
An Argumentative Intentional Model for

High Level Reasoning of Mobile Robots

Sebastian Gottifredi, Mariano Tucat
Alejandro J. Garćıa, and Guillermo R. Simari

Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET)
Laboratorio de Investigación y Desarrollo en Inteligencia Artificial (LIDIA)

Departamento de Ciencias e Ingenieŕıa de la Computación
Universidad Nacional del Sur. Av. Alem 1253, (8000) Bah́ıa Blanca, Argentina

{sg,mt,ajg,grs}@cs.uns.edu.ar

Abstract. In this work we present an argumentation based intentional
model for a BDI architecture defined formally for high level control of mo-
bile robots. The proposed approach provides a sophisticated way of han-
dling conflicting intentions using the argumentative formalism of Defea-
sible Logic Programming. To manage the intentional model, we present a
special notion of argument disagreement and a new comparison criteria.
Finally an implementation for the proposed system is introduced.

1 Introduction

In this work, we extend a BDI architecture presented and defined formally for
high level control of a team of mobile robots that participated in the VI Argentine
Championship of Robot Soccer (CAFR 2008 [2]). The original BDI architecture
represented the higher level of a layered system, in which each layer is associated
with a different level of abstraction. The proposed architecture uses a logic-based
model for knowledge representation and reasoning. We will extend this architec-
ture by using Defeasible Logic Programming (DeLP) for the representation of
intention rules. The intention model will allow the developer to specify the sit-
uations where a plan is applicable in a declarative manner. Since plans cannot
be executed in parallel, agent intentions will be conflicting. We will provide a
formalism based on Defeasible Logic Programming that provides an elegant way
of handling these conflicting intentions. We will also introduce a concrete imple-
mentation of the extended architecture using argumentative servers.

Mobile robots involved in complex environments require high degree of intel-
ligence or high level capabilities (such as reasoning, knowledge representation,
planning, agent communication) integrated with lower level primitives (such
as sensor management, basic movements, obstacle avoidance, navigation, etc.).
Since 2004 we have been working in mobile robotics, specially in robotic soc-
cer. Our previous researches were focused on those high and lower level areas.
In particular, we have developed an obstacle avoiding system [9], researches on
sensorial information and basic movements [8], and a multi-agent architecture

Partially supported by CONICET (PIP 5050) and SGCyT UNS

to control the robots [6]. We also have developed a robotic soccer team that
participated in the E-League held in Robocup 2004.

We have recently designed a Multi-Agent System Architecture for implement-
ing the control of the team. We developed the system following a three-layer ar-
chitecture. The main goal of the design and implementation of this architecture
was to encapsulate all the low level developments, including the ones mentioned
above, in the lower layers of the architecture and allow an easier implementation
of high level capabilities in the upper layer. Therefore, AI theories developed
on reasoning, knowledge representation, planning, agent communication, among
others, can be tested in this real scenario. In particular, we developed a team
controlled by a BDI architecture [11,7] to participate in the VI Argentine Cham-
pionship of Robot Soccer (CAFR 2008 [2]).

The main goal of the leagues we participated in (E-League and CAFR [2]) is
to provide an environment where researchers, practitioners and students interact
sharing knowledge and expertise while enjoying the games. The leagues provide
common basic services to all of the participants, such as vision and communi-
cation. Teams can use low cost kits (such as Lego [1]) and concentrate on the
development and study of Artificial Intelligence techniques. The most important
feature of these leagues is its simple and modular structure. There are only three
basic components that must be available to obtain a functional team: a vision
module that works as the robot’s perception component, a communication mod-
ule that allows actions to be communicated to the robots, and a control module
that is implemented by agents that control the robots on the field of play.

The game of soccer can be seen as a well defined system: the number and
type of players, duration of play, allowed behaviors, and punishments (among
other aspects of the game) are governed by a well defined set of rules that are
known to all participants. However, the interaction among the players cannot be
defined beforehand. Each team is composed of players that must cooperate in
order to reach their goal of winning the game. They must also take into account
the existence of the opposing team, which also has the goal of winning the game.

2 Theoretical Background

In this section we give a brief summary of Defeasible Logic Programming (DeLP)
[5], the goal of this summary is to introduce formal concepts used in this work.

DeLP is a formalism that combines results of Logic Programming and Defea-
sible Argumentation. DeLP provides the possibility of representing information
in the form of rules in a declarative manner, and a defeasible argumentation
inference mechanism for warranting the entailed conclusions. These rules are the
key element for introducing defeasibility and they will be used to represent a
relation between pieces of knowledge that could be defeated after all things are
considered. Using these rules, common sense reasoning is defeasible in a way that
is not explicitly programmed. Defeat should be the result of a global considera-
tion of the corpus of knowledge of the agent performing the inference. Defeasible
Argumentation provides the tools for doing this.

In a Defeasible Logic Program (or de.l.p. for short) knowledge can be rep-
resented using facts and defeasible rules. Facts are ground literals representing
atomic information or the negation of atomic information using strong negation
“∼” (e. g. b, or ∼a). Defeasible Rules (d-rules) are denoted L0

—< L1, . . . , Ln,
where the head L0 is a ground literal and the body {Li}i>0 is a set of ground
literals. (e. g. ∼a —< b, c). A d-rule represents tentative information that may be
used if nothing could be posed against it. A d-rule “Head —< Body” expresses
that “reasons to believe in the antecedent Body give reasons to believe in the
consequent Head”. D-rules are ground, however, following the usual convention,
some examples will use “schematic rules” with variables. When required, the set
of facts is denoted Ψ and the set of d-rules ∆.

Strong negation could appear in facts or in the head of d-rules and can be used
to represent contradictory knowledge. Observe that from de.l.p. contradictory
literals could be derived, however, the set Ψ (used to represent non-defeasible
information) must be non-contradictory, i. e.no pair of contradictory literals can
be derived from Ψ . Given a literal L, L represents the complement with respect
to strong negation. For instance, suppose a de.l.p. P1=(∆1,Ψ1), where ∆1 =
{(a —< b), (∼a —< b, c)} and Ψ1 = {b,c}, then both a and ∼a can be defeasibly
derived using the first and the second d-rule respectively.

In DeLP when contradictory literals are derived, a dialectical process is used
for deciding which literals are warranted. A literal L is warranted if there exists a
non-defeated argument A supporting L. To establish if 〈A, L〉 is a non-defeated
argument, defeaters for 〈A, L〉 are considered. A defeater is a counter-argument
that is preferred to 〈A, L〉 by some argument comparison criterion. Counter-
arguments of 〈A, L〉 are those arguments that disagree (are in contradiction) at
some point with 〈A, L〉.

An argument for a literal L, denoted 〈A, L〉, is a minimal non-contradictory
set of d-rules A⊆ ∆, that allows to derive L. A sub-argument of an argument
〈A, L〉 is a subset of the d-rules in A. For example, using the de.l.p. P1, the fol-
lowing arguments can be constructed: A1= {a —< b} for a, and A2={∼a —< b, c}
for ∼a. Following the example, A2 is a counter-argument for A1 (and viceversa)
because both support contradictory conclusions.

Given an argument 〈A1, h1〉 and a counter-argument 〈A2, h2〉 for 〈A1, h1〉
these two arguments can be compared in order to decide which one prevails. This
is made by the comparison criterion (≤) that defines a partial order among the
arguments. Given two arguments D, A from a de.l.p., D is a proper defeater of A
if D D is strictly stronger than A. D is a blocking defeater of A neither argument
is better, nor worse, than the other. In our example, A2 is a proper defeater for
A1 since A2 is strictly more specific than A1. A defeater can attack the conclusion
of an argument or an inner point of it. Since defeaters are arguments, there may
exist defeaters for them, defeaters for those defeaters, and so on. Thus, a sequence
of arguments called argumentation line can arise. Note that an argument can
not appear more than once in an argumentation line (for more details see [5])

Clearly, for a particular argument 〈A0, h0〉 there might be more than one
defeater. Therefore, many argumentation lines could arise from one argument.

This leads to a tree structure called dialectical tree (d-tree) [5], denoted T 〈A0, h0〉.
In a dialectical tree every node (except the root) is a defeater of its parent, and
leaves are non-defeated arguments. In a d-tree every node can be marked as
defeated (D) or undefeated (U): leaves are marked as undefeated; inner nodes
are marked as defeated when there is at least a child marked as undefeated,
or are marked as undefeated when all its children are marked as defeated. The
marked dialectical tree for an argument 〈A, h〉 is denoted T ∗〈A, h〉. A literal h

will be warranted from a de.l.p. P (noted P |∼wh), if there exists an argument
〈A, h〉 from P, and the the root of T ∗〈A, h〉 is marked as “U”. For instance from
the de.l.p. P1 the literal ∼a and the elements of Ψ1 are warranted.

In order to provide an argumentative reasoning service for multi-agent sys-
tems, a more flexible implementation of DeLP, called DeLP-server, has been
developed [4]. A DeLP-server is a stand-alone program that can interact with
multiple client agents. A common (or public) DeLP-program can be stored in
a server, and client agents (that can be distributed in remote hosts) may send
queries to the server and receive the corresponding answer together with the
explanation for that answer. A single DeLP-server can be consulted by several
agents, and one particular agent can consult several DeLP-servers simultane-
ously, each of them providing a different shared knowledge base.

To answer queries, a DeLP-server will use the common knowledge stored in
it, together with individual knowledge that clients can send attached to a query,
creating a particular context for that query. This context is private knowledge
that the server will use for answering the query and will not affect other future
queries. That is, a client agent cannot make permanent changes to the de.l.p.
stored in a server . The temporal scope of the context sent in a query [Context,Q]
is limited and disappears once the query Q has been answered.

3 Design of the agent system

The proposed design considers the construction of the system based on an hybrid
architecture combining reaction with deliberation [10]. The most popular hybrid
architectures is the three layer architecture, which consists of a reactive layer,
an executive layer and a deliberative layer, each of which covers different levels
of abstraction of the problem to be solved. The reactive layer provides low-level
control of the robot. The executive layer serves as the glue between the reactive
and the deliberative layer. It accepts directives by the deliberative layer, and
sequences them for the reactive layer. The deliberative layer is responsible for
controlling the robot behavior by taking high level decisions.

3.1 Reactive layer

We associate with this layer the program running inside the robots and imple-
menting the basic actions they need to be able to act in a dynamic environment
such as robotic soccer. This layer also includes the basic hardware and software
support that is provided by the league. This involves physical support, such as

infrared transmitters, video camera and communication network. The software
provided includes video and command communication servers.

The basic actions represent the minimal unit of change a robot may try to ex-
ecute in order to modify its environment. The possible basic actions of any robot
are directly related to its shape, design and capabilities. In our case, the basic
actions implemented inside the robots include three generic movements: moving
forward and backward, rotating clockwise or counterclockwise and describing
different kinds of arcs.

This layer also includes the basic perceptions. The basic perceptions represent
the information any robot may obtain from the environment. This information
may correspond to the location of the objects that are part of the environment.
It may also represent the orientation and velocities of these objects.

3.2 Executive Layer

This layer serves as the glue between the reactive and the deliberative layer. It
accepts directives by the deliberative layer, and sequences them for the reactive
layer. It also provides perception information about the environment to the
deliberative layer in order to allow it to reason/decide about the robot behavior.
Therefore, this layer is divided in two sub-layers, the planner manager sub-
layer and the sensorial sub-layer.

The planner manager sub-layer provides a set of implemented schematic
plans allowing the deliberative layer to control the robot behavior without wor-
rying about low level details. Thus, this sub-layer provides the ability to select
and execute actions by planning, and performing such actions as a matter of
plan execution. However, this planner manager does not decide which schematic
plan to execute, it only obtains the actual schematic plan and selects the best
action to perform next in order to accomplish the desired goal of the plan.

A schematic plan represents a plan in a highly dynamic environment, in
which the sequence of actions needed to achieve the desired goal may vary at
the moment of executing the plan. Therefore, these schematic plans are divided
in several atomic actions, in particular, the basic actions described in the reactive
layer, and each of these actions depend on the state of the field at the moment
immediate before of been executed.

The current schematic plans implemented for the domain of robotic soccer
are: go to a given object, such as another robot or the ball, pass the ball to a
teammate, go to a defensive position, kick the ball, dribble to a given location,
and clear the ball out of the defensive zone.

In the sensorial sub-layer, the visual information is processed and translated
into information that express states of the world. This information is divided
in basic perception and processed information. The basic perception, defined in
the previous subsection, corresponds to the coordinates, orientation and speeds
of the robots and the ball. Examples of processed information are: The robots’
and the ball’s locations relative to the field, player and/or team that is closest
to the ball, distances between different objects on the field, whether the ball is
moving and in which estimated direction, or unable to move towards it goal.

These information is provided to the deliberative layer as Prolog predi-
cates, and they are implemented by querying and analyzing the basic percep-
tions obtained from the video server. Then, the situations modeled through these
predicates are used in the upper layer to model the team’s game strategy.

3.3 Deliberative Layer

This layer is responsible for the design and implementation of the agents that
control the robots behavior. The lower layers allows this layer to obtain high level
processed information, use it to decide the behavior of the robots, and finally
control the robots. In the deliberative layer, agents will have a deliberative cycle
in which they perceive information about the environment and reason/decide
about the schematic plans to take. The implementation of the executive layer
allows to specify the elements of the cognitive layer using different knowledge
representation and reasoning systems. In [7] a Belief-Desires-Intentions (BDI)
model [3] was used to design the agents controlling the robots. In the follow-
ing section, will present an extension of that approach were DeLP is used as
knowledge representation and reasoning mechanism for intentional model.

4 An Argumentative Approach for the Deliberative Layer

In this section we will present an extension of the BDI-model presented in [7].
The proposed architecture uses a logic-based model of the knowledge represen-
tation and reasoning. We will extend this architecture by using Defeasible Logic
Programming (DeLP) for the representation of the intention rules. The intention
model will allow the developer to specify the situations where a plan is appli-
cable in a declarative manner. Since plans cannot be executed in parallel, agent
intentions will be conflicting. We will provide a formalism based on DeLP that
provides an elegant way of handling these conflicting intentions.

In the BDI model [3] an agent is specified using mentalistic attributes Belief,
Desires and Intentions, and uses these components to determine the agent state.
Thus the agent will have a belief set containing information about the environ-
ment in which it is involved, a desire set containing all the possible goal that
the agent have and a set of intentions containing all the possibilities that the
agent has to achieve its desires. In the following subsections, we will show the
formal aspects of each component corresponding to our approach. For this, we
will introduce the following working example:

Example 1.
Consider an agent belonging to the blue team is playing
against the yellow team (see Figure 1). Its team is winning
the match 2 - 0. Currently, the agent (labelled “me”) is near
the right part of blue team penalty box and it is carrying
the ball. Its teammate “b1” is located in the center of the
middle field. One of its opponents “y1” is also located in
the center of the middle field and the other opponent“y2”
is located in the center of the yellow team penalty area.

Figure 1

4.1 Beliefs

Beliefs of an agent in the BDI Architecture are used to represent a situation
of the world that the agent is in. A mobile robot should be able to work in
dynamic environments with incomplete knowledge of its environment. That is,
robots will need a formalism to reason about this incomplete, uncertain, and
changing information. Therefore, we will use Prolog logic formalism to reason
about beliefs.

The Prolog program used to represent agent beliefs will contain: sensed
information such as field (X,Y) coordinates of an object, distances between ob-
jects, direction that a robot is facing, or if a robot has the ball; strict information
such as which robots are teammates, or which robots are opponents; and infer-
ence rules to obtain inferred information such as the empty spots in the field
or the best places to dribble. Next we will define the belief base of an agent
considering these information categories.

Definition 1 (belief base) The belief base of an agent will be a Prolog pro-
gram BB=(φ,π,δ), where φ is a set of Prolog facts used to represent sensed
information obtained from the executive layer, π is a set of Prolog facts used
to represent strict information and δ is a set of Prolog rules used to obtain
inferred information.

Example 2. Consider the situation depicted in Figure 1, there the agent from
Example 1 will have the following set of sensed information φ1={hasBall(me),
pos(middle, center, b1), pos(myPenBox, right, me), pos(middle, center, y1),
pos(opPenBox, center, y2), winning}, as strict information will have the fol-
lowing set π1={teammate(b1), opponent(y1), opponent(y2)}, and suppose that
has the following inference rules (sketch) δ1={ blocked(X) :- pos(Zone,Dir,me),
pos(Zone,DirOp,X),opponent(X)}. Thus, its belief base will be BB = (φ1, π1, δ1)

The facts of the set φ are updated every deliberative cycle by the sub-sensorial
layer. Since this sensorial information may be used by the inference rules the
inferred information can also change every deliberative cycle. Next, we will show
how to obtain the elements inferred by BB.

Definition 2 (actual belief) Let BB=(φ, π,δ) be a belief base of a agent, The
Prolog atom h is an actual belief from BB (noted BB ⊢ h) iff h ∈ φ ∪ π or h

can be obtained via a Prolog derivation using the rules of δ and the Prolog

inference mechanism.If it is the case that an atom h is not a actual belief from
BB it will be noted BB 0 h

Example 3. The agent with a belief base presented in the example 2, will have
the following actual beliefs: blocked(b1) and the elements of φ and π.

The belief base will provide the other mental components with the actual
beliefs to do their computations and decide how to act based in the situation in
which the agent is in.

4.2 Desires

Desires in the BDI architecture represent what the agent wants to do. In this
work desires will represent high level attitudes that the agent will try to achieve
during the match, for instance attack, defend or score a goal. Depending on the
situation in which the agent is involved, there are desires can be justified or not.
For instance, if the agent has the ball and is loosing the match, then, the desire
defend is not quite adequate, whereas attack is a plausible option. In order to
specify this desire behavior, next, we will introduce the desire rules, which are
used to determine when a desire is justified.

Definition 3 (desire rule) A desire rule is a duple DR=(d(Imp), Just), where
d is an atom representing a desire, Imp is a number denoting the importance
value of the rule desire, and Just={p1,. . ., pn, not c1,. . ., not cm} (n ≥ 0 and
m ≥ 0) is formed by a set of atoms {p1, . . . , pn} representing belief preconditions
and a set of extended atoms {not c1, . . . , not cm} representing belief restrictions.

Since desire rules involve belief and desires and both of them are atoms
we will assume that beliefs and desires are represented with separate names.
Hence, a desire cannot be perceived or derived as a belief. All the specified
desire rules determine the agent desire base noted DB. Note that the set D =
{
⋃

d | (d(Imp), Just) ∈ DB} contains all the possible desires.

Example 4. The agent desire base is DB = (defend(5),{hasBall(X),teamMate(X)}),
(attack(15),{hasBall(X),teamMate(X), loosing}), {(attack(5),{hasBall(me)}),
(defend(15),{hasBall(me),winning}), (defend(20),{hasBall(X),opponent(X)}) }

Using these rules an agent will be able to determine which of its desires are
justified in each deliberative cycle. Next, we will define how to obtain them.

Definition 4 (justified desire) Let BB be a belief base, a desire rule DR =
(d(Imp), Just), and Just={p1,. . ., pn, not c1,. . ., not cm} with n ≥ 0 and m ≥ 0.
Then d will be a justified desire with an importance value of Imp (noted d(Imp))
iff ∀i = 1..n BB ⊢ pi and ∀j = 1..m BB 0 cj

Example 5. Suppose that an agent is in the situation described in figure 1, the
belief base of example 2 and has the desires rules of example 4 then it will have
the following justified desires: attack(5) and defend(15).

The set JD of justified desires will contain all the desires that are justified.
Notice that a desire d might be justified by several rules. However, an agent will
only use the justified desire with higher importance value. This means that the
JD will have one occurrence of each justified desire. The set JD will allow the
agent to determine whether intentions it can commit to.

4.3 Intentions

In this work intentions will be used to determine which plan the agent will
execute to achieve its desires. Basically, an intention will be used to denote when
a schematic plan is executable. For instance, if the agent believes that it has
the ball and desires to attack, it can have intentions to plan “dribble to the
opponent area” or plan “shoot to the goal”. Thus, with this intention model,
the developer will specify different alternatives or intentions to achieve desires.
Since these alternatives (the schematic plans) are generally conflicting, an agent
should use a mechanism to determine which one is the best. Once the best
alternative found the agent should commit and execute its actions.

In order to address these issues we will use DeLP as intentional reasoning
model. We will use d-rules to model tentative reasons to determine whether an
intention is applicable or not. The body of d-rules will be used represent the
desires and beliefs involved in the intention. Next, we will define how d-rules are
use to specify intention rules.

Definition 5 (intention rule) Let D = L0
—< L1, . . . , Ln be an d-rule, we will

say that D is a intention rule iff L0 = I(X), where X is a schematic plan.

An intention base IB will be a de.l.p. were ∆ contains only intention rules.
Since an intention involve beliefs and goals, in IB, actual beliefs and justified
desires will be considered facts. To refer to these elements in the body of intention
rules we will use the modalities B(·) and D(·) for actual beliefs and justifies
desires respectively. For instance, if marked(me) is a actual belief and attack(20)
is a justified desire, B(marked(me)) and D(attack(20)) will be considered as facts
in IB. Note that these facts will change in every deliberative cycle, since actual
beliefs and justified desires change.

Example 6. An intention base (sketch) IB = (∆, ∅) could be:
∆ = { I(shoot) —< B(hasBall(me)), notB(blocked(me)), D(attack(X))

I(dribble) —< B(hasBall(me)), notB(blocked(me)), D(defend(X))
I(clear) —< B(hasBall(me)), B(pos(me,

,
myPenBox)), D(defend(X))

I(pass) —< B(hasBall(me)), B(blocked(me)), D(attack(X)) }

The set PI will have all the possible intentions that an agent could have.
This set is composed by all the heads of the intention rules in IB.

Remember that an agent will be able to execute one schematic plan at a time.
Since an intention will determine a plan we should make intentions conflicting.
For instance, we want the intentions I(shoot) and I(pass) be conflicting. In DeLP,
this can be easily done extending the notion of disagreement:

Definition 6 (Intention Disagreement) Let IB be an agent Intention Base,
and L1, L2 literals form IB. We will say that a and b disagree iff L1 = L2 or if
L1 = I(X), L2 = I(Y) and X 6= Y .

In order to determine which intention an agent will select, we will use the
DeLP inference formalism. That is, from IB arguments for intentions from PI,

will be constructed. These arguments will represent active possible intentions
that an agent has in a deliberative cycle. Based the definition of intention dis-
agreement these arguments will be conflicting. In other words, an argument for
I(X) will be a counter argument of an argument for I(Y) if X 6= Y . Since we
want to commit to one intention, we must determine if the argument for I(X) is
a defeater of the argument for I(Y). In Section 2, we have shown that the com-
parison criterion is used on that propose. Next, we will present new comparison
criterion for the intention base:

Definition 7 (Intention Comparison Criterion) Let IB be an intention base,
and 〈A, I(X)〉, 〈B, I(Y)〉 from IB. We will say that the argument 〈A, I(X)〉 is
better 〈B, I(Y)〉 (noted 〈A, I(X)〉 < 〈B, I(Y)〉) if V alX > V alY , where V alX =
(
∑

vXi) ∀vXi, D(ai(vXi) ∈ A and V alY =
∑

vYj ∀vYj, D(bj(vXj) ∈ B else if
(ValX = ValY) and X appears before than Y in the following list: clear, shoot,
move, dribble, pass.

Example 7. Using the actual beliefs and justified desires from examples 3 and
5, and the intention base of example 6, arguments A1 for I(shoot) and A2 for
I(dribble) can be built. Following the intention comparison criterion, A1 < A2.

The criterion defined above, imposes a total order among the arguments for
the possible intentions. Therefore, using this criterion and the DeLP reasoning
mechanism, an agent will be able to determine one intention to commit with.

Definition 8 (Intention Commitment) Let AB be the set of actual beliefs,
JD be the set of justified desires and IB=(Ψ,∆) a intention base, an agent
commits to an intention I(X) from IB iff ((φ ∪ ι ∪ Ψ),∆) |∼w I(X), where X is
an schematic plan, φ = {B(β)|β ∈ AB} and ι = {D(γ)|γ ∈ JD}

Remark 1. Since all the elements in PI are conflicting and the comparison cri-
terion imposes a total order among the arguments for elements in PI, an agent
will commit with only one intention.

Example 8. Using the actual beliefs and justified desires from Ex. 3 and 5, and
the intention base of Ex. 6, the agent will commit with the intention I(clear).
An agent in this proposal may have several intention bases which can be used
depending the situation. The motivation behind this idea is to speed up argu-
mentation process, since possible intentions can be divided into several cate-
gories. For instance, one base to decide between attacking related intentions and
other base to decide between defending related intentions. Other example could
be have an intention base to handle reactive intentions and other for complex
intentions. However, each deliberative cycle the agent should decide which in-
tention base use. Next, we will present a function used to decide which intention
base select based in the actual beliefs and justified desires.

Definition 9 (Intention Base Selection Function) Let AB be the set of ac-
tual beliefs and JD be the set of justified desires, a Intention Base Selection
Function is a function IBSF: AB × JD → IB

For instance, suppose that the agent has an offensive intention base and
a defensive intention base, the intention base selection function can determine
which base select depending on the importance of the justified desires. Intention
rules and commitments complete the agent architecture. These rules allow to
developer to specify the situations where a plan is applicable in a declarative
manner. DeLP provides an elegant way of handling intention conflicts. Using
the special criterion and the argumentative mechanism the agent will always
have as much as one intention to commit with.

5 Implementation Issues

This section present the main issues concerning the implementation of the delib-
erative layer, that is, the BDI architecture explained in the previous section. In
particular, we will explain how the introduced components of this layer interact
in order to obtain the expected behavior.

Basic perceptions and also processed information are provided as Prolog

predicates, facilitating the obtention of the set of actual beliefs, defined as Pro-

log rules and facts. This set is obtained from a Prolog interpreter with the
Prolog program corresponding to the belief base, by querying it for each pos-
sible belief. This can be done by executing findall(B,b(B),Actual Beliefs).

In order to compute the set of justified desires, a Prolog program having
the program corresponding to the belief base and a Prolog rule for each desire
rule is used. A Prolog rule for a desire rule has as head the desire with the
importance number as parameter, while the preconditions and restrictions form
the body of the rule. Therefore, this program is queried for each possible desire,
obtaining all the justified desires with their corresponding importance. This can
be done by executing findall(D,d(D),Justified Desires).

As explained in the previous section, our approach allows the agent to have
different intention bases. In order to determine the applicable intention, we must
define which of the intention bases we will use, depending on the justified de-
sires. Therefore, the Intention Base Selection Function is executed in order to
determine which of the intention bases should be used.

Each intention base will be represented as a DeLP program loaded at a
DeLP Server. Once we have defined which intention base to use, we will know
which of the existent DeLP Servers to query in order to obtain the applicable
intention. Therefore, a contextual query will be executed in the corresponding
DeLP Server, having as context the set of actual beliefs and the set of justified
desires, and as query the atom “i(X)”. This contextual query will return the
applicable intention corresponding to the intention base, containing a schematic
plan to be executed by the executive layer.

The different DeLP Servers are executed as independent processes that may
run on the same or different hosts. The agent implementing the BDI architecture
will use TCP connections to interact with the DeLP Servers. The overhead
imposed for having these servers running as independent processes does not
affect the quick reaction of the controlled robot in a dynamic match, since the

use of schematic plans allows the agents to decide the best plan to execute while
the robot execute the previous one.

6 Conclusions

In this work we have shown an extension of a BDI architecture for high level
control of a team of mobile robots. The original BDI architecture represented the
higher level of a layered system, in which each layer is associated with a different
level of abstraction. The presented architecture uses a logic-based model of the
knowledge representation and reasoning, and we extended it by using DeLP for
the representation of the intention rules. The proposed intention model allows
the developer to specify the situations where a plan is applicable in a declarative
manner. We introduced a special disagreement notion to specify intention con-
flicts. We also presented a comparison criterion that provides a complete order
among the possible intentions. These elements combined with the DeLP formal-
ism provides an elegant way of choosing the applicable intention. The presented
formalism allows the use of different intention bases at the same time, speeding
up the intention decision process. Finally, we introduced a concrete implementa-
tion of the extended architecture, in which DeLP servers represent the different
intention bases that an agent will reason with.

References

1. http://www.legomindstorms.com. Lego Mindstorms robots and RCX controllers.
2. http://www.uncoma.edu.ar/cafr2008/. Official webpage of the VI Argentine

Championship of Robot Soccer.
3. M. Bratman, D. Israel, and M. Pollack. Plans and resource-bounded practical

reasoning. In Robert Cummins and John L. Pollock, editors, Philosophy and AI:

Essays at the Interface, pages 1–22, Cambridge, Massachusetts, 1991.
4. A. Garćıa, N. Rotstein, M. Tucat, and G. Simari. An argumentative reasoning

service for deliberative agents. In KSEM, 2007.
5. A. Garcia and G. Simari. Defeasible logic programming: An argumentative ap-

proach. Theory and Practice of Logic Programming, 4:95–138, 2004.
6. A. J. Garćıa, G. I. Simari, and T. Delladio. Designing an agent system for con-

trolling a robotic soccer team. In CACIC 2004.
7. S. Gottifredi, M. Tucat, D. Corbatta, A. J. Garćıa, and G. Simari. A bdi architec-

ture for high level robot deliberation. In CACIC 2008.
8. F. Mart́ın, M. Tucat, and A. J. Garćıa. Soluciones a problemas de percepción y

acción en el dominio de un equipo de fútbol de robots. In CACIC 2004.
9. N. Rotstein and A. J. Garćıa. Evasión de obstáculos con bajo costo computacional

para un equipo de fútbol de robots. In CACIC 2004.
10. S. Russel and P. Norvig. Artificial Intelligence: a Modern Approach. Prentice-Hall,

1995.
11. M. Tucat, S. Gottifredi, F. Vidaurreta, A. J. Garćıa, and G. Simari. A layered

architecture using schematic plans for controlling mobile robots. In CACIC 2008.

