
A BDI Architecture for
High Level Robot Deliberation

Sebastian Gottifredi† Mariano Tucat† Daniel Corbatta
Alejandro J. Garćıa† Guillermo R. Simari

†Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET)
Laboratorio de Investigación y Desarrollo en Inteligencia Artificial (LIDIA)

Departamento de Ciencias e Ingenieŕıa de la Computación
Universidad Nacional del Sur. Av. Alem 1253, (8000) Bah́ıa Blanca, Argentina

{sg,mt,dc,ajg,grs}@cs.uns.edu.ar

ABSTRACT

In this work we present a BDI agent architecture used for high level reasoning agents that control
mobile robots that play soccer. This architecture is build on top of layered system, where each
of these layers is associated with a different level of abstraction. The proposed approach allows
the specification of declarative goal driven robot behavior, that uses sophisticated high level
reasoning and reactivity when needed. The elements of mental components are studied with
their interaction and their syntaxis and semantics are defined.

1 INTRODUCTION

The development and implementation of any type of computational system requires an
adequate analysis of requirements that allows the definition of the system that will be
modeled, restrictions imposed (be them on requirements or on the specification), and
performance parameters by which the behavior of the system can be evaluated.

Robotic soccer is a way of putting different developments in intelligent agents into
practice. This includes developments in autonomous, cooperative, competitive, reasoning,
learning, and revision systems [15, 9]. Furthermore, it is useful in identifying problems
related to aspects concerned with vision and communication. This type of problems
cannot be all taken into account beforehand, and therefore demand that the system be
designed in to be robust enough to recover from eventualities of this type. Robotic soccer
is a complex domain, and it is necessary to take into account several aspects related to the
robots. Each robot has sensors and effectors which are prone to failure. The environment
is dynamic so there is no chance of knowing in advance the situations that can arise in a
game. Therefore, it is necessary to be able to recover from adverse situations like sensorial
or effectorial failure, and the decisions needed to carry out the recovery process have to
be taken quickly.

As mentioned above, mobile robots involved in complex environments, such as robotic
soccer, require high degree of intelligence integrated with lower level capabilities. Robots

Partially supported by CONICET (PIP 5050), Universidad Nacional del Sur and Agencia Nacional
de Promoción Cient́ıfica y Tecnológica.



should be able to react quickly in a highly dynamic environment and also to reason about
strategies and robot behavior at a high level. Therefore, a robot may need to decide which
action (move forward, rotate, etc.) to execute next, in order to progress in the desired
direction. For example, it may decide to move forward if it is facing the desired location,
or it may decide to rotate in order to end looking the goal (desired location). However,
it may also need to decide among different strategies or possible high level behaviors. As
an example, a robot may need to decide whether to try to go after the ball or to stay in
a defensive position, among other possibilities.

The system designed and implemented for controlling the robots need to take into
account the characteristics of the environment, and also reaction capabilities and robot
behavior requirements. Therefore, the system controlling the robots need to be able to
combine reactive response with high level behavior.

In this work, we present the design used as the basis for a Multi-Agent System imple-
mented for the control of a team of robots for the VI Argentine Championship of Robot
Soccer (CAFR 2008 [1]). The implementation of the system was carried out following a
layered design; the objective is to have a set of Service Layers, each of which is associated
with a different level of abstraction. Each layer solves a different set of problems by means
of the services that it offers; these services can then be used by the upper layers.

In particular will present and formally define a BDI architecture for high level con-
trol the mobile robots. This architecture will represent the higher level of layered system.
The proposed architecture will use logic-based model of the knowledge representation and
reasoning. The Logic language selected provides a useful tool for the implementation of
reasoning systems that offer the possibility of rapid prototyping of agents and declarative
design. The desire model of this approach allows a declarative way to express high level
strategies, and to select between them in an elegant way. Intention rules and its appli-
cation complete the agent architecture. The intention model will allow the developer to
specify the situations where a plan is applicable in a declarative manner. Moreover this
model will allow the agent to use its internal state as part of the reasoning process, and
to handle history. The approach will also contain reactive rules that allow the agent to
work correctly in critical situations were fast computation is needed and a fast reflexive
action is needed.

2 BACKGROUND

Mobile robots involved in complex environments require high degree of intelligence or
high level capabilities (such as reasoning, knowledge representation, planning, agent com-
munication) integrated with lower level primitives (such as sensor management, basic
movements, obstacle avoidance, navigation, etc.). Since 2004 we have been working in
mobile robotics, specially in robotic soccer. Our previous research was focused on those
high and lower level areas. In particular, we have developed an obstacle avoiding sys-
tem [13], research on sensorial information and basic movements [11], and a multi-agent
architecture to control the robots [8]. We also have developed a robotic soccer team that
participated in the E-League held in Robocup 2004.

We designed a new Multi-Agent System for implementing the control of the team. We
developed the system following a three-layer architecture. The main goal of the design
and implementation of this architecture was to encapsulate all the low level developments,



including the ones mentioned above, in the lower layers of the architecture and allow an
easier implementation of high level capabilities in the upper layer. Therefore, AI theo-
ries developed on reasoning, knowledge representation, planning, agent communication,
among others, can be tested in this real scenario. In particular, we developed a team con-
trolled by a BDI architecture to participate in the VI Argentine Championship of Robot
Soccer (CAFR 2008 [1]). The main goal of the leagues we participated in is to provide
an environment where researchers, practitioners and students interact sharing knowledge
and expertise while enjoying the games. The leagues provide common basic services to all
of the participants, such as vision and communication. Teams can use low cost kits such
as and concentrate on the development and study of Artificial Intelligence techniques, as
the ones mentioned above. The most important feature of these leagues is its simple and
modular structure. There are only three basic components that must be available to ob-
tain a functional team: a vision module that works as the robot’s perception component,
a communication module that allows actions to be communicated to the robots, and a
control module that is implemented by agents that control the robots on the field of play.

Each team has one or more auxiliary computers in which the agents are executed.
These agents communicate with the vision component in order to obtain information
about what happens on the field, and send messages to the robots by means of a com-
munication module. Even though the league does not define a standard platform for the
construction of the robots, it does impose restrictions over the processing and memory
capacity. This allows the use of low cost robotic kits, many of which fall under these
restrictions. The system we developed was implemented using Lego Mindstorms kits,
which are within the rules of the league. Each team is composed of three or four robots,
one of the robots acting as a goalkeeper. There are restrictions over the size of the robots,
their shape, and the components used in their construction. Even though the robots do
not communicate amongst themselves, the processes that control them can do so.

In the following section we will describe a multi-agent system designed to cope with
these requirements, also trying to facilitate the testing of new theories developed on
reasoning, knowledge representation, planning, agent communication, among others AI
techniques.

3 DESIGN OF THE AGENT SYSTEM

The proposed design considers the construction of the system based on an hybrid archi-
tecture combining reaction with deliberation [14]. The most popular hybrid architectures
is the three layer architecture (see Figure 1), which consists of a reactive layer, an ex-
ecutive layer and a deliberative layer, each of which covers different levels of abstraction
of the problem to be solved. The reactive layer provides low-level control of the robot.
The executive layer serves as the glue between the reactive and the deliberative layer.
It accepts directives by the deliberative layer, and sequences them for the reactive layer.
The deliberative layer is responsible for controlling the robot behavior by taking high level
decisions.

As will be explain next, each layer provides services to the upper layer, which are
implemented using those provided by the lower layer. Therefore, this layered design
allows local modifications. Thus, the implementation of some services can be modified
without provoking many changes in other layers using these services.



Figure 1: architecture used for the implementation of the Matebots team.

3.1 Reactive layer

We associate with this layer the program running inside the robots and implementing
the basic actions they need to be able to act in a dynamic environment such as robotic
soccer. This layer also includes the basic hardware and software support that is provided
by the league. This involves physical support, such as infrared transmitters, video camera,
communication network, and common software. The software that is provided by the
league includes video and command communication servers.

This layer provides basic actions to the executive layer in order to allow the construc-
tion of specific sequences of actions with a determined goal, such as going to the ball. The
basic actions implemented inside the robots include three generic movements: moving for-
ward and backward, rotating clockwise or counterclockwise and describing different kinds
of arcs. These actions may also vary in the velocity of the wheels, allowing the robots to
execute movements with different speeds and precision.

The video server, called Doraemon [3], is part of the software support provided by the
league. A video camera covers the field of play and this server processes the images that
it obtains, generating information packets that are then made available to be used by
the agents that control both teams’ robots. The packets that are generated by the video
server provide information about the objects that are on the field of play. Information
about the position, orientation, and speed of these objects (the robots and the ball) is
transmitted. This information will be captured and processed by the executive layer, as
we will explain in the following subsection.

The league also provides a command communication software called Command Server
(abbreviated CS from now on), which allows the agents, who control the robots, to send
messages to the field. As we have mentioned, the processing and memory capabilities
of the robots is limited, and the control software must therefore reside and execute on
auxiliary computers. In this way, the decision processes are carried out by these agents
in the upper layers, and the decisions are then communicated to the robots through
the CS. The decisions communicated to the robots are the actions to execute, which, as
we mentioned above, are implemented in the program running inside the robots. The
frequency by which an agent can send actions to the robots through the CS is limited by
the physical characteristics of the transmission method used by the robots, in our case
Lego Mindstorms kits using IR.

3.2 Executive Layer

This layer is divided in two sub-layers, the sensorial sub-layer and the planner manager
sub-layer. In the former sub-layer, the visual information is processed and translated



into information that express states of the world. This information is divided in basic
information and inferred information. The latter sub-layer provides a set of implemented
schematic plans allowing the deliberate layer to control the robot behavior without wor-
rying about low level details.

The entire layer is implemented as an interface between the reactive layer and the de-
liberate layer, and has been developed in the C programming language providing prolog
predicates for the deliberate layer. This decision has several advantages. As we mentioned
before, the environment is highly dynamic, which causes the states of the world to change
quickly. Therefore, it is necessary for the robots to be able to react accordingly to this
dynamism. Moreover, the information obtained by the robots can be wrong due to senso-
rial failure; after recovering from such a failure, the current situation could be completely
different from the one previously perceived. In this type of cases, the system has to be
able to analyze new situations, and quickly decide which actions should be taken by the
robots.

The sensorial sub-layer provides basic information (such as the coordinates and speeds
of the robots and the ball), and also inferred information (elements obtained using in-
ference rules that contain the basic information), such as: The robots’ and the ball’s
locations relative to the field, player and/or team that is closest to the ball, distances
between different objects on the field (between players, rival players, etc). This informa-
tion is provided to the deliberate layer as prolog predicates, and they are implemented
by querying and analyzing the information from the video server. Then, the situations
modeled through these predicates are used in the deliberate layer to model and implement
the team’s game strategy.

The planner manager sub-layer is responsible for the execution of schematic plans. A
schematic plan represents a plan in a highly dynamic environment, in which the sequence
of actions needed to achieve the desired goal may vary at the moment of executing the
plan. Therefore, these schematic plans are divided in several atomic actions, such as
rotation and forward and backward movements, and each of these actions depend on the
state of the field at the moment immediate before of been executed. The schematic plans
implemented are: go to a given object (such as another robot or the ball), pass the ball
to a teammate, go to a zone in the field, kick the ball, dribble to a given location, and
clear the ball out of the defensive zone.

The existence of this layer allow us to disregard the physical structure of the environ-
ment in which the team of robots is embedded. For example, it is possible to implement
the services of this layer based on a simulated environment like the FIRA SimuroSot. If
the interface of the services offered by this layer remain unchanged, then the rest of the
deliberate layer can also remain unchanged.

3.3 Deliberative Layer

This layer is responsible for the design and implementation of the agents that control
the robots behavior. The lower layers allows this layer to obtain high level processed
information, use it to decide the behavior of the robots, and finally control the robots. In
the deliberative layer, as in any other agent system, the agents will have a deliberative
cycle in which they perceive information about the environment and reason/decide about
the schematic plans to take. The implementation of the executive layer allows to specify



the elements of the cognitive layer using different knowledge representation and reasoning
systems. One alternative is to use the Belief-Desires-Intentions (BDI) model [5] to im-
plement the agents controlling the robots. In particular, we developed a team controlled
by using this architecture in order to participate in the VI Argentine Championship of
Robot Soccer (CAFR 2008 [1]).

In this work will focus on that alternative, using BDI as the agent architecture used to
specify the agents that control the robots. Next, in the following section we will present
a detailed explanation of how the BDI architecture is used in our approach.

4 ARCHITECTURE DESCRIPTION FOR HIGH LEVEL REASONING

One of the most promising agent architecture for developing intelligent agents is BDI. It
is one of the most recognized and studied agent architectures in the literature [7]. The
BDI framework involves two aspects in the area of intelligent agents: it is an agent theory
and it is a practical agent architecture. The former is a well known agent logic based the
theory of practical reasoning presented [6]. The latter is an architecture [5],[12], based on
the agent logics of [6], for building agents that are able to reason about their environment
and deliberate about their actions. A BDI agent is specified using mentalistic attributes
Belief, Desires and Intentions, and uses these components to determine the agent state.
Thus the agent will have a belief set containing information about the environment in
which it is involved, a desire set containing all the possible goal that the agent have and a
set of intentions containing a all the possibilities that the agent has to achieve its desires.

In this section we will show how to integrate the concepts of the BDI architecture with
the lower level layers. Next we will show how the role of each mental components in our
approach and introduce the syntaxis and semantics of their elements and their respective
interactions. In order to do so, we will introduce the following working example, which
describes a particular situation in the match.

Example 1 Consider an agent belonging to the blue team is playing against the yellow
team (see figure 2). Its team is loosing the match 0 - 2. Currently the agent (labelled
“me”) is moving towards the opponent area and is located in the left part of middle field,
its teammate “b1” is carrying the ball and its located in the right part of the middle field,
one of its opponents “y1” is located in the right part of the middle field and the other
opponent“y2” is located in the center of the yellow team penalty area.

Figure 2: Situation of example 1



4.1 Beliefs

The beliefs of the agent in the BDI Architecture are used to represent situation of the
world that the agent is in. In this approach beliefs represent are all the information
that the agent obtains from the field each deliberative cycle. As explained in previous
subsections it is divided in basic information (elements directly perceived from the field
like X,Y coordinates) and inferred information (elements obtained using inference rules
that contain the basic information, like the best place to attack).

A mobile robot should be able to work in dynamic environments with incomplete
knowledge of their environment. This involves information about the objects of the world
and a degree of uncertainty of the effects of their actions. Therefore, the robots will need
a formalism to reason about this incomplete, uncertain, and changing information. In
order to address those issues, we will use a logic formalism to obtain the elements that
the agent believes in the deliberative cycles. In particular will be used prolog as the
knowledge representation language and as belief inference mechanism. This introduces
interesting advantages for the agent developer such as declarativity in the belief program
specification and non-monotonic reasoning for the agent inferences.

The beliefs of our agent will be represented by a prolog program. The belief base
of an agent can contain sensed information such as field (X,Y) coordinates of an object,
distances between objects, direction that a robot is facing, or if a robot has the ball; strict
information such as which robots are teammates, or which robots are opponents; and
inference rules to obtain inferred information such as the empty spots in the field or the
best places to dribble. Next we will define the belief base of an agent considering these
information categories.

Definition 1 (belief base) The belief base of an agent will be a prolog program
Pb=(φ, π,δ), where φ is a set of prolog facts used to represent sensed information,
π is a set of prolog facts used to represent strict information and δ is a set of prolog
rules used to obtain inferred information.

Example 2 Consider the situation depicted in figure 2, there the agent from
example 1 will have the following set of sensed information φ1={hasBall(b1),
pos(middle, right, b1), pos(middle, left, me), pos(middle, left, y1),pos(opPenBox,
center, y2), loosing}, as strict information will will have the following set
π1={teammate(b1),opponent(y1),opponent(y2)}, and suppose that has the following in-
ference rules (sketch) δ1={

offensiveZone(opPenBox, Opdir) : −teamMate(X), pos(Zone, Dir, X), opositeDir(Dir, ODir)

defensiveZone(Zone, Opdir) : −teamMate(X), pos(Zone, Dir, X), opositeDir(Dir, ODir)

blocked(X) : −pos(Zone, Dir, me), pos(Zone, Dir, X), opponent(X)

}. Thus its belief base will be Pb = (φ1, π1, δ1)

The facts of the set φ are updated every deliberative cycle by the sub-sensorial layer.
Since this sensorial information surely will be used by the inference rules the inferred
information can also change every deliberative cycle. In order to be useable by the other
mental components, next, we will define which elements are obtained from the Pb.

Definition 2 (actual belief) Let Pb=(φ, π,δ) be a belief base of a agent, The prolog
atom h is an actual belief from Pb (noted Pb ` h) iff h ∈ φ∪ π or h can be obtained via a
prolog derivation using the rules of δ and the prolog inference mechanism.If it is the
case that an atom h is not a actual belief from Pb it will be noted Pb 0 h



Example 3 The agent with a belief base presented in the example 2, will
have the following actual beliefs: offensiveZone(opPenBox,right), defensive-
Zone(middle,right),blocked(me) and the elements of φ and π.

The belief base will provide the other mental components with the actual beliefs to
do their computations and decide how to act based in the situation in which the agent
is in. The computation of an actual belief will be made by demand of the requesting
component. Thus the agent will be able to reason using a non-monotonic approach and
act reactively in a efficient way because the belief elements will be only calculated when
needed without adding overhead to the overall deliberative cycles.

4.2 Desires

The desires in the BDI architecture represent what the agent wants to do. In this work
desires will represent high level attitudes that the agent will try to achieve during the
match, for instance attack, defend or score a goal. The agent will have a number of desires
that it will be continuously trying to achieve. However, depending on the situation in
which it is involved, there are desires can be justified or not. For instance, if the agent has
the ball and is loosing the match, then, the desire defend is not quite adequate, whereas
attack is a plausible option. Therefore, agents should reason about their desires to select
the ones that could be actually justified or selectable. In order to specify this desire
behavior, next, we will introduce the desire rules, which are used to determine when a
desire is justified.

Definition 3 (desire rule) A desire rule is a triplet DR=(d, Just, Imp), where d is an
atom representing a desire, and Just={p1,. . ., pn, not c1,. . ., not cm} (n ≥ 0 and m ≥ 0)
is formed by a set of atoms {p1, . . . , pn} representing belief preconditions and a set of
extended atoms {not c1, . . . , not cm} representing belief restrictions, and Imp is a number
denoting the importance value of the rule desire.

Since desire rules involve belief and desires and both of them are atoms we will assume
that beliefs and desires are represented with separate names. Hence, a desire cannot be
perceived or derived as a belief. All the specified desire rules determine the agent desire
base noted Pd. Note that the set D = {⋃ d | (d, Just, Imp) ∈ goalbase} contains all the
possible desires that the agent have.

Example 4 The agent desire base(sketch) is

Pd = { (attack,{hasBall(me), loosing},20)
(attack,{hasBall(X),teamMate(X), loosing},15)
(defend,{hasBall(X),teamMate(X)},5)
(defend,{hasBall(X),opponent(X)},20) }

Using these rules agent will be able to determine which of its desires are justified in
each deliberative cycle. Next we will define who justified desires are computed.

Definition 4 (justified desire) Let Pb be a belief base, a desire rule DR =
(d, Just, Imp), and Just={p1,. . ., pn, not c1,. . ., not cm} with n ≥ 0 and m ≥ 0. Then
d will be a justified desire with an importance value of Imp (noted [d,Imp]) iff ∀i = 1..n
Pb ` pi and ∀j = 1..m Pb 0 cj



Example 5 Suppose that an agent is in the situation described in figure 2, the belief base
of example 2 and has the desires rules of example 4 then it will have the following justified
desires: [attack,15] and [defend,5].

The set JD of justified desires will contain all the desires that are justified. Notice
that a desire d might be justified by several rules, if its the case the agent will only use
the justified desire with higher importance value. This means that the JD will have one
occurrence of each justified desire. The set JD is calculated every deliberative cycle and
will allow the agent to determine whether intentions it can commit to.

This desire oriented approach allows a declarative way to express high level strategies,
and to select between them in an elegant way. Moreover it allows developing agents that
behave depending the match attitudes which will be based in the high level information
provided by the belief base.

4.3 Intentions

The intentions in the BDI architecture determine what the agent can do to achieve its
desires. In this work the intentions will represent the plans that the agent can execute
to reach its desires, for instance if the agent desires to attack, it can have intentions to
plan a dribble to the opponent area, plan a shoot to make a goal or just plan a move
to the opponent area. Thus the developer will be able to specify different alternatives or
intentions to achieve a desire. However, depending on the situation in which the agent
is involved, there are intentions that can be applicable or not. For instance when the
agent does not has the ball its not possible to dribble or to shoot. Once that the agent
determine which of the intentions are applicable it should commit to one of them and
execute its plan. The intentional model of the agent should contemplate that there will
an executing intention. Thus, the elements that affect the intention applicability are
beliefs, the running plan and the justified desires. In order to specify this intentional
behavior next, we will introduce the intention rules next.

Definition 5 (intention rule) A intention rule IR is an ordered touple IR=(κ, β, cp,
π), where: κ (header goal) is a conjunction of atoms representing the desire to be achieved,
cp is an atom representing the running plan preconditions, π is a plan to be executed, and
β={p1,. . ., pn, not c1,. . ., not cm} (n ≥ 0 and m ≥ 0) is a guard formed by a set of
atoms atoms {p1, . . . , pn} representing belief preconditions and a set of extended atoms
{not c1, . . . , not cm} representing restrictions for IR. An intention-rule (κ, β, cp, π)
is also denoted κ← β [cp] | {π} . All the specified intention rules determine the agent
intention base noted Pi.

Example 6 The agent intention base(sketch) is

Pd = { attack← hasBall(me), position(opPenBox, Dir, me) [] | {shoot}
attack← hasBall(me) [] | {dribbleTo(opPenBox, Dir)}
attack← offensiveZone(Zone, Dir) [] | {goto(Zone, Dir)}
defend← defensiveZone(Zone, Dir) [] | {goto(Zone, Dir)}

← pos(myPenArea, X, me), hasBall(me) [] | {clear} }

For instance the first rule specifies if that if the agent wants to attack and it has the
ball, and is near the opponent penalty area, it will be adequate to shoot to the goal.



Note that the plans of the IR of the previous example are those described in section 3.2.
Using these rules agent will be able to determine which intentions are applicable each
deliberative cycle. Next we will how to determine which intentions are applicable.

Definition 6 (applicable intention) Let Pb be a belief base, JD the set of justified
desires, and IR is an intention rule κ← β [cp] | {π} where β={p1,. . ., pn, not c1,. . .,
not cm} with n ≥ 0 and m ≥ 0. Then IR will be an applicable iff ∀i = 1..n Pb ` pi

and ∀j = 1..m Pb 0 cj, ∃[κ, Imp] ∈ JD, and cp is the running plan. From an applicable
intention rule, the applicable intention will be a pair (π, Imp)

Example 7 Suppose that an agent is in the situation described in figure 2, the belief base
of example 2 and has the justified desires of example 5 then it will have the following
applicable intentions: (goto(opPenArea,right),15) and (goto(middle,left),5) because the
third and the fourth intention rule are applicable.

The test if cp is the plan that the agent is currently executing, is made by an interaction
with the executive layer. Note that a rule can have an empty cp, this means that the
rule does not has a running plan precondition, and in this case the condition over the
running plan is always met. Also an intention rule can have an empty κ (a reactive rule),
this means that the rule does not have a desire to achieve, and will be used to represent
reactive reasoning. In this case the justified desire condition is always met. The intention
reactive rules will be treated differently from the other intention rules in the deliberative
cycle in order to benefit agent reactivity. The set of all applicable intentions obtained
from non reactive rules will be called AI.

Since only one intention from AI should be selected to execute, next we will in-
troduce one possible criterion to select one: Let [IR1, ..., IRn] be the sequence of the
applicable intention rules of the agent, the order of this sequence is determined the rule
order in the agent specification. First, select those elements of AI with higher value of
Imp. If there more than one element that meet the first condition, select element ob-
tained from first intention rule appearing in [IR1, ..., IRn] between those elements that
meet the first condition. For instance, from the example 7 the selected intention will be
(goto(opPenArea,right),15)

Once an intention is selected its plan will be sent to the executive layer to be executed.
However, if the sent plan of is the same as running plan the executive layer will ignore
the sent one, and continue the execution of the running one.

As said above intention reactive rules will be treated differently. The applicability
of the reactive rules will be computed a the start of the deliberative cycle and the first
applicable (using the specification of the agent as order) will sent its plan to execution.

Intention rules and its application complete the agent architecture. These rules allow
to developer to specify the situations where a plan is applicable in a declarative manner.
Using the running plan as part of the conditions to determine that an intention rule is
applicable, allows the agent to use its internal state as part of the reasoning process,
to handle history and to establish the commitment to new alternatives for the selected
strategy. The reactive rules will allow the agent to work correctly in critical situations
were fast computation is needed and a fast reflexive action is needed.



4.4 Deliberative Cycle

In this section we will show how the mental components described previously interact each
other. Next in figure 3 the component interaction and the connection with the executive
layer is shown.

Figure 3: Mental components and Layer interaction

Next we will show a the deliberative cycle of the BDI architecture proposed in this
work. The main difference with the basic BDI deliberative cycle is that in our approach
the intention revision is handled inside the intention selection semantics.

1. update the perceive elements φ in the Pb

2. if a reactive intention rule is applicable using only the actual beliefs and the running
plan, and goto step X

3. obtain the justified desires from Pd using the actual beliefs
4. obtain the applicable intentions using the justified desires, the actual beliefs and the

running plan.
5. select one intention from the previous step using a intention selection criterion.
6. send the selected intention plan to the executive layer and set it as the running

intention.

This deliberative cycle ensures a sophisticated goal oriented reasoning using the jus-
tified desires to determine the best strategies or game attitudes. The intention rules
give different alternatives to achieve one of the justified desires. The definition of those
elements and the deliberative cycle are combined in order to allow the agent developer
to abstract of the reasoning mechanisms and concentrate in the on the match situation
that trigger a game attitude and its respective plan. Furthermore the combination of the
reactive intention rules, its selection policy and that the actual beliefs are computed “by
demand” means alow the agent to act reactively when needed, which is very important
in robotics.

5 CONCLUSIONS AND FUTURE WORK

In this work we have presented and formally defined a BDI architecture for high level
control of mobile robots. This architecture is built on top a layered system. This layered
system gives the architecture the necessary level of abstraction to do cognitive reasoning.
This design allows the abstraction and modularization of the different aspects of the
complex domain that robotic soccer represents.



The design of the knowledge representation and reasoning mechanisms was carried out
using a logic-based model. Logic programming is a useful tool for the implementation of
reasoning systems that offer the possibility of rapid prototyping of agents and declarative
design. This desire oriented approach allows a declarative way to express high level strate-
gies, and to select between them in an elegant way. Intention rules and its application
complete the agent architecture. The intention rules allow the developer to specify the
situations where a plan is applicable in a declarative manner. Using the running plan as
part of the conditions to determine that an intention rule is applicable, allows the the
agent to use its internal state as part of the reasoning process, and to handle history. The
reactive rules will allow the the agent to work correctly in critical situations were fast
computation is needed and a fast reflexive action is needed.

Having built a functional team of agents using this model to participate in the CAFR
2008 competition, we are currently working on the development of more complex agents
that incorporate a wide range of AI techniques developed within LIDIA from the fields of
planning, argumentation, learning, belief revision, among others.

References
[1] http://www.uncoma.edu.ar/cafr2008/. Official webpage of the VI Argentine Championship of Robot Soccer.

[2] S. Achim, P. Stone, and M. Veloso. Building a dedicated robotic soccer system, 1996. In Proceedings of the IROS-96
Workshop on RoboCup.

[3] John Anderson and Jacky Baltes. Doraemon user’s manual.
http://sourceforge.net/projects/robocup-video.

[4] John Anderson, Jacky Baltes, David Livingston, and Elizabeth Sklar. Toward an undergraduate league for robocup.
In Proceedings of the RoboCup Symposium, 2003.

[5] M. Bratman, D. Israel, and M. Pollack. Plans and resource-bounded practical reasoning. In Philosophy and AI: Essays
at the Interface.

[6] M. Bratman, D. Israel, and M. Pollack. Plans and resource-bounded practical reasoning. Computational Intelligence,
4(4):349–355, 1988.

[7] Michael Fisher, Rafael Bordini, Benjamin Hirsch, and Paolo Torroni. Computational logics and agents: A road map
of current technologies and future trends. Computational Intelligence, 23(1):61–91, February 2007.

[8] Alejandro J. Garćıa, Gerardo I. Simari, and Telma Delladio. Designing an agent system for controlling a robotic
soccer team. In Proceedings of X Argentine Congress of Computer Science, page 227, Buenos Aires, Argentina, 2004.
Universidad Nacional de la Matanza.

[9] Kwun Han and Manuela Veloso. Automated robot behavior recognition applied to robotic soccer. Robotics Research:
the Ninth International Symposium, pages 199–204. Springer-Verlag, London, 2000. Also in the Proceedings of IJCAI-
99 Workshop on Team Behaviors and Plan Recognition.

[10] Benn Vosseteig Jacky Baltes and John Anderson. Robocup e-league video server.
http://sourceforge.net/projects/robocup-video.

[11] Fernando Mart́ın, Mariano Tucat, and Alejandro J. Garćıa. Soluciones a problemas de percepción y acción en el
dominio de un equipo de fútbol de robots. In Proceedings of X Argentine Congress of Computer Science, pages
1895–1906, Buenos Aires, Argentina, 2004. Universidad Nacional de la Matanza.

[12] S. Rao and Michael P. Georgeff. Bdi agents: From theory to practice. In In Proceedings of the First International
Conference on Multi-Agent Systems (ICMAS-95, pages 312–319, 1995.

[13] Nicolás Rotstein and Alejandro J. Garćıa. Evasión de obstáculos con bajo costo computacional para un equipo de fútbol
de robots. In Proceedings of X Argentine Congress of Computer Science, Buenos Aires, Argentina, 2004. Universidad
Nacional de la Matanza.

[14] S. Russel and P. Norvig. Artificial Intelligence: a Modern Approach. 1995.

[15] Gerhard Weiss. Learning to coordinate actions in multi-agent systems. In Reading in Agents, pages 481–486. Morgan
Kaufmann, 1998.


