejecutando.
- Un subconjunto del total de tareas en el sistema se mantienen en memoria.
- Una tarea es selecionada y ejecutada vía una planificación de tareas.
- Cuando tiene que esperar (p.e. E/S), el sistema operativo conmuta a otra tarea.

512 k

ESTRUCTURA DEL SISTEMA OPERATIVO

El **Tiempo Compartido (multitarea)** es una extensión lógica en la cual la CPU conmuta tareas tan frecuentemente que los usuarios pueden interactuar con cada tarea mientras está ejecutando, creando la computación **interactiva**.

- El **tiempo de respuesta** debería ser < 1 Segundo.
- Cada usuario tiene al menos un proceso ejecutando en memoria.
- Si hay varias tareas listas para ejecutar al mismo tiempo planificación de CPU.
- Si un proceso no entra en memoria, el **swapping** lo mueve hacia adentro y hacia afuera de la memoria para ejecutarse.
- La **Memoria Virtual** permite la ejecución de procesos no completos en la memoria.

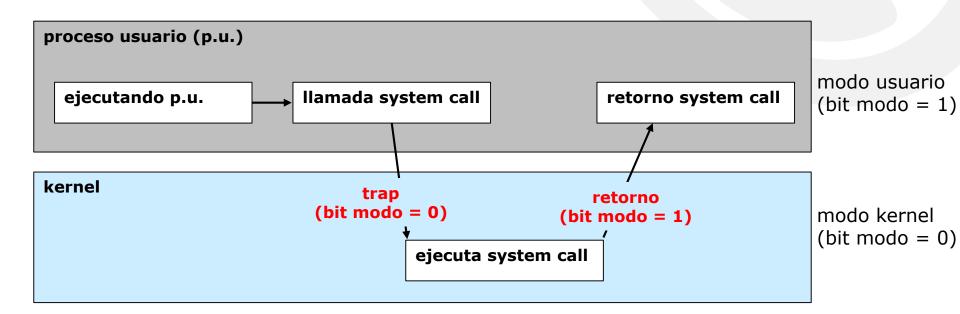

AGENDA

- 1. Introducción
 - 1. ¿Qué hace un Sistema Operativo?
 - 2. Organización del Sistema de Cómputo
 - 3. Arquitectura del Sistema de Cómputo
- 2. Estructura del Sistema Operativo
- 3. Operaciones del Sistema Operativo
- 4. Administración
 - 1. Administración de Procesos
 - Administración de Memoria
 - 3. Administración del Almacenamiento
- 5. Protección y Seguridad
- 6. Ambientes de Computación

OPERACIONES DEL SISTEMA OPERATIVO

- Los sistemas operativos están controlados por interrupciones. Interrupciones son manejadas por el hardware
- El error o requerimiento de software crea una excepción o trap
 - Por ejemplo: División por cero, requiere por un servicio del sistema operativo
- Otros problemas de procesos incluyen lazos infinitos, procesos que se modifican unos con otros o el sistema operativo.

INTERRUPCIÓN Y TRAP



OPERACIONES DEL SISTEMA OPERATIVO

- La operación en modo dual permite al sistema operativo protegerse a sí mismo y otros componentes del sistema
 - Modo usuario y modo kernel
 - El bit de modo es provisto por el hardware
 - Provee la habilidad para distinguir cuando el sistema está ejecutando código de usuario o código kernel.
 - Algunas instrucciones son privilegiadas, sólo se ejecutan en modo kernel.
- Timer para prevenir lazos infinitos / alto consumo de recursos por procesos

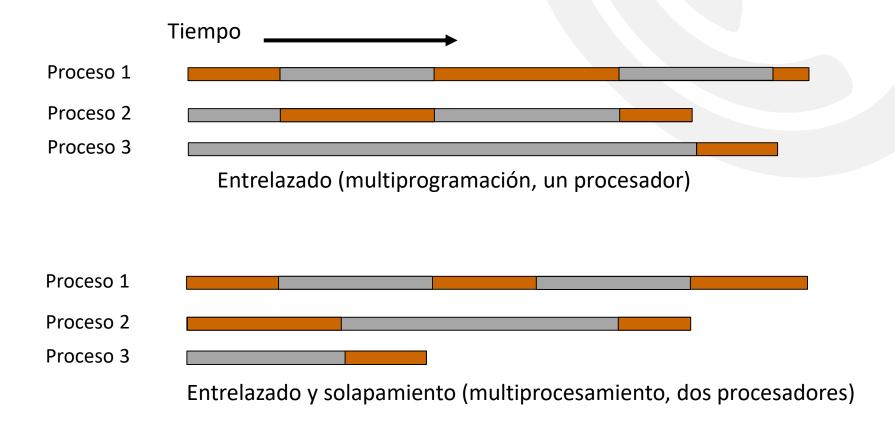
OPERACIONES DEL SISTEMA OPERATIVO

Transición del modo usuario al modo kernel

AGENDA

- 1. Introducción
 - 1. ¿Qué hace un Sistema Operativo?
 - 2. Organización del Sistema de Cómputo
 - 3. Arquitectura del Sistema de Cómputo
- 2. Estructura del Sistema Operativo
- 3. Operaciones del Sistema Operativo

4. Administración


- 1. Administración de Procesos
- 2. Administración de Memoria
- 3. Administración del Almacenamiento
- 5. Protección y Seguridad
- 6. Ambientes de Computación

- Un proceso es un programa en ejecución. Es una unidad de trabajo dentro del sistema. Un programa es una entidad pasiva, el proceso es una entidad activa.
- El proceso necesita recursos para realizar su tarea.
 - CPU, memoria, E/S, archivos
 - Inicialización de datos
- La terminación de procesos require reclamar los recursos reusables.

- Los procesos de hilo simple tienen un **contador de programa** especificando la locación de la próxima instrucción a ejecutar.
 - El proceso ejecuta instrucciones secuencialmente, una por vez hasta terminar.
- Procesos multihilados tienen un contador de programa por hilo.
- Típicamente un sistema tiene muchos procesos, algún usuario, algún SO ejecutando concurrentemente en una o más CPUs.
 - Concurrencia por multiplexado de CPUs entre procesos / hilos.

Actividades

- El sistema operativo es responsable por las siguientes actividades en conexión con la administración de procesos.
 - Creación y eliminación de procesos.
 - Suspensión y reactivación de procesos.
 - Provisión de mecanismos para:
 - sincronización de procesos
 - comunicación de procesos
 - manejo de interbloqueos

ADMINISTRACIÓN DE MEMORIA

- Todos los datos antes y después del procesamiento.
- Todas las instrucciones en memoria para ejecutar.
- Determina que hay en memoria cuando es necesario optimizar la utilización de CPU y el tiempo de respuesta
- Actividades de la administración de memoria:
 - Lleva control de que partes de la memoria están siendo usadas y por quien.
 - Decide que procesos cargar cuando hay espacio de memoria disponible.
 - Ocupa y desocupa espacio de memoria cuando necesite.

ADMINISTRACIÓN DEL ALMACENAJE

- El SO provee una visión lógica y uniforme del almacenaje de información.
 - Hace abstracción de las propiedades físicas a una unidad lógica de almacenaje – archivo.
 - Cada medio es controlado por un dispositivo (p.e. disco, cinta, etc).
 - Propiedades variables incluyen velocidad de acceso, capacidad, método de acceso (secuencial o al azar).

ADMINISTRACIÓN DEL ALMACENAJE

- Administración del Sistema de Archivos
 - Los archivos, usualmente están organizados en directorios.
 - El control de acceso en la mayoría de los sistemas determina quien puede acceder a que.
 - Las actividades del SO incluyen:
 - Creación y destrucción de archivos y directorios.
 - Soporte de primitivas para el manejo de archivos y directorios.
 - Mapeo de archivos sobre el almacenaje secundario.
 - Respaldo sobre medios de almacenajes estables.

ADMINISTRACIÓN DEL ALMACENAJE

- Almacenaje Secundario
 - Los discos son usados para almacenar datos que no entran en memoria principal o para datos que tienen que ser guardados un largo período de tiempo.
 - Su administración es de vital importancia.
 - La velocidad de operación de la computadora depende del subsistema de discos y sus algoritmos.
- Las actividades del SO:
 - Administración del espacio libre
 - Alocación del almacenaje
 - Planificación del disco

CACHING

- Principio importante que es llevado a cabo por varios niveles en una computadora.
- La información en uso copiada desde un almacenaje lento a uno más rápido temporariamente.
- El almacenaje más rápido (cache) es verificado primero para determinar si la información está allí:
 - Si está, es usada directamente del cache (rápido)
 - Si no, el dato es copiado al cache y usado allí.
- Consideraciones: administración y coherencia

SUBSISTEMA DE E/S

- Uno de los propósitos del SO es esconder las peculiaridades de los dispositivos de hardware a los usuarios.
- Los subsistemas de E/S son responsables de:
 - Administración de memoria de las E/S incluye:
 - buffering (almacena datos temporariamente mientras están siendo transferidos),
 - caching (almacena partes de datos en almacenamiento rápido por rendimiento),
 - spooling (el solapado de la salida de un job con la entrada a otros)
 - Interfaz general de drivers de dispositivos.
 - Drivers específicos para dispositivos de hardware

AGENDA

- 1. Introducción
 - 1. ¿Qué hace un Sistema Operativo?
 - 2. Organización del Sistema de Cómputo
 - 3. Arquitectura del Sistema de Cómputo
- 2. Estructura del Sistema Operativo
- 3. Operaciones del Sistema Operativo
- 4. Administración
 - 1. Administración de Procesos
 - Administración de Memoria
 - 3. Administración del Almacenamiento
- 5. Protección y Seguridad
- 6. Ambientes de Computación

PROTECCIÓN Y SEGURIDAD

- Protección mecanismo para controlar el acceso de procesos o usuarios a recursos definido por el SO
- Seguridad defensa del sistema contra ataques internos y externos
 - Amplio rango, incluyendo DoS, worms, virus, robo de identidad, robo de servicios

AMBIENTES DE COMPUTACIÓN

- Computadora Tradicional
 - Borrosa en el tiempo
 - Ambiente de oficina
 - Redes hogareñas
- Computación Distribuida
 - Cliente-Servidor
 - Computación Peer-to-Peer
 - Computación basada en la web
- Computación Móvil

INTRODUCCIÓN

Se recomienda:

Repasar los conceptos sobre:

- Interrupciones y dma,
- entradas/salidas
- memoria

VISTOS en "Organización de Computadoras" y en la materia sobre arquitectura correspondiente a la carreras de Ingeniería en Computación e Ingeniería en Sistemas de Información.

Estos temas pueden ser tomados en los exámenes parciales y finales y se consideran conocidos y estudiados por los alumnos que cursan esta materia

Bibliografía:

- Silberschatz, A., Gagne G., y Galvin, P.B.; "Operating System Concepts", 7ma Edición. 2009, 9na Edición 2012, 10ma Edición 2018.
- Tanenbaum, A.; "Modern Operating Systems", Addison-Wesley, 3ra. Edición 2008, 4ta. Edición 2014.