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a b s t r a c t 

In this paper, we extend behavior trees (BTs), a behavior creation method that is popular in the video 

game industry, with three new types of nodes that facilitate the design and implementation of non-player 

characters (NPCs) that need to coordinate with each other. We provide an implementation and a method- 

ology to use the coordination nodes of our extension appropriately, and we show how to use them to 

develop an application scenario. In the last years, coordination in multi-agent systems has been a very 

active research field, both from theoretical and practical points of view. Something similar has happened 

with the development of new tools for the video game industry. Our approach contributes to both areas 

by providing a novel extension that facilitates the design and implementation of agents that need to co- 

ordinate with each other. In video games, agents or NPCs are—as their name implies—characters that are 

not controlled by the player but by the game through an algorithmic, predetermined, or responsive be- 

havior, or a more sophisticated AI technique. Some video games require NPCs with dynamic, credible, and 

intelligently unpredictable behaviors to keep players engaged and immersed. Instead of endowing NPCs 

with very complex individual behaviors, a feasible way to improve their unpredictability in an intelligent 

and credible manner is allowing them to coordinate with each other. Since BTs focus on the creation of 

individual behaviors, coordinated behaviors nowadays tend to be achieved by hard-coding the coordina- 

tion itself. However, that ad hoc solution partially drives away some of the benefits that popularized BTs: 

Being visually intuitive, scalable, and reusable. For this reason, we propose an extension to BTs that de- 

velopers can use to coordinate NPCs without going against the development paradigm: creating complex 

behaviors by designing an intuitive tree structure. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Coordination in multi-agent systems is a very active research

eld that provides theoretical and practical tools for many other

reas, see for instance ( Asl, Bentahar, Mizouni, Khosravifar, & Otrok,

014; Hu & Leung, 2017; Proskurnikov & Cao, 2017; Sakurama &

hn, 2020; Wahab, Bentahar, Otrok, & Mourad, 2016; Wang, Zeng,

 Cong, 2016; Zhang & Su, 2019; Zhao, Li, & Zhang, 2017; Zhao &

hang, 2019; Zou, Su, Li, Niu, & Li, 2019 ). In this paper, we present

nd implement a novel approach for agent coordination in multi-

gent systems consisting of an extension to behavior trees (BTs), a

ehavior creation method that is popular in the video game indus-

ry. The importance of our proposal is that it contributes to these
∗ Corresponding author. 
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reas by providing a novel extension that facilitates the design and

mplementation of agents that need to coordinate with each other.

For years, generating interesting and lifelike agents or non-

layer characters (NPCs) has arguably been one of the focuses of

I in the video game industry ( Yannakakis, 2012; Yannakakis &

ogelius, 2018 ). NPCs are—as their name implies—characters that

re not controlled by the player but by the game through an algo-

ithmic, predetermined, or responsive behavior, or a more sophis-

icated AI technique. While some video games only rely on NPCs

ith scripted or trivial behaviors, others require NPCs with dy-

amic, credible and intelligently unpredictable behaviors to keep

he player engaged and immersed in the gameplay ( Yannakakis &

ogelius, 2018 ). 

In most games, NPCs have a completely individual behavior

ince they act considering only their current state and/or the

layer’s current state. Instead of endowing NPCs with very com-

lex individual behaviors, a feasible way to improve their unpre-

ictability in an intelligent and credible manner is allowing them

https://doi.org/10.1016/j.eswa.2020.113457
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2020.113457&domain=pdf
mailto:ramiro.agis@cs.uns.edu.ar
mailto:sg@cs.uns.edu.ar
mailto:ajg@cs.uns.edu.ar
https://doi.org/10.1016/j.eswa.2020.113457
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1 Unreal Engine - https://www.unrealengine.com . 
2 Unity - https://unity.com/. 
to coordinate with each other. Clearly, whenever a player has an

encounter with many NPCs, the higher the amount of possible in-

teractions between the NPCs, the lower the chance that the player

predicts their actions. 

Some video games, like the horror first-person shooter F.E.A.R.

( Warner Bros. Interactive Entertainment, 2005 ), deceive the player

into thinking that there are actual coordinated interactions be-

tween the NPCs. F.E.A.R.’s AI has always been one of the most ac-

claimed in the genre given that players claim to be intelligently

flanked and ambushed by enemies (soldiers) in unique and ir-

reproducible ways in different playthroughs. Although soldiers in

F.E.A.R. do not actually interact with each other and just follow or-

ders from a global AI, the game achieves that false sense of coor-

dination by constantly observing the current state and reproducing

appropriate dialog sequences ( Orkin, 2006 ). 

Creating an illusion of coordination between NPCs is effective

since what matters, after all, is what the players perceive. How-

ever, relying on these tricks may not be feasible depending on the

game’s theme. For instance, F.E.A.R. achieves that effect by mak-

ing most enemies move in troops and communicate in a language

that the player can interpret, which is a characteristic that does not

fit with every possible game’s theme. This is what motivated this

work: Extending a behavior creation method that is popular in the

video game industry with a module that facilitates the creation of

NPCs with actual coordinated behaviors. 

As of today, the video game industry does not take full advan-

tage of the academic research that has been conducted on behavior

creation for NPCs ( Lemaitre, Lourdeaux, & Chopinaud, 2015; Yan-

nakakis & Togelius, 2018 ). The main reason is that academic solu-

tions in the field tend to be difficult to reuse or customize, or tend

to be unrealistic for the complex software architecture of a com-

plete video game. This has caused behavior creation methods like

behavior trees (BTs) to dominate the control of NPCs in the video

game industry. 

BTs became popular for their development paradigm: being

able to create a complex behavior by only programming the NPC’s

actions and then designing a tree structure—usually through drag

and drop —whose leaf nodes are actions and whose inner nodes

determine the NPC’s decision making. BTs are visually intuitive

and easy to design, test, and debug, and provide more modular-

ity, scalability, and reusability than other behavior creation meth-

ods like finite state machines . In particular, BTs became popular

over a decade ago mainly after their successful application in com-

mercial video games such as Halo 2 ( Isla, 2005; Microsoft Game

Studios, 2004 ), Halo 3 ( Isla, 2008; Microsoft Game Studios, 2007 ),

Bioshock ( 2K Games, 2007 ), Spore ( Champandard & Dunstan, 2012;

Electronic Arts, 2008 ), among others. Some examples of recent

commercial titles that have confirmed using BTs in their develop-

ment are Far Cry: Primal ( Ubisoft, 2016a ), Tom Clancy’s The Division

( Ubisoft, 2016b ) and Just Cause 4 ( Square Enix, 2018 ). 

Following their popularity in the industry, BTs also started to

receive attention in academic research. The authors of ( Johansson

& Dell’Acqua, 2012 ) presented a new type of node for BTs that

uses the NPC’s emotions for decision making. In particular, this

node takes into account three factors (time-discounting, risk per-

ception, and planning) to change the execution priority of its chil-

dren. In ( Shoulson, Garcia, Jones, Mead, & Badler, 2011 ), a method

to improve the flexibility of parameter passing in BTs was pro-

posed. In ( Lim, Baumgarten, & Colton, 2010 ), an iterative learn-

ing process was used to evolve different BTs to develop an AI-

controlled player for the commercial real-time strategy game DE-

FCON . In ( Flórez-Puga, Gomez-Martin, Gomez-Martin, Díaz-Agudo,

& González-Calero, 2009 ) the authors apply case-based reasoning

techniques to retrieve and reuse stored BTs to dynamically build

an NPC’s BT at runtime by taking into account the world state and

goals. In ( Colledanchise, Parasuraman, & Ogren, 2018 ), the authors
ropose a model-free automated planner framework using genetic

rogramming that can generate an optimal BT for an autonomous

gent to achieve a goal in a fully observable environment. Research

n BTs has been relevant not only for video game AI but also in

ther fields like robotics ( Colledanchise & Ögren, 2014; Marzinotto,

olledanchise, Smith, & Ögren, 2014 ), multi-mission UAV control

 Ogren, 2012 ), semi-autonomous surgery ( Hu, Gong, Hannaford, &

eibel, 2015 ), among others. 

Over the years, the diverse implementations of BTs kept im-

roving both in efficiency and capabilities in order to satisfy the

emands of the industry ( Champandard & Dunstan, 2012 ) until

hey evolved into event-driven behavior trees (EDBTs). EDBTs solved

ome scalability issues of classical BTs by changing the way in

hich the tree internally handles its execution and by introduc-

ng a new type of node that can react to events and abort running

odes. Nowadays the concept of EDBT is a standard (even though

hey are still called “behavior trees” for simplicity) and even the

wo most popular game development engines provide EDBT imple-

entations. In particular, Unreal Engine 4 1 was released including

n official EDBT module while Unity 2 has many third party mod-

les that can be downloaded from the store. 

By taking advantage of its event-drivenness, the contribution

f this work consists in extending EDBTs with three new types

f nodes, called coordination nodes , which facilitate the design

nd implementation of NPCs that can coordinate with each other

hrough a request protocol. These nodes do not provide more “ex-

ressive power” in terms of the coordinated behaviors that could

e created by using regular EDBTs. Nevertheless, given that EDBTs

and BTs) focus on the creation of individual behaviors, nowadays

oordinated behaviors tend to be achieved by hard-coding the co-

rdination itself in a obscure way. For instance, one of the most

ommon techniques to coordinate multiple NPCs is to put a node

n each EDBT that repeatedly calls a hard-coded ad hoc procedure

hat solves the coordination problem by using a shared structure

hat can be concurrently accessed and modified. However, not only

his kind of solution goes against the development paradigm of be-

avior trees ( i.e. , programming only the NPCs’ actions and design-

ng a tree structure that determines its decision making) but also

artially drives away some of the benefits that popularized them:

eing visually intuitive, scalable and reusable. For all these reasons,

t is necessary a solution to create coordinated behaviors that fol-

ows the development paradigm of behavior trees, like the one we

ropose in this paper. 

This paper is organized as follows. In Section 2 , we introduce

he necessary background on EDBTs. Next, in Section 3 , we present

oordination nodes together with the intuition behind their use.

ection 4 follows with a methodology to use these nodes appro-

riately. In Section 5 , we include an application example. Then, in

ection 6 , we present the main algorithms of our proposal together

ith some implementation details and a time complexity analy-

is. In Section 7 , we compare our proposal with other related ap-

roaches and then discuss on the benefits of using coordination

odes in comparison to the usual technique of hard-coding coor-

inated behaviors inside methods. Finally, in Section 8 , we present

onclusions and comment on future work. 

. Event-driven behavior trees 

Over the years, BTs evolved into EDBTs to solve some scalabil-

ty issues and satisfy the demands from the industry. Commercial

ideo games started to require NPCs with more complex behaviors,

hich implied the need for larger and deeper trees. Broadly speak-

ng, the scalability issues were solved by introducing a new type

https://www.unrealengine.com
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Fig. 1. Event-Driven Behavior Tree: Nodes are represented by rectangles. Nodes’ 

type is depicted with a symbol either inside the rectangle or in the top-right corner. 

Service nodes are represented by an infinity symbol, selector nodes by a question 

mark, BOD nodes by an eye, and task nodes by a star. 
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3 A discussion on using shared blackboards is included in Section 7 . 
f node that can react to events and abort running nodes and by

hanging how the trees internally handle their execution: travers-

ng the trees from the root every frame, which is computation-

lly expensive, could be avoided by using a scheduler that stores

nd updates previously active behaviors. This allowed the design

f larger and deeper trees without the performance issues of clas-

ical BTs. We refer the interested reader to ( Champandard & Dun-

tan, 2012 ) for a more detailed explanation about the implemen-

ation differences between BTs and EDBTs. In this section, the nec-

ssary background on EDBTs is presented. The reader should note

hat since there are no implementation standards, some of the fol-

owing concepts or names may differ slightly from other proposed

mplementations. 

.1. Execution process 

An NPC’s behavior is determined by the execution of its EDBT,

epresented by a directed tree (see Fig. 1 ). The tree’s leaves repre-

ent all the NPC’s possible actions while the inner nodes determine

he NPC’s decision making. The execution starts by ticking its root,

nd this ticking process traverses downwards through the EDBT’s

odes. This process is carried out depending on the ticking rules

ssociated with the type of each node that is ticked. 

Each leaf is a task node consisting of an NPC’s action defined

y the EDBT designer (e.g., wander, attack, follow a target, wait,

tc.). Whenever a task node is ticked, it enters the running status,

nd the corresponding action is executed. Then, when the action

nishes, the node leaves the running status and returns the comple-

ion status success or failure to its parent (depending on the action’s

utcome). For instance, a task node that executes the action ᴡᴀʟᴋ
ay return failure if no path is found to the destination. 

On the contrary, inner nodes are divided into composite nodes,

ervice nodes, and decorator nodes, all of which determine the

ree’s execution flow ( i.e. , the agent’s decision making) by ticking

ts children according to the node type’s rules. Inner nodes return

uccess or failure , depending on their children’s completion status

r external conditions. The root is a unique node whose only pur-

ose is ticking its only child and stopping the EDBT’s execution

hen it returns a completion status. However, in most popular im-

lementations, the root automatically re-ticks its child whenever

he EDBT’s execution finishes. 
.2. Composite nodes 

Composite nodes can have multiple children and are divided

nto selector nodes, sequencer nodes, and parallel nodes. Selector

odes tick their children from left to right, one at a time, until one

f them returns success or until there are no more children to tick.

f a child returns success , the selector returns success ; otherwise,

t returns failure . Sequencer nodes tick their children from left to

ight, one at a time, until one of them returns failure or until there

re no more children to tick. If a child returns failure , the sequencer

eturns failure ; otherwise, it returns success . Parallel nodes tick all

heir children simultaneously, allowing multiple subtrees to be ex-

cuted concurrently. In other words, parallel nodes allow multiple

ask nodes to be in the running status. Generally, the EDBT designer

an customize whether all the children are aborted as soon as one

f them returns its completion status, and customize how the par-

llel node’s completion status is affected by its children’s. Given

hat there is no standard, the semantics of this type of node is tied

o its implementation. Nevertheless, our proposal does not require

ny particular type of parallel node, so any desired implementation

an be used. 

.3. Service nodes and blackboards 

Service nodes have a single composite as a child and are cus-

omized with a method and a frequency. Whenever a service node

s ticked, it ticks its child and repeatedly calls the method at the

pecified frequency as long as at least one of the composite’s de-

cendants is a task node in the running status. Then, once its child

eturns a completion status, the service node returns it to its par-

nt. Since the method called by a service node is executed con-

urrently, nodes in the running status are not interrupted. For this

eason, this type of node is often used to make checks and update

he EDBT’s blackboard . 

A blackboard is a data structure composed of a dictionary, i.e. ,

 collection of ( key, value ) pairs in which each key cannot be asso-

iated with more than one value . Every EDBT has a private 3 black-

oard where all the data that needs to be referenced by its nodes

an be stored as ( key, value ) pairs. Although it is not mandatory,

n practice the blackboard keys are usually strings. For the rest of

he paper, the value associated with a key in a blackboard will be

enoted blackboard [ key ]. For example, a service node could repeat-

dly call a method ғɪɴ ᴅT ᴀʀɢ ᴇᴛ that checks if there is a target near

he NPC and, if any is found, updates blackboard [“target ”] with a

eference to it. Then, a task node could fetch this reference from

he blackboard and make the NPC follow the target. 

.4. Decorator nodes 

Decorator nodes have a single composite or task node as a

hild. Some examples of decorator nodes are the conditional dec-

rator , whose condition determines whether its child is ticked, the

onditional loop decorator , which works as a conditional decorator

ut re-ticks its child after it returns a completion status if the con-

ition is still met, and the loop decorator , which re-ticks its child

fter it returns a completion status (a set amount of times or in-

nitely). A subtype is the observer decorators , which was born along

ith EDBTs for its ability to react to events and abort nodes that

re in the running status. 

In our proposal, we are particularly interested in the blackboard

bserver decorator ( BOD ). This type of node is composed of a black-

oard key, a condition involving that key, and an abort rule . When-

ver a BOD is ticked, if the condition is met, its child is ticked
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4 In this paper some concepts ( e. g. , NPCs/agents, nodes) will be treated as objects 

of a programming language that has such data type. As is usual in object-oriented 

programming languages the dot notation will be used to access an object’s prop- 

erties and methods. That is, a property p of an object referenced by the variable 

obj will be denoted obj.p . In the same way, a method m () of the object obj will be 

denoted obj.m (). 
and its completion status is later returned; otherwise, the BOD re-

turns failure . The condition’s result and the abort rule both deter-

mine whether the BOD is registered as an observer for the black-

board key in question. Besides the dictionary, blackboards contain

a collection of pairs ( key, bod ) called observers list , which is up-

dated whenever a bod starts or stops observing the key it is as-

sociated with. Whenever the value associated with key is added,

modified or deleted, if there is a pair ( key, bod ) in the observers

list, bod is notified by the blackboard and its condition is reevalu-

ated. Then, depending on the location of the node(s) in the running

status, the condition’s result, and bod ’s abort rule, the node(s) in

the running status may be aborted and bod may be ticked, chang-

ing the EDBT’s execution flow. An abort rule that is important for

the rest of the paper is lower - priority , which is based on the con-

cept of lower priority nodes. Given a BOD b , a node n is a lower

priority node (with respect to b ) if n is a descendant of b ’s first

composite ancestor that is to b ’s right. For instance, in Fig. 1 the

task node ᴇx ᴘʟᴏʀᴇ is the only lower priority node for the depicted

BOD . This section concludes with an example of an EDBT where

the abort rule lower - priority is explained. 

Example 1. Consider the EDBT depicted in Fig. 1 , which models

a simple behavior that makes the NPC explore the terrain until it

finds a nearby target to follow. Suppose that the blackboard is ini-

tially empty and that there are no targets near the NPC. The EDBT’s

execution starts by ticking its root, which immediately ticks the

service node below. This node repeatedly and concurrently calls

the method ғɪɴ ᴅT ᴀʀɢ ᴇᴛ, which checks if there is a target near the

NPC and (if any is found) updates blackboard[ “ target ”] with a refer-

ence to the target. Then, the service node ticks the selector and the

selector ticks the BOD , which is composed of the blackboard key

“ target ”, a condition that checks if blackboard[ “ target ”] has a value,

and the abort rule lower - priority . Given that blackboard[ “ target ”]

has no value, the condition is not met and the completion sta-

tus failure is returned to the selector. However, the abort rule

lower - priority makes the BOD start observing the key “ target ”. 

The selector then ticks the task node ᴇx ᴘʟᴏʀᴇ. Suppose that,

while the NPC is exploring, ғɪɴ ᴅT ᴀʀɢ ᴇᴛ stores a reference to a tar-

get in blackboard[ “ target ”] , causing the BOD to be notified by the

blackboard. Now that the node’s condition is met, the abort rule

lower - priority has two effects: 

1. the BOD stops observing the blackboard key “ target ”, and 

2. the BOD ’s first composite ancestor—in this case, the selector—

will check if it has any descendant nodes placed to the BOD ’s

right ( i.e. , nodes with a lower priority) that are in the running

status; if so, the selector will abort them all and will tick the

BOD ; otherwise, the EDBT’s execution continues normally. 

Therefore, the task node ᴇx ᴘʟᴏʀᴇ is aborted and the BOD is

ticked, which immediately ticks its child. Observe that the task

node ғᴏʟʟᴏᴡ uses the reference stored in blackboard[ “ target ”] as a

parameter. In addition note that, due to (1), nothing will occur if

blackboard[ “ target ”] is updated again while the task node ғᴏʟʟᴏᴡ is

in the running status. 

3. Coordination nodes 

In this section, we will present the first part of the contribu-

tion of this work: an extension to EDBTs consisting of three new

types of nodes called coordination nodes , and the intuition behind

their use. The algorithms and implementation details will be pre-

sented in Section 6 . These nodes, together with the methodology

that we will present in the next section, facilitate the design and

implementation of NPCs that have to coordinate with each other.

For the rest of this paper, we will use the terms “NPC” and “agent”

interchangeably. 
.1. Messages and requests 

Coordination nodes allow agents to send and receive messages

hat encapsulate requests . A request from a sender s to a receiver

 implies that s is requesting r to do something that r can do.

n terms of behavior trees, s wants r to execute a certain sub-

ree in r ’s EDBT. A request is a pair req = [ type , parameters ] such

hat type is a string that determines the subtree in r ’s EDBT that

 wants r to execute, and parameters is a potentially empty tu-

le ( p 0 , . . . , p n ) representing the parameters that customize the re-

uest. For example, a request to protect a target could be repre-

ented by req = [“ protect "" , (target)] . 

Formally, a message from s to r is a 4-tuple msg = (s , req , c , t )

here req is a request, c is a condition that r must satisfy

o execute req , and t is a number of milliseconds after which

sg times out and must be discarded. For example, a comman-

er NPC could request the soldier NPC to protect a certain tar-

et , only if the soldier has more than 50% of its health points

nd with a timeout of 10 0 0 milliseconds, by sending the mes-

age ( comm ander , [“ protect "" , ( targ et )] , sold ier . currentHealth () >

old ier . maxHealth () / 2 , 10 0 0) 4 . In case the receiver doesn’t need to

atisfy any condition, this can be represented by the boolean value

rue . 

All received messages are stored in the receiver’s mailbox (a pri-

rity queue) until they are selected or discarded. When an agent is

hecking its mailbox, it will discard all the messages that have al-

eady timed out and—if possible—will select one that is acceptable,

.e. , a message with a condition it satisfies. 

.2. Request Handler nodes 

Whenever an agent selects an acceptable message from its

ailbox, the encapsulated request will be handled by one of the

equest Handler ( RH ) nodes in its EDBT. This class of nodes is a

pecialization of the BOD . Recall that a BOD has a single composite

r task node as a child and is composed of a blackboard key, a con-

ition involving that key, and an abort rule. The only difference be-

ween both is that in the RH nodes the only customizable param-

ter is the blackboard key (a string), which represents a request

ype and is denoted type . In particular, the condition involving the

ey is checking if blackboard[ type ] has a value and its abort rule is

ower - priority . This implies that, abstracting from the request pro-

ocol, an RH node works exactly as the BOD from Example 1 . 

An RH node associated with the blackboard key type is

n charge of handling requests of that type, regardless of

heir parameters. Given a message msg = (s , req , c , t ) with req =
 type , parameters ] sent to a receiver r , the subtree below the RH

ode associated with type in the receiver’s EDBT corresponds to

he behavior that the sender s wants r to execute. For this reason,

o be able to execute different types of requests ( e. g. , “ follow "" ,

 protect "" ) an agent’s EDBT must have different RH nodes, one for

ach type. 

Whenever an RH node is ticked, if blackboard[ type ] has no

alue ( i.e. , its condition is not met), it starts observing that black-

oard key waiting for a request req = [ type , parameters ] to be

tored. 

ehavior 1 (Handling a request) . 

henever an RH node is notified because blackboard[ type ]

hanged: 
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1. The RH node reevaluates its condition, i.e. , checks if

blackboard[ type ] has a value. 
• If blackboard[ type ] has a value and there are nodes in the

running status with lower priority: 

2. Those nodes are aborted. 

3. The RH node is ticked. 

4. The RH node ticks its child, i.e. , the root of the subtree

that s wants r to execute. 
• Otherwise, if blackboard[ type ] has no value or there are no

nodes in the running status with lower priority: 

2 ′ . The execution of r ’s EDBT continues normally. 

Given that each agent could have a different subtree below the

H node associated to type in its EDBT, different classes of NPCs

ould respond to the same request type in different ways. While

n RH ’s subtree is being executed, req = [ type , parameters ] will

emain stored in blackboard[ type ] and, therefore, the request’s pa-

ameters will be accessible by the nodes in the subtree. 

In this work, we propose two classes of requests: soft and hard .

oft requests are useful when the sender wants the receivers to

xecute a certain subtree while the sender proceeds with its in-

ividual behavior regardless of what the receivers do. Take into

ccount that some receivers may not be able to select the mes-

age from their mailbox before it times out if they cannot satisfy

he message’s condition, or if they are busy executing another re-

uest or some uninterruptible behavior. On the other hand, hard

equests are useful when the sender needs to execute some behav-

or that depends on the receivers’ commitment to actually execut-

ng a certain subtree. Hence, a hard request needs the confirmation

f enough receivers before the execution of both parties’ subtrees

egins. 

.3. Soft Request Sender node 

An agent can send messages that encapsulate a soft request

hrough a Soft Request Sender ( SRS ) node, schematized in Fig. 2 .

his class of node is a task node (leaf) customizable with a request

eq , a set of receivers r 1 , . . . , r n , a condition c that the receivers

ust satisfy to execute req , and a number of milliseconds t after

hich the message (and the request) time out. 

ehavior 2 (Sending and receiving a soft request ) . 

henever an SRS node is ticked (see α in Fig. 2 ): 
Fig. 2. Outline of a soft request from
1. A message msg = (s , req , c , t ) with req = [ type , parameters ] is

sent to each receiver’s mailbox (see β). 

2. The SRS node returns success to its parent. 

3. The execution of s ’s EDBT continues normally. 

4. For each agent that selects msg from its mailbox (see γ ): 

5. req is stored in its blackboard[ type ] . 

6. Its RH node associated to type is notified (see δ). 

7. Behavior 1 is executed. 

Observe that the SRS node always returns success to its parent.

he reason is that the HRS always sends the messages successfully,

nd the sender can proceed with its individual behavior regardless

f what the receivers do. Differently from an HRS node, presented

elow, an SRS node does not need the confirmation from the re-

eivers. Another possible implementation for the HRS node would

e to return failure when the set of receivers r 1 , . . . , r n is empty, in

hich case the EDBT programmer may want to handle the failure

ith additional nodes. Since soft requests are independent, this al-

ernative implementation would not affect the rest of the protocol.

.4. Hard Request Sender node 

On the other hand, an agent can send messages that encap-

ulate a hard request through Hard Request Sender ( HRS ) nodes,

chematized in Fig. 3 . This class of node is a decorator whose only

hild is the root of a subtree that represents part of the sender’s

ehavior that depends on the commitment of the receivers. HRS

odes are customizable with the same elements as SRS nodes and,

lso, a quorum q . Differently from soft requests, before the execu-

ion of both parties’ subtrees begins, hard requests need the confir-

ation of certain receivers until the quorum specified in q is met

 e. g. , at least a certain number of receivers or all the receivers

rom a list). 

ehavior 3 (Sending and receiving a hard request ) . 

henever an HRS node is ticked (see α in Fig. 3 ): 

1. A message msg = (s , req , c , t ) with req = [ type , parameters ] is

sent to each receiver’s mailbox (see β). 

2. The HRS node waits until q is met or t elapses. 

3. Each agent that selects msg from its mailbox (see γ ): 

4. Sends a confirmation to s (ver δ). 

5. Continues executing its EDBT normally. 

4. If q is met before t elapses: 
 agent s to agents r 1 , . . . , r n . 
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Fig. 3. Outline of a hard request from agent s to agents r 1 , . . . , r n . 
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6. The HRS node ticks its child, i.e. , the root of s ’s subtree that

depends on the commitment of the receivers. 

7. A reconfirmation is sent to the receivers that previously con-

firmed (see ε). 

8. For each agent that receives a reconfirmation: 

9. req is stored in its blackboard[ type ] . 

10. Its RH node associated to type is notified (see ζ ). 

11. Behavior 1 is executed. 

5. Otherwise, if t elapses before q is met: 

6 ′ . The HRS node returns failure to its parent. 

7 ′ . The execution of s ’s continues normally. 

Note that, independently of whether the request is soft or hard,

it will be handled by the corresponding RH node in the receiver’s

EDBT. The class of request only determines the agents’ protocol be-

fore the request is executed. Differently from soft requests, when

selecting a message that encapsulates a hard request, the nodes in

the running status are not immediately aborted. The execution of

the receiver’s EDBT continues normally and the interruption only

occurs if it receives the corresponding reconfirmation. 

3.5. Mailbox 

Messages received by an agent are handled by the method

ᴄʜᴇᴄᴋM ᴀɪʟʙᴏx. As will be explained in the next section, this method

is repeatedly and concurrently called by a service node in the

agent’s EDBT. Whenever ᴄʜᴇᴄᴋM ᴀɪʟʙᴏx is called, it discards from the

agent’s mailbox all messages that have timed out and—if possible—

selects one that is acceptable according to a certain criterion. For

example, an NPC may prioritize messages that are closer to time

out, prioritize hard requests over soft requests, prioritize certain

senders over others, etc. 

In our proposal, by default, agents that follow the request pro-

tocol will be committed to the coordinated behaviors they are part

of. For this reason, to avoid breaking their commitment due to an

interruption caused by other incoming requests, agents will auto-

matically disable ᴄʜᴇᴄᴋM ᴀɪʟʙᴏx while: 

1. executing an RH node’s subtree, 

2. waiting for an HRS node’s quorum to be met and executing the

subtree below, and 
3. waiting for the reconfirmation of a hard request e
n the first case, ᴄʜᴇᴄᴋM ᴀɪʟʙᴏx is automatically re-enabled after the

xecution of the subtree is finished. In the second case, if the re-

uest times out before the quorum is met, ᴄʜᴇᴄᴋM ᴀɪʟʙᴏx is auto-

atically re-enabled. Otherwise, if the quorum is met in time, the

ethod will be re-enabled after the execution of the HRS node’s

ubtree is finished. In the third case, if a message with timeout t

as sent at t msg and the confirmation was sent at t conf , the re-

eiver will have to wait at most t − ( t conf − t msg ) milliseconds for

he reconfirmation. If the request times out before the reconfir-

ation arrives in time, ᴄʜᴇᴄᴋM ᴀɪʟʙᴏx is automatically re-enabled.

therwise, if the reconfirmation arrives, the method will be auto-

atically re-enabled after the execution of the corresponding RH

ode’s subtree is finished, as stated in the first case. 

To bypass this default behavior, in the next section, we will pro-

ide tools for the EDBT designer to be able to make agents man-

ally disable and re-enable ᴄʜᴇᴄᴋM ᴀɪʟʙᴏx when necessary. For ex-

mple, the EDBT designer may want to protect from interruptions

 certain critical subtree inside an agent’s individual behavior ( i.e. ,

he part of its EDBT that does not correspond to the execution of

equests). In addition, the EDBT designer may want to deprotect

rom interruptions a subtree below an RH node that is considered

on-critical. Considering this, a node in an agent’s EDBT will be

alled non-critical if it can be ticked while ᴄʜᴇᴄᴋM ᴀɪʟʙᴏx is enabled.

herefore, by default, the nodes in the agent’s individual behavior

re non-critical and the nodes in an RH node’s subtree and an HRS

ode’s subtree are critical. 

In this section, we presented the intuition behind coordina-

ion nodes and the request protocol, which will be formalized in

ection 6 through algorithms. However, before such formalization,

n the next section, we will continue with a methodology for using

oordination nodes adequately. 

. Methodology 

In this section, we will present a methodology for adequately

tructuring each agent’s EDBT using the coordination nodes while

ollowing some desirable principles. In line with one of the rea-

ons that originally motivated the use of behavior trees in the in-

ustry, this methodology will make the resulting EDBTs visually in-

uitive. We consider that, to achieve this high-level quality factor,

ach agent’s EDBT must follow these principles: 
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Fig. 4. Proposed EDBT structure for agents using coordination nodes. 

Fig. 5. The node structure on the left illustrates a sequencer (represented by a right arrow) that disables ᴄʜᴇᴄᴋM ᴀɪʟʙᴏx, executes a critical subtree, and then re-enables the 

method. The node structure on the right illustrates a sequencer that re-enables ᴄʜᴇᴄᴋM ᴀɪʟʙᴏx and then executes a non-critical subtree. 
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uations in which an RH node can be ticked: 
1. The logic of the execution of the requests is separate from the

agent’s individual behavior. 

2. There is a visually explicit priority order between the different

types of requests that the agent can handle. 

3. Non-critical nodes in the running status in the agent’s individual

behavior can be aborted by all requests. 

4. Non-critical nodes in the running status in the subtrees below

RH nodes can only be aborted by higher-priority requests. 

egarding the last two principles, further bellow we will show

ow the EDBT designer can make an agent manually disable and

e-enable ᴄʜᴇᴄᴋM ᴀɪʟʙᴏx to bypass its default behavior. That is,

ʜᴇᴄᴋM ᴀɪʟʙᴏx can be re-enabled beforehand during the execution

f a subtree below an RH node, which causes the corresponding

odes to be non-critical; also, ᴄʜᴇᴄᴋM ᴀɪʟʙᴏx can be disabled (and

hen re-enabled) during the execution of the agent’s individual be-

avior, which causes the corresponding nodes to be critical. 

Fig. 4 depicts the EDBT structure that an agent that uses coordi-

ation nodes should have to follow the aforementioned principles.

onsider that only relevant nodes are shown; clearly other nodes

an be added as necessary. 

All the RH nodes and the root of the agent’s individual behav-

or should be children of a selector, which will be referred to as

he main selector . The individual behavior should be placed to the

ight, and the RH nodes should be arranged in descending order of

riority. This allows principles 1 and 2 to be satisfied. Also, given

hat RH nodes use the abort rule lower - priority , such order allows
rinciples 3 and 4 to be satisfied. Note that, if an agent is exe-

uting a request req 1 and selects a message encapsulating another

equest req 2 with the same priority ( i.e. , of the same type), req 1 
ill not be interrupted by req 2 . 

Above the main selector, there must be a service node that, af-

er being ticked for the first time, repeatedly and concurrently calls

he method ᴄʜᴇᴄᴋM ᴀɪʟʙᴏx at a frequency defined by the EDBT de-

igner. When needed, a subtree in the agent’s individual behav-

or that is considered critical can be protected from interruptions

y using the node structure illustrated in Fig. 5 (left). Similarly,

 subtree below an RH node or an HRS node that is considered

on-critical can be deprotected from interruptions by using the

ode structure illustrated in Fig. 5 (right). As will be explained

n Section 6 , the ᴅɪ s ᴀʙʟᴇC ʜᴇᴄᴋM ᴀɪʟʙᴏx and ᴇɴ ᴀʙʟᴇC ʜᴇᴄᴋM ᴀɪʟʙᴏx

ask nodes can be implemented by simply changing a variable’s

alue. 

Resuming with Fig. 4 , any necessary nodes can be placed be-

ween the root and the main selector as long as the service node

hat calls ᴄʜᴇᴄᴋM ᴀɪʟʙᴏx is among them. For instance, a loop dec-

rator may be necessary if in the used implementation the root

ode does not automatically re-tick its child whenever it returns a

ompletion status. However, take into account that nodes that are

ot placed below the main selector will not be children of the RH

ode’s first composite ancestor and, hence, cannot be aborted by

ncoming requests. 

Considering the proposed structure, there are two different sit-
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Fig. 6. EDBT for the firefighter NPCs from Example 2 . 
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1. When the EDBT aborts its nodes in the running status to execute

a request corresponding to that RH node (see Behavior 1 ), or 

2. When the main selector is iterating over its children until one

returns success . 

In the second case, the RH node will always return failure

since no request req = [ type , parameters ] will be stored in

blackboard[ type ] . 

Differently from RH nodes, SRS and HRS do not have place-

ment restrictions besides those corresponding to tasks and deco-

rators, respectively. They can be placed inside the agent’s individ-

ual behavior or even inside the subtrees below RH nodes, creating

the possibility of nested requests. An EDBT should not have more

than one RH node associated with the same request type; other-

wise, more than one node could simultaneously be notified by the

blackboard, which would cause undesired results. On the contrary,

multiple SRS and HRS nodes that send messages which encapsu-

late requests of the same type are allowed. If an agent selects a

message encapsulating a request for which it does not have a cor-

responding RH node, the request will simply have no effect. 

Differently from the execution of a receiver’s EDBT, which con-

tinues normally while waiting for a reconfirmation, the execution

of a sender’s EDBT temporarily stops in the HRS while waiting un-

til the quorum is met or the request times out. The reason is that,

as we will see in Section 6 , the wait for a reconfirmation occurs

inside the method ᴄʜᴇᴄᴋM ᴀɪʟʙᴏx (which is executed concurrently),

whereas the wait for a confirmation occurs inside the HRS node. A

workaround to avoid this wait is to use a parallel node as the HRS

node’s parent. This allows agents to send messages that encapsu-

late a hard request and wait for the confirmations while executing

another subtree in parallel. 

5. Application example 

In this section, we present an application example in which a

specific coordinated behavior is modeled using coordination nodes
nd the methodology proposed in the previous section. This exam-

le aims to show how to use our proposal in a concrete scenario.

or this reason, some elements of the application that are not part

f the coordination have been simplified. 

xample 2. Consider a scenario in which a squad of firefighter

PCs has the duty of extinguishing the fires caused by the player.

 fire can be extinguished only if at least three firefighters si-

ultaneously douse it for a certain amount of time. Hence, the

refighters need to coordinate to avoid focusing on different fires.

he desired coordinated behavior is the following: the firefighters

hould explore the terrain individually; when someone finds a fire

t should request two other firefighters to move to that location

nd help extinguish it. 

Fig. 6 depicts a possible EDBT for each agent, which mod-

ls the desired behavior and follows the methodology proposed

n the previous section. We assume that the root automatically

e-ticks its child whenever it returns a completion status; oth-

rwise, a loop decorator can be placed below the root. Below

he service node that calls ᴄʜᴇᴄᴋM ᴀɪʟʙᴏx, there is another service

ode that repeatedly calls the method ᴄʜᴇᴄᴋI ғN ᴇᴀʀʙʏF ɪʀᴇ, which is

n charge of updating the agent’s blackboard key “ nearbyFire ”: if

lackboard[“ nearbyFire ”] has no value and there is a fire within

 certain radius from the agent, ᴄʜᴇᴄᴋI ғN ᴇᴀʀʙʏF ɪʀᴇ stores a refer-

nce to the fire; also, ᴄʜᴇᴄᴋI ғN ᴇᴀʀʙʏF ɪʀᴇ deletes that reference from

lackboard[“ nearbyFire ”] if the fire is extinguished. 

The main selector’s right child, another selector, is the root

f the agent’s individual behavior. When ticked, the BOD below

hat selector checks whether blackboard[“ nearbyFire ”] has a value. If

hat is not the case, the BOD starts observing the key “ nearbyFire ”

nd returns failure to the selector, which then ticks the task node

x ᴘʟᴏʀᴇ. When this occurs, the agent explores the terrain indefi-

itely until the task node ᴇx ᴘʟᴏʀᴇ... 

a. is aborted by the BOD ( i.e. , the agent found a fire,

whose reference was stored in blackboard[“ nearbyFire ”] by

ᴄʜᴇᴄᴋI ғN ᴇᴀʀʙʏF ɪʀᴇ), or 
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Fig. 7. A screenshot of the full implementation of Example 2 . The light blue NPCs coordinate with each other, as described in the example, to extinguish the fires caused 

by the red character, which is controlled by the player. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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b. is aborted by an incoming request ( i.e. , another agent found a

fire). 

hen the first scenario occurs, the BOD ticks the HRS node.

bserve that the hard request sent through this node is

omposed of the request type “ extinguish - fire ” and the pa-

ameter blackboard[“ nearbyFire ”] ( i.e. , the reference to the

ound fire). Also, the node contains a list of receivers stored

n blackboard[“ squad ”] , a condition specified through the

oolean value true , a timeout of 50 0 0 milliseconds, and a

uorum of 2. When ticked, the HRS node sends the message

sg = (s , [“ extinguish - fire ”, (blackboard[“ nearbyFire ”])] , true , 50 0 0) 

o all the agents in blackboard[“ squad ”] , where s is the sender

gent. Given that the message’s condition is true , the receivers do

ot need to satisfy an actual condition to confirm the hard re-

uest. If the sender does not receive two confirmations before the

imeout elapses, the HRS node returns failure to the BOD , the BOD

eturns failure to the selector, and the selector re-ticks the task

ode ᴇx ᴘʟᴏʀᴇ. Otherwise, if the quorum is met, a reconfirmation is

ent to the agents that confirmed the request and the HRS node

icks its child. The task node ᴅᴏᴜs ᴇ makes the agent start dousing

he fire whose reference is stored in blackboard[“ nearbyFire ”] .

hen the fire is finally extinguished, the task node returns success

o the HRS node, the HRS node returns success to the BOD , and so

n, until the root receives this completion status and re-ticks its

hild. 

Whenever an agent that is exploring the terrain receives and

elects a message that encapsulates a request whose type is

 extinguish - fire ”, the RH node below the main selector aborts the

ask node ᴇx ᴘʟᴏʀᴇ and ticks its child. This sequencer ticks the task

odes ᴍᴏᴠᴇT ᴏ and ᴅᴏᴜs ᴇ, which make the agent move to a certain

istance from the fire—whose reference was sent as a parameter—

nd douse it until it is extinguished. 

Recall that the RH node’s subtree and the HRS node’s subtree

annot be aborted by other incoming requests since the method

ʜᴇᴄᴋM ᴀɪʟʙᴏx is temporarily disabled by the request protocol. 

The previous example was developed in the game development

ngine Unity using the implementation of the coordination nodes

nd the request protocol that will be presented in the next section.

 playable version of the example 5 (see Fig. 7 ) and the whole Unity
5 https://github.com/ramiroagis/CoordEDBT/blob/master/Firefighters Example - 

xecutable.zip. 

F

roject 6 (containing the source code and the assets) are publicly

vailable and can be downloaded. 

. Algorithms and implementation details 

In this section, we present the main algorithms of our pro-

osal and some relevant implementation details. An implemen-

ation of the coordination nodes and the request protocol for

he game development engine Unity is publicly available at

ttps://github.com/ramiroagis/CoordEDBT. The repository contains 

 step-by-step tutorial on how to use coordination nodes based

n the application example presented in the previous section.

his implementation extends NPBehave 7 , an open-source EDBT li-

rary for Unity. Section 6.1 specifies the effects of ticking HRS

nd SRS nodes. Section 6.2 includes the method ᴄʜᴇᴄᴋM ᴀɪʟʙᴏx

n charge of selecting acceptable messages. Section 6.3 speci-

es how notifications from the blackboard tick RH nodes. Finally,

ection 6.4 presents some implementation details about this ex-

ension. 

.1. Sending a request 

This section presents the main algorithms from a sender’s per-

pective. First, Algorithm 1 specifies the effects of ticking an SRS

ode. 

lgorithm 1 ᴛɪ ᴄᴋ an SRS node 

nput: recei v ers , agent , request , condition , timeout 

utput: success 

1: for each r ecei v er ∈ r ecei v ers do 

2: message ← createMessage (agent , request , condit ion, t imeout )

3: recei v er. receiveMessage (message ) 

4: end for 

5: return success 

A method’s input variables are accessible by it even though they

re not specified as parameters. In particular, the receivers , the re-

uest , the condition , and the timeout are stored in the SRS node

hen it is created, whereas agent is the agent that is executing the

DBT ( i.e. , the sender). Whenever an SRS node is ticked, a message
6 https://github.com/ramiroagis/CoordEDBT/blob/master/ 

irefightersExample-UnityProject.zip . 
7 https://github.com/meniku/NPBehave . 

https://www.github.com/ramiroagis/CoordEDBT/blob/master/FirefightersExample-UnityProject.zip
https://github.com/meniku/NPBehave
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Algorithm 4 ᴄʜᴇᴄᴋM ᴀɪʟʙᴏx 

Input: canCheckMail box , mail box 

1: if canCheckMailbox and not mailbox. isEmpty () then 

2: message ← mailbox. selectMessage () 

3: if message � = null then 

4: request ← message. getRequest () 

5: if request is SoftRequest then 

6: handleSoftRequest (request) 

7: else if request is HardRequest then 

8: sender ← message. getSender () 

9: timeout ← message. getTimeout () 

10: handleHardRequest (sender, request, timeout) 

11: end if 

12: end if 

13: end if 

Algorithm 5 ʜᴀɴ ᴅʟᴇS ᴏғᴛR ᴇᴏ ̨ᴜᴇs ᴛ( request ) 

Input: request , blackboard 

1: type ← request. getType () 

2: blackboard[ type ] ← request 

Algorithm 6 ʜᴀɴ ᴅʟᴇH ᴀʀᴅR ᴇᴏ ̨ᴜᴇs ᴛ( sender, request, timeout ) 

Input: sender, request , timeout , agent , canCheckMailbox 

1: sender. receiveConfirmation (agent) 

2: canCheckMailbox ← false 

3: type ← request. getType () 

4: waitForReconfirmation (request , t ype, t imeout ) 

Algorithm 7 ᴡᴀɪ ᴛF ᴏʀR ᴇᴄᴏɴ ғɪʀᴍᴀᴛɪ ᴏɴ ( request, type, timeout ) 

Input: request , t ype , t imeout , blackboard, canCheckMailbox 

1: loop 

2: if isElapsed (t imeout ) then 

3: canCheckMailbox ← true 

4: break loop 

5: else if blackboard[ type ] = request then 

6: break loop 

7: end if 

8: end loop 

Algorithm 8 ʙᴇN ᴏᴛɪ ғɪ ᴇᴅ

Input: blackboard, type 

1: if blackboard[ type ] � = null then 

2: selector ← self . getParent () 

3: ticked ← selector. abortLowerPriority ( self ) 

4: if not ticked then 

5: blackboard[ type ] ← null 

6: end if 

7: end if 
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is created and stored in each receiver’s mailbox. Then, the node re-

turns success to its parent and the sender’s EDBT’s execution con-

tinues normally. Algorithm 2 specifies the effects of ticking an HRS

node. 

Algorithm 2 ᴛɪ ᴄᴋ an HRS node 

Input: agent , blackboard, r ecei v ers , r equest , condit ion , t imeout ,

quorum 

Output: { success , failure } 
1: agent.canCheckMailbox ← false 

2: blackboard[“ confirmed ”] ← createEmptyList () 

3: for each r ecei v er ∈ r ecei v ers do 

4: message ← createMessage (agent , request , condit ion, t imeout )

5: recei v er. receiveMessage (message ) 

6: end for 

7: completionStatus ← waitForQuorum (request, timeout, quorum ) 

8: agent.canCheckMailbox ← true 

9: return completionStatus 

An agent’s boolean variable canCheckMailbox determines at any

moment if the method ᴄʜᴇᴄᴋM ᴀɪʟʙᴏx, repeatedly called by a service

node in its EDBT, is enabled or disabled. Hence, to avoid break-

ing its commitment to the request protocol, this variable’s value

will be updated following the intuition explained in Section 3.5 .

Whenever an HRS node is ticked, ᴄʜᴇᴄᴋM ᴀɪʟʙᴏx is disabled and the

sender’s blackboard key “confirmed ” is initialized with an empty

list. This list will be used to store all the receivers that eventu-

ally confirm the sender’s hard request. After creating and storing

the messages in the receivers’ mailboxes, the node starts waiting

for the quorum to be met. When the wait is over, ᴄʜᴇᴄᴋM ᴀɪʟʙᴏx is

re-enabled and the HRS node returns either success or failure to its

parent depending on the output of ᴡᴀɪ ᴛF ᴏʀQ ᴜᴏʀᴜᴍ, as specified in

Algorithm 3 . 

Algorithm 3 ᴡᴀɪ ᴛF ᴏʀQ ᴜᴏʀᴜᴍ( request, timeout, quorum ) 

Input: request , t imeout , quorum , blackboard, agent , child 

Output: { success , failure } 
1: loop 

2: con f irmedList ← blackboard[“ confirmed ”] 

3: if isMet (quorum, con f irmedList) then 

4: for each recei v er ∈ con f irmedList do 

5: r ecei v er. receiveReconfirmation (r equest) 

6: end for 

7: completionStatus ← child. tick () 

8: return completionStatus 

9: else if isElapsed (t imeout ) then 

10: return failure 

11: end if 

12: end loop 

While waiting for the quorum to be met, the HRS node con-

stantly checks the list of confirmed receivers. As will be speci-

fied further below in Algorithm 6 , this list is updated whenever

the sender receives a confirmation from a receiver. The node waits

until the quorum is met or the hard request times out. If the

first case occurs, a reconfirmation is sent to each agent in the list

and the HRS node’s child is ticked; otherwise, the node returns

failure to its parent. The method ʀᴇᴄᴇɪ ᴠᴇR ᴇᴄᴏɴ ғɪʀᴍᴀᴛɪ ᴏɴ stores the

request in the receiver’s blackboard key corresponding to the re-

quest’s type ( blackboard [ type ] ← request ). This will cause the re-

ceiver’s blackboard to notify the corresponding RH node, as speci-

fied in Algorithm 8 . 
.2. Checking the mailbox 

This section presents the algorithms regarding the mailbox

hecking from a receiver’s perspective. Next, Algorithm 4 specifies

he method ᴄʜᴇᴄᴋM ᴀɪʟʙᴏx, which is repeatedly and concurrently

alled by a service node in the agent’s EDBT. 

The method s ᴇʟᴇᴄᴛM ᴇss ᴀɢ ᴇ removes from the agent’s mailbox all

essages that have timed out and—if possible—selects one that is

cceptable ( i.e. , one whose condition is satisfied by the agent) ac-

ording to some criterion defined by the EDBT designer. The mes-

age’s request will be handled differently depending on whether it

s soft or hard, as specified in Algorithms 5 and 6 , respectively. 
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Algorithm 9 ᴛɪ ᴄᴋ an RH node 

Input: blackboard, type , agent , child 

Output: { success , failure } 
1: if blackboard[ type ] � = null then 

2: agent.canCheckMailbox ← false 

3: completionStatus ← child. tick () 

4: agent.canCheckMailbox ← true 

5: blackboard[ type ] ← null 

6: return completionStatus 

7: else 

8: return failure 

9: end if 
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Since soft requests do not require confirmations, they are im-

ediately stored in the receiver’s blackboard key corresponding to

he request’s type. This makes the receiver’s blackboard notify the

orresponding RH node, as specified in Algorithm 8 . 

On the contrary, since hard requests do require confirmations,

ᴇᴄᴇɪ ᴠᴇC ᴏɴ ғɪʀᴍᴀᴛɪ ᴏɴ stores the receiver ( i.e. , the agent that is exe-

uting the method) in the sender’s blackboard key corresponding

o the list of confirmed receivers ( blackboard[ confirmed ] ← agent).

hen, the receiver temporarily disables the method ᴄʜᴇᴄᴋM ᴀɪʟʙᴏx

o avoid breaking its commitment to a confirmed request which

as not yet started. Algorithm 7 specifies how the receiver waits

or the reconfirmation. 

Recall that, since ᴄʜᴇᴄᴋM ᴀɪʟʙᴏx is called concurrently by a ser-

ice node, the confirming agent’s EDBT’s execution can continue

ormally while it awaits the reconfirmation. This wait will stop

hen the request times out or when the request is stored in the

eceiver’s blackboard key corresponding to the request’s type (see

ᴇᴄᴇɪ ᴠᴇR ᴇᴄᴏɴ ғɪʀᴍᴀᴛɪ ᴏɴ in Algorithm 3 ). In the first case, the method

ʜᴇᴄᴋM ᴀɪʟʙᴏx is re-enabled. 

.3. Being notified by the blackboard 

This section specifies, from a receiver’s perspective, how a no-

ification from the blackboard occurs and how it causes the corre-

ponding RH node to be ticked. 

When an RH node associated with the request type type is cre-

ted, it is registered in the EDBT’s blackboard as an observer for

he key type . Hence, the RH node will be notified whenever black-

oard [ type ] is modified. This will occur in two different situations:

henever a sender’s request whose type is also type is stored in the

eceiver’s blackboard (recall the sentence blackboard [ type ] ← re-

uest from Algorithms 3 and 5 ); and when the request’s execu-

ion is finished and needs to be removed from the blackboard to

repare the RH node for future requests of the same type ( i.e. ,

lackboard[ type ] ← null ). Algorithm 8 specifies the effects of an RH

ode being notified by the blackboard. 

Whenever an RH node is notified, first it verifies that it is due

o a request ready to be executed. Then, the node’s parent 8 will

bort all its descendant nodes in the running status with a lower

riority. If the methodology presented in Section 4 is used, the

ode’s parent will be the main selector, and it will be able to

bort any non-critical node in the running status inside another RH

ode’s subtree to the right, or any non-critical node in the running

tatus inside the agent’s individual behavior. If at least one node

s aborted, the RH node is ticked and ᴀʙᴏʀᴛL ᴏᴡᴇʀP ʀɪ ᴏʀɪ ᴛʏ returns

rue ; otherwise, it returns false and the EDBT’s execution contin-

es normally. Note that, if no nodes are aborted, this implies that

 higher-priority request was being executed. 

If the RH node is ticked, the request will remain stored in

he blackboard until the execution of the subtree below the node

s finished. This allows the nodes in the subtree to fetch all

he necessary parameters from the blackboard. Otherwise, the re-

uest is deleted from the corresponding blackboard key to pre-

are the node for future requests of the same type. Note that

lackboard[ type ] ← null causes ʙᴇN ᴏᴛɪ ғɪ ᴇᴅ to be called again, but

othing happens due to its initial check. Finally, Algorithm 9 spec-

fies the effects of ticking an RH node. 

If blackboard[ type ] � = null , the node was ticked by a blackboard

otification and, therefore, a request is ready to be executed (see

lgorithm 8 ). In this case, the RH node’s child is ticked, which

ill eventually return success or failure when the execution of the

ubtree is finished. Note that the method ᴄʜᴇᴄᴋM ᴀɪʟʙᴏx is disabled

hile the RH node’s subtree is being executed to avoid interrup-
8 self refers to the RH node that is executing the method. 

h  

n  

t  
ions caused by other incoming requests. Afterward, the request

s deleted from the corresponding blackboard key to prepare the

ode for future requests of the same type. On the contrary, if

lackboard[ type ] = null , the node was ticked by the main selector

hen iterating over its children. In this case, the RH node returns

ailure to its parent since no request needs to be executed. 

Next follows a final remark on Algorithms 2 and 3 , and the

ethod ʀᴇᴄᴇɪ ᴠᴇC ᴏɴ ғɪʀᴍᴀᴛɪ ᴏɴ from Algorithm 6 . Since multiple HRS

odes could be placed as descendants of a parallel node, agents

ould send different hard requests simultaneously. For this rea-

on, each corresponding list of confirmed receivers should actually

e stored in the blackboard key composed of the concatenation

f the string “confirmed ” and a unique identifier associated with

ach HRS node ( i.e. , blackboard[“ confirmed ” + nodeId] ). Otherwise,

he receivers that confirm the different hard requests would end

p stored in the same list and the coordination among the agents

ould not occur as expected. 

.4. Implementation details and time complexity 

This section presents some relevant details regarding the im-

lementation and discusses the time complexity of the algorithms

resented in the previous section. 

The extension that we have presented in this paper can be used

n the game development engine Unity by importing the C# classes

hat are available in the previously mentioned repository and the

nes provided by NPBehave , the base EDBT implementation. 

Among the classes that implement this extension, the ones that

re of particular interest for the user are HardRequestSender, SoftRe-

uestSender, RequestHandler , and Agent . As their names imply, the

rst three classes implement the coordination nodes and can be

sed as described by the step-by-step tutorial in the repository.

o be able to use these nodes, an NPC must that inherit from

he class Agent . By doing so, the NPC automatically follows the

equest protocol and has access to a mailbox and the methods

ɪ s ᴀʙʟᴇC ʜᴇᴄᴋM ᴀɪʟʙᴏx and ᴇɴ ᴀʙʟᴇC ʜᴇᴄᴋM ᴀɪʟʙᴏx, which can be invoked

rom task nodes. 

Next, we will discuss the time complexity of the algorithms in

he worst-case scenario: Algorithm 1 ( ᴛɪ ᴄᴋ an SRS node) runs in

inear time with respect to the number of receivers. The runtimes

f Algorithm 2 ( ᴛɪ ᴄᴋ an HRS node), Algorithm 3 ( ᴡᴀɪ ᴛF ᴏʀQ ᴜᴏʀᴜᴍ)

nd Algorithm 9 ( ᴛɪ ᴄᴋ an RH node) are bounded by that of

hild . ᴛɪ ᴄᴋ, like many other nodes in any Behavior Trees imple-

entation ( e. g. , the conditional decorator, blackboard observer dec-

rator ). Algorithm 5 ( ʜᴀɴ ᴅʟᴇS ᴏғᴛR ᴇᴏ ̨ᴜᴇs ᴛ) runs in constant time.

lgorithm 4 ( ᴄʜᴇᴄᴋM ᴀɪʟʙᴏx), Algorithm 6 ( ʜᴀɴ ᴅʟᴇH ᴀʀᴅR ᴇᴏ ̨ᴜᴇs ᴛ), and

lgorithm 7 ( ᴡᴀɪ ᴛF ᴏʀR ᴇᴄᴏɴ ғɪʀᴍᴀᴛɪ ᴏɴ ) run in a fixed amount of time

etermined by the timeout variable, like other nodes in existing Be-

avior Trees implementations ( e. g. , the wait node, the time limit

ode). Algorithm 8 ( ʙᴇN ᴏᴛɪ ғɪ ᴇᴅ) runs in linear time with respect to

he number of nodes in the EDBT. Considering this, we can con-
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clude that the coordination nodes that we propose in this paper

do not increase the time complexity of the EDBTs. 

7. Related work and discussion 

In Section 1 , we introduced a general overview of the related

work on behavior trees. In this section, we will discuss the differ-

ences and similarities with two approaches that are closely related

to our proposal. Also, we will discuss the benefits of using coordi-

nation nodes in comparison to hard-coding coordinated behaviors

without it. 

Soft and hard requests are related to FIPA’s Request-When In-

teraction Protocol ( FIPA: Foundation for Intelligent Physical Agents,

2002 ). Similar to our approach, this interaction protocol allows an

initiator agent to request a participant agent to perform some ac-

tion when the given precondition becomes true. However, there

are some differences. First, if the participant does not understand

the request it will initially refuse; otherwise, it will agree and

wait until the precondition occurs. Although in our approach this

concept of “understanding the request” is inexistent, a beforehand

agreement (confirmation) is sent by the receiver of a hard request

when the message is selected from its mailbox (hence, the condi-

tion is already true). Another difference is that in FIPA’s interaction

protocol there is no quorum or reconfirmation, and once the action

is completed the participant informs the initiator about the result

of the action. 

In ( Marzinotto et al., 2014 ), the authors present a unified frame-

work for classical BTs for robotics and control applications is pre-

sented. They mention the need for extending their framework with

a Decorator ̃ node that allows two or more agents to undertake a

common task jointly by synchronizing parts of their BTs. This type

of node should allow its subtree to be synchronized with the sub-

trees below the Decorator ̃ nodes corresponding to the same co-

operative task that is in other agents’ BTs. Whenever a Decorator ̃

node is ticked, it should communicate to the other correspond-

ing Decorator ̃ nodes that it is ready to engage as soon as there

are enough available agents to simultaneously execute the corre-

sponding subtree. If the Decorator ̃ node is ticked when there are

enough available agents, all the corresponding subtrees are simul-

taneously executed; otherwise, the node returns without ticking

its subtree. Although the authors provide a high-level description

of the desired behavior for this node, they do not formalize these

intuitions or provide a concrete implementation of such behavior.

Putting aside the fact that our approach is not based on classical

BTs, the HRS decorator together with the RH observer decorator

node and the mailbox ᴄʜᴇᴄᴋM ᴀɪʟʙᴏx serves as the extension sug-

gested by ( Marzinotto et al., 2014 ). The difference is that, thanks

to the event-drivenness of EDBTs, when an HRS node sends a hard

request to a set of receivers they do not necessarily have to be free

to be available to carry out the coordination of subtrees. In case

the cooperative task needs to be the same for all agents, as de-

scribed by the authors, the subtrees below the HRS and RH nodes

should simply be the same. 

Another form of coordination in multi-agent systems is the

coalition and community formation using cooperative game theo-

ries. For instance, in ( Wahab et al., 2016 ), the authors investigate

the problem of community-based cooperation among intelligent

Web service agents by modeling the community formation prob-

lem as a Stackelberg game model. In ( Asl et al., 2014 ), the authors

propose a game-theoretic-based decision mechanism that agents

can use to choose competition or cooperation strategies that max-

imize their payoffs. This decision mechanism could be integrated

into our approach to implement a message selection criterion that

maximizes the payoff (see s ᴇʟᴇᴄᴛM ᴇss ᴀɢ ᴇ from Algorithm 4 ). In ( Hu

& Leung, 2017 ), the authors show that agents can achieve coordi-
ation via establishing diverse stable local conventions, which in-

icates a practical way to solve coordination problems. 

In Section 2 , we mentioned that blackboards are used to store

he data that needs to be referenced by the nodes in an EDBT.

ince blackboards can also be shared among multiples agents

nd used as a synchronization mechanism, one may wonder: Are

hared blackboards enough for implementing coordinated behav-

ors? What are the implications of that alternative? Next, we will

how how the scenario from Example 2 can be implemented with-

ut coordination nodes by using regular EDBTs and a shared black-

oard, and we will analyze the disadvantages of that approach. 

xample 3. Each firefighter NPC has a private blackboard ( black-

oard ) used to store its personal data. Also, each agent has ac-

ess to another blackboard ( sharedbb ) that is shared among all the

refighters. In particular, sharedbb[“ foundFires ”] is used to store a

hared list that contains the references to the fires that were found

y the agents. A service node in each agent’s EDBT repeatedly

nd concurrently calls the method ᴄʜᴇᴄᴋI ғN ᴇᴀʀʙʏF ɪʀᴇ that checks if

here is a fire within a certain radius and stores a reference to it at

he end of sharedbb[“ foundFires ”] (only if it is not already stored).

hen, the reference to the fire is used as a key in the shared

lackboard, whose value is initialized to 0 to keep track of how

any agents are dousing the fire ( i.e., sharedbb [ fire ] ← 0). Also,

nother service node in each agent’s EDBT repeatedly and concur-

ently calls the method coordinate, specified next: 

If the agent is not busy and there are available fires, the method

ᴏᴏʀᴅɪɴ ᴀᴛᴇ stores the first reference in the list ( i.e. , the last found

re) in blackboard[“ target ”] . Like in Example 2 , a BOD that observes

he blackboard key “ target ” can be used to abort the task node

x ᴘʟᴏʀᴇ and then tick the task nodes ᴍᴏᴠᴇT ᴏ and ᴅᴏᴜs ᴇ, which make

he agent move to a certain distance from the fire—whose refer-

nce is blackboard[“ target ”] —and douse it until it is extinguished.

herefore, the sentence blackboard[“ target ”] ← target would cause

he BOD to be notified by the blackboard and the task node ᴇx ᴘʟᴏʀᴇ
o be aborted. The variable target is then used as a key for the

hared blackboard to update the number of agents that are dous-

ng the fire. If that number becomes 3, the blackboard key is emp-

ied and the reference to the fire is removed from the list. Fi-

ally, two additional task nodes would be required in each agent’s

DBT to change the value of the variable “busy ” accordingly, like

he task nodes ᴇɴ ᴀʙʟᴇC ʜᴇᴄᴋM ᴀɪʟʙᴏx and ᴅɪ s ᴀʙʟᴇC ʜᴇᴄᴋM ᴀɪʟʙᴏx from

ig. 5 . Take into account that Algorithm 10 is missing the neces-

ary checks to avoid race conditions. 

lgorithm 10 ᴄᴏᴏʀᴅɪɴ ᴀᴛᴇ

nput: busy , blackboard , shared bb 

1: if not busy and not sharedbb[“ foundFires ”] . isEmpty () then 

2: target ← sharedbb[“ foundFires ”] . getFirst () 

3: blackboard[“ target ”] ← target 

4: sharedbb[ target] = sharedbb[ target] + 1 

5: if sharedbb[ target] = 3 then 

6: sharedbb[ target] ← null 

7: sharedbb[“ foundFires ”] . remove (target) 

8: end if 

9: end if 

The coordinated behavior from the previous example is carried

ut by hard-coding and (unintentionally) hiding the coordination

tself inside a method that is called by a service node. The prob-

em with this ad hoc solution is that it goes against the develop-

ent paradigm of behavior trees ( i.e. , programming only the NPCs’

ctions and designing a tree structure that determines its deci-

ion making) and partially drives away some of the benefits of the

aradigm: being visually intuitive, scalable and reusable. With this
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Fig. 8. The EDBT used to implement the coordinated behavior from Example 2 and adapted to consider the changes from Example 4 by adding the node structure at the 

right. The rhombuses represent conditional decorators. 
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ind of solution, the more complex the coordinated behavior, the

igher the amount of hard-coding that is necessary, which essen-

ially ruins the original purpose of behavior trees. On the contrary,

y using coordination nodes—like in Example 2 —not only the NPCs’

omain-specific behavior is visually specified in the EDBT, but also

he development paradigm of behavior trees is maintained. Even

hough in our proposal part of the agents’ request protocol is mod-

led by the method ᴄʜᴇᴄᴋM ᴀɪʟʙᴏx, it is standard for every NPC

n any scenario and does not directly affect the domain-specific

gents’ behavior. 

Before concluding this section, we will modify the scenario de-

cribed in Example 2 and show how the solution that uses an

DBT with coordination nodes (see Fig. 6 ) can be easily adapted to

onsider the new changes, while the ad hoc solution from the pre-

ious example requires the hard-coded method that handles the

oordination to be completely reworked. 

xample 4. Consider the scenario described in Example 2 and sup-

ose that the player can now cause fires that are dangerous for the

refighters. Firefighters that stay nearby a dangerous fire can get

urt by the heat and, therefore, must have more than 100 health

oints before starting to douse it to avoid fainting in the process. 

Fig. 8 shows how the EDBT from Fig. 6 can be adapted to con-

ider these changes by adding five nodes between the BOD and

he HRS node. The selector together with the conditional decorator

elow it are used to branch the EDBT into two different courses of

ction. When this conditional decorator is ticked, if the fire whose

eference is stored in blackboard[“ nearbyFire ”] is not dangerous, the

RS node (the same as the one in Fig. 6 ) is ticked and sends to

he squad a message that encapsulates a hard request to extinguish

he fire without condition (represented by the boolean value true ).

therwise, if the fire is dangerous, the conditional decorator re-

urns failure to the selector, which then ticks another conditional

ecorator. When this conditional decorator is ticked, if the agent

as more than 100 health points, the new HRS node is ticked and

ends to the squad a message that encapsulates a hard request to

xtinguish the fire, which can be confirmed only by receivers with

ore than 100 health points. In both cases, if the quorum is met
efore the timeout elapses, the task node ᴅᴏᴜs ᴇ is ticked. Note that

hanging the behavior corresponding to the execution of the re-

uests is not necessary. 

On the contrary, changing the ad hoc solution from

xample 10 to achieve the desired coordinated behavior is

ot straightforward. First of all, the method ᴄʜᴇᴄᴋI ғN ᴇᴀʀʙʏF ɪʀᴇ
eeds to be modified so that any fire that is found

s stored either in sharedbb[“ foundDangerousFires ”] or in

haredbb[“ foundHarmlessFires ”] depending on whether it is danger-

us. One may think that the method ᴄᴏᴏʀᴅɪɴ ᴀᴛᴇ (see Algorithm 10 )

an be simply adapted by changing lines 1 and 2 to assign a refer-

nce to a fire to the variable “target ” considering both the agent’s

ealth points and that either sharedbb[“ foundDangerousFires ”] or

haredbb[“ foundHarmlessFires ”] (or both) could be empty. However,

ven if the variable “target ” has value, blackboard[“ target ”] ← target

annot be executed right away: if that fire is dangerous and at

hat moment there are not two more agents with more than

00 health points, that assignment would cause the agent to

ove to the fire and douse it vainly, potentially losing health

oints due to the heat. Hence, if the agent has a target, it should

imply increase the value of sharedbb [ target ] by 1. Once the agent

as a target, every time that the method ᴄᴏᴏʀᴅɪɴ ᴀᴛᴇ is executed

t should check if there are enough agents ready to extinguish

hat fire ( i.e. , sharedbb[ target] = 3 ) and, in that case, execute

lackboard[“ target ”] ← target . When that occurs, the target should

e removed either from sharedbb[“ foundDangerousFires ”] or from

haredbb[“ foundHarmlessFires ”] , accordingly. 

The problem with the solution described above is that if the

quad consists of only three or four firefighters, two agents may

nd up waiting indefinitely to extinguish a dangerous fire while

he rest are waiting to extinguish a harmless one. For this rea-

on, even though firefighters should naturally focus (if possible) on

angerous fires, the method ᴄᴏᴏʀᴅɪɴ ᴀᴛᴇ needs additional checks to

void this kind of “deadlock”. 

In contrast, this undesired situation cannot occur with the so-

ution that uses coordination nodes. Recall Fig. 7 and suppose the

orst-case scenario in which the squad has only three firefight-

rs and the only one with more than 100 health points initially
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finds a dangerous fire. A message that encapsulates a hard request

to extinguish it is sent to the other two firefighters, but they can-

not satisfy the condition before the request times out and thus the

quorum is not met. The HRS node (the one at the right) returns

failure to the conditional decorator ( health > 100), the conditional

decorator returns failure to selector, the selector returns failure to

the BOD , the BOD returns failure to the selector, and the selector

finally ticks the task node ᴇx ᴘʟᴏʀᴇ. The method ᴄʜᴇᴄᴋI ғN ᴇᴀʀʙʏF ɪʀᴇ
does not cause another interruption even though that very same

fire is still within range given that blackboard[“ nearbyFire ”] is unaf-

fected. Therefore, the agent does not insist with another hard re-

quest to extinguish the same fire and continues exploring in search

of new ones. 

The previous example showed the problems that arise when it

is necessary to change a coordinated behavior that is already im-

plemented by using an EDBT and a hard-coded method that han-

dles the coordination. Differently from using coordination nodes,

that kind of ad hoc solutions not only go against the development

paradigm of behavior trees, but also show to be neither visually

intuitive, nor reusable, nor scalable. 

8. Conclusions and future work 

In this paper, we have proposed and implemented a novel ap-

proach for agent coordination in multi-agent systems consisting of

an extension to behavior trees (BTs), a behavior creation method

that is popular in the video game industry. The importance of our

approach is that it provides a concrete extension that facilitates

the design and implementation of agents that need to coordinate

with each other. For that purpose, in this work we extended event-

driven behavior trees with three new types of nodes, called coor-

dination nodes, which facilitate the design and implementation of

NPCs that can coordinate with each other through a request pro-

tocol. A request implies that the sender agent wants the receiver

agent to execute a certain subtree in the receiver’s EDBT. In partic-

ular, SRS and HRS nodes can be used to send messages that encap-

sulate a soft request or a hard request to multiple agents, respec-

tively. Independently of whether the request is soft or hard, it will

be handled by the corresponding RH node in the receiver’s EDBT.

The class of request only determines the agents’ protocol before

the request is executed. Soft requests are useful when the sender

wants the receivers to execute a certain subtree while the sender

proceeds with its individual behavior regardless of what the re-

ceivers do. On the other hand, hard requests are useful when the

sender needs to execute some behavior that depends on the re-

ceivers’ commitment to actually executing a certain subtree. Hence,

a hard request needs the confirmation of enough receivers before

the execution of both parties’ subtrees begins. 

These nodes do not provide more “expressive power” in terms

of the coordinated behaviors that could be created by using regular

EDBTs. However, unlike the usual ad hoc solution of hard-coding

the coordinated behavior inside a method that is repeatedly called

by the EDBT, creating coordinated behaviors by using coordination

nodes follows the development paradigm of behavior trees. Also,

we have concluded that coordination nodes do not increase the

time complexity of EDBTs. 

We presented a methodology for adequately using the coordi-

nation nodes while following some desirable principles that make

the resulting EDBTs visually intuitive. Also, we provided a full im-

plementation of the coordination nodes and the request protocol

for the game development engine Unity . This implementation was

used to develop an application example for the proposed exten-

sion. Finally, we discussed the benefits of using this extension in

comparison to using regular EDBTs and hard-coding the coordi-

nated behavior inside a method that uses a shared blackboard. 
Regarding future work, we plan to extend HRS nodes to allow

PCs to send simultaneously different types of hard requests to

ifferent sets of receivers. With this extension, the sender would

ave multiple quorums (one for each type) which must all be met

efore the coordination of the subtrees begins. Although this can

lso be achieved by using multiple HRS nodes together with some

equencer and parallel nodes we believe that, by extending HRS

odes as proposed, the easy of use and the intuitiveness of our

roposal for those particular cases will be improved. 

Also, we plan to extend our proposal with a new coordination

ode that allows hard request chaining . That is, allow an agent that

elects a hard request req 1 from its mailbox to immediately send

nother hard request req 2 whose quorum needs to be met before

onfirming req 1 . If req 2 receives enough confirmations for its quo-

um to be met, a confirmation is sent to req 1 ’s sender; then, if the

econfirmation for req 1 is eventually received, it is retransmitted

o req 2 ’s receivers. 
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