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Instituto de Ciencias e Ingenieŕıa de la Computación (UNS-CONICET), Bah́ıa Blanca,

Argentina
bDepartamento de Economı́a, Universidad Nacional del Sur, Instituto de Matemática de
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Abstract

The task of Event Detection (ED) is a subfield of Information Extraction (IE)
that consists in recognizing event mentions in natural language texts. Several
applications can take advantage of an ED system, including alert systems, text
summarization, question-answering systems, and any system that needs to ex-
tract structured information about events from unstructured texts. ED is a
complex task, which is hampered by two main challenges: the lack of a dataset
large enough to train and test the developed models and the variety of event
type definitions that exist in the literature. These problems make generalization
hard to achieve, resulting in poor adaptation to different domains and targets.
The main contribution of this paper is the design, implementation and evalua-
tion of a recurrent neural network model for ED that combines several features.
In particular, the paper makes the following contributions: (1) it uses BERT
embeddings to define contextual word and contextual sentence embeddings as
attributes, which to the best of our knowledge were never used before for the
ED task; (2) the proposed model has the ability to use its first layer to learn
good feature representations; (3) a new public dataset with a general definition
of event; (4) an extensive empirical evaluation that includes (i) the exploration
of different architectures and hyperparameters, (ii) an ablation test to study
the impact of each attribute, and (iii) a comparison with a replication of a
state-of-the-art model. The results offer several insights into the importance of
contextual embeddings and indicate that the proposed approach is effective in
the ED task, outperforming the baseline models.
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1. Introduction

The Information Extraction (IE) task consists in extracting structured in-
formation from unstructured natural language texts. Event Extraction (EE) is
a subtask of IE, in which the goal is to detect and retrieve real-world events
from those texts. An EE system performs two different steps to complete the
extraction of the events. The first step is to identify the event trigger, which
is the word that most clearly expresses the occurrence of an event, and classify
it into one of the predefined event types. This step is called Event Detection
(ED). The second step is to extract the arguments of the events, which can be
a participant (i.e., VICTIM in Injure Event type) or an attribute (i.e., TIME,
PLACE). EE and ED systems are crucial for any application or domain that
needs structured information and relies on a large corpus of unstructured data.
Some examples of this are question-answering systems [41] or text summariza-
tion systems [23]. The EE systems are also useful for generating reports of the
information available for a domain [1]. These reports can help an expert to
make decisions or create policies to address an issue.

Our work aims at extracting real-world events and other relevant variables
from news and social media with the ultimate goal of learning causal models. In
this paper, we aim to solve the first step, which is the extraction of real-world
events. For the extraction of events, in this work, we implemented and tested
an RNN model for ED. The two steps involved in the tool we intend to build
are depicted in Fig. 1. This work addresses the first step of this tool.

The market is so strong EVENT partly because many companies that issued junk

bonds have lightened EVENT their debt burdens, thus increasing EVENT their

financial well-being.

Partly because of fears ignited by the financial crisis EVENT , analysts expect

EVENT economic growth to slow to about 1 percent in the first quarter of this year

and remain sluggish in the second quarter.

(a)
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Figure 1: Two uses cases for the event detection tool, applied to two sentences containing five
events in total (a). A causal graph manually extracted from the examples (b). The main goal
of this work is to solve the first step (event detection) for a causal structure extraction tool.
The next step will involve automating the second step (causality extraction).

Previous work was limited to a fixed taxonomy of events. In this scenario, a
model trained on a set of event types cannot extrapolate a prediction to a new
event type. Another limitation of many models is their inability to distinguish
very recent or ongoing events reported in the news from historical, future, hypo-
thetical or other forms of events that are neither fresh nor current. To illustrate
this, take the word “crisis” in the following sentences:

fernando.delbianco@uns.edu.ar (Fernando Delbianco), ftohme@criba.edu.ar (Fernando
Tohmé), agm@cs.uns.edu.ar (Ana Maguitman), eem@cs.dal.ca (Evangelos Milios)
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1. The current crisis will accelerate the end of paper money.
2. There will not be a crisis in the foreseeable future.
3. The same trend could be observed during the Global Financial Crisis more

than a decade ago.
4. Any financial crisis is catastrophic, and safeguards must be drastically

improved to mitigate the risks of a future crisis.

In our approach, only the reference to a “crisis” in sentence 1 is considered an
event trigger, while the other mentions to the same word are not. This is guided
by our ultimate goal of detecting causal relations between events reported in the
news. However, this context-sensitive definition of event is not handled correctly
by most existing proposal.

Motivated by the limitations of previous models, we outlined a more general
definition of an event. Guided by this definition, we manually labeled a dataset
for training and testing purposes. Using this dataset, we developed an RNN
model for event prediction. Since there are no previous studies on this dataset,
we also replicated a baseline model from the state-of-the-art for comparison [32].

The contributions of this paper to the ED task can be summarized as follows.

1. Firstly, we design and implement an RNN model with performance com-
parable with the state-of-the-art. This model includes a new attribute
that, to the best of our knowledge, was never used before for the ED task,
namely BERT embeddings.

2. Secondly, we present and make available a new dataset with a more gen-
eral/flexible definition of what an event is. We also elaborate on a baseline
model by replicating a state-of-the-art model ([32]) on our data.

3. Finally, we present an extensive empirical evaluation with different archi-
tectures and hyperparameters for both the baseline and our model. We
performed an ablation test as part of the preliminary studies to measure
the impact of each feature on the performance. Guided by these studies,
we choose the best set of features for maximizing F1-score. The results
in the held-out showed a noticeable improvement by using the features
selected during the ablation test.

The code for the proposed and baseline models, as well as the dataset are
made available to the research community for reproducibility and data reuse.1

The outline for the rest of the paper is as follows. In Section 2 we present
background concepts and related work. In Section 3, we introduce our RNN
model for event prediction, including a description of the features used, the
architecture and hyperparameter settings. In Section 5, we present the results
and the discussion. Finally, in Section 6, we discuss the conclusions and outline
future work.

1The code is available at http://cs.uns.edu.ar/∼mmaisonnave/resources/ED code/ and the
dataset is available at http://cs.uns.edu.ar/∼mmaisonnave/resources/ED data/.
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2. Background and Related Work

The tasks of ED and EE require raw texts labeled with precise information
about entities, event triggers, and event arguments. The construction of such
a dataset is labor intensive and time consuming. Therefore there are not many
publicly available datasets, and many of them are very small (few hundreds
of documents) in contrast with available datasets for other classification tasks,
such as image classification [9] (with more than 14 millions images) and NLP
classification, such as [22] Newsgroup 20 dataset (with nearly 20,000 texts).

As part of competitions and conferences, many datasets become available,
and the first models for EE and ED were tested and published. Different ap-
proaches and types of models were tested. In this section, we review the existing
dataset for the ED/EE task and the different models proposed in the literature.
First, in section 2.1, we review some of the existing datasets for the EE/ED
task. Next, in section 2.2, we review the existing models for the task.

2.1. Existing Datasets for the EE and ED task.
The most widely used dataset for ED is the ACE 2005 Multilingual Training

Corpus [43], which contains the complete set of English, Arabic, and Chinese
training data for the 2005 Automatic Content Extraction (ACE) technology
evaluation [11]. The corpus consists of data of various types of annotations
for entities, relations, and events by the Linguistic Data Consortium (LDC).
The objective of the ACE program was to develop technology to support the
automatic processing of human language in text form for the task of Information
Extraction (IE). The annotation guidelines depict in detail the full taxonomy
of valid event types and subtypes (i.e., DIE, ATTACK, MEET).

Although there are other datasets available (e.g., TimeML [38], SentiFM [19]),
to the best of our knowledge, all the datasets for the EE task have a fixed tax-
onomy of valid event types. The main disadvantage of a fixed taxonomy is the
problem of extending the model to new event types. A model trained with the
ACE Corpus can only detect a predefined set of event types, and it is going to
be probably biased towards the most frequent event type.

2.2. Existing Models for the EE and ED Tasks.
The state-of-the-art approach for ED is to generate a neural-based classifier

with a class for each possible event type, and an extra class for non-events.
These classifiers use a wide variety of features as inputs for the classification
task.

Before the advent of the neural-based models, most of these features were
handcrafted and more complex. For example, in [24] the authors designed and
studied a rich set of attributes with local and global information about each
token to boost the performance of the classifier. These richer and complex
features were often the result of the application of NLP tools. Although the
NLP tools provide a useful source of information, they are not error-free, which
means that any error in the initial stages propagates to the model.
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With the advent of neural models and the availability of continuous repre-
sentations for words and sentences learned in an unsupervised fashion from large
corpora (such as word and sentence embeddings), the features used in the models
changed radically. A lot of the inputs from newer models are unsupervised rep-
resentations automatically learned from big corpora (e.g., Word2vec [29] and
Fasttext [3]), and many of these representations can keep improving during
training through gradient descent. According to [4], the approaches for the ED
task fall into one of three categories: pattern-based [21, 15, 39, 40, 45], feature-
based [14, 7, 42, 20, 35, 25, 18, 16, 24, 5], and neural-based [6, 32, 30, 31, 13].
The first two rely on sophisticated handcrafted rules, patterns, and features,
as well as in NLP tools. The third category relies on neural networks for both
feature representation and token prediction. In this paper, we focus on the
last category, which solves a lot of the problems with the first two categories
mentioned above, while achieving state-of-the-art results for both ED and EE.

Several works study the task of ED as a standalone task [34, 26, 12, 33,
31, 32, 44], while others use and analyze ED as a component of an EE system
[46, 27, 41, 17, 30, 6, 24, 2]. In the literature, these EE systems follow one of
two possible architectures: pipelined [6, 20, 25, 16] or joint [46, 27, 41]. In the
pipelined architecture, the ED task is the first step, in which the trigger word
is detected and classified. Afterward, the system performs the rest of the EE
task by extracting the arguments for those triggers. In the joint architecture,
several proposals employ the joint architecture in which argument extraction is
part of the trigger extraction phase and vice versa. By carrying out these stages
together, they provide information to each other to boost the performance of
the overall EE system.

Since, in this work, we aim at solving ED and not EE, we only address
the trigger detection task and not the argument extraction. Furthermore, the
dataset that we manually labeled does not include information about argu-
ments, so this work is focused solely on ED. Therefore, we evaluate our model
against the state-of-the-art in ED, instead of considering approaches that per-
form ED+EE. We cannot compare our work with the last group because more
information is available for making predictions for the ED task (information
about the arguments of events). Based on these considerations and because
of its simplicity and comparable performance with the state-of-the-art neural
models, we selected and replicated the model proposed in [32] as a baseline for
comparison.

3. RNN Model

We used a Recurrent Neural Network (RNN) for the task of ED, which
consists of classifying each word (or token) into one of two possible categories:
event, or non-event. We conducted several experiments combining different
hyperparameters, features, and architectures. In this section, we will review the
different configurations tested and the intuition behind each selection.

Features. To be able to detect events in natural language text, we hy-
pothesize that syntactic, semantic, and grammatical information is needed. To

5



represent the semantics of each token, we used a well-known continuous rep-
resentation for each word, Word2Vec [28] (W ). Note that we use Word2vec
instead of other word embeddings (e.g., FastText [3] and Glove [36]) for the
sake of comparison, as Word2vec is the word embedding used in our baseline
[32].

To encode the syntactic information, we first used the Spacy library2 to
identify the dependency tree (D). For each token, we extract the dependency
relation with the head token in the dependency tree. Using that information,
we trained a 10-dimension supervised Keras embedding layer. This layer was
initialized with random weights and incrementally improved the representation
along with the training of the rest of the network via gradient descent. The
grammatical information was encoded using two different embeddings. Both
embeddings represent information retrieved through Spacy’s Part-Of-Speech
tagger. We used both the simplified Part-Of-Speech tag version (P ) and the
detailed one (T ) of the Spacy NLP library. Since this information is categorical
it required a continuous representation. As we did in the case of the syntactic
information, we used a first embedding layer to transform these two categorical
variables into two vectors of 10 dimensions each. In the same way as we did
with the D variable, we used the Keras embedding layer, which improves the
representation during training in a supervised fashion.

We used the Spacy Named Entity Recognizer tagger to include entity infor-
mation for the ED task in the form of a separated feature (E). We represented
each word as a two-part tag. The first part is the IOB notation (beginning (B),
inside (I), outside (O)), and the second is the type of the entity. Since this
information is categorical, we transformed this feature into a continuous repre-
sentation. As we did for other features (T , P , D), we used an embedding layer
to transform a one-hot encoding of this categorical input into a 10-dimension
vector. This layer is initialised with random weights and is fine tuned while
training for the ED task.

The task of detecting an event mention is one of the most challenging IE
tasks. For a model to be able to detect event mentions with performance com-
parable to a human reader, it needs to analyze natural language text with a
high level of understanding of grammar, syntax, and semantics. Such a task is
inherently complex. When the classification task requires high levels of abstrac-
tion and complex reasoning, it is usually solved using more complex and deeper
models. However, this is not possible for the ED task due to the small amount
of training data available. In this context, a useful approach is to use transfer
learning, to exploit the availability of datasets for other tasks, and import the
knowledge into the ED task.

We implicitly use transfer learning in the various inputs of the model. Firstly,
by using the pre-trained Word2vec vectors trained on the Google News dataset,
we are incorporating semantic information extracted from a large dataset. Sec-
ondly, by using the Part-of-Speech tagger and the Dependency tagger from the

2Spacy NLP library https://spacy.io/
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Spacy library, we are including grammar and syntactic information. This infor-
mation comes from other IE fields, where there are large corpora of text labeled
for part-of-speech tagging, and dependency tagging. By using this toolkit, we
exploit this information for the ED task.

Although we used Word2vec embeddings for the sake of comparison, we also
tested other embeddings to provide a final model with the best possible set of
features. We used 96-dimension context-sensitive tensors provided by the Spacy
Library (Sp). A Spacy context-sensitive tensor is a 96-dimension vector, which
is the internal state of the neural model used for NLP by the Spacy library.
We will refer to these vectors as Spacy word embeddings. According to the
Spacy documentation, these embeddings do not yield results as good as the
pre-trained word embeddings. However, they have the important characteris-
tic of being context-sensitive. To test how important is the semantic and the
context of each token, we used both classical word embeddings (Word2vec) and
the context-sensitive tensors provided by Spacy as inputs. We use the Spacy
tensors as contextual-word embeddings and as an input to the RNN model.
Each token in each context is represented by a 96-dimension vector that is not
fine-tuned during training. On the other hand, Word2vec embeddings represent
each word by means of a 300-dimension vector and differently from the Spacy
word embeddings. This 300-dimension representation is fine-tuned as the model
is trained for ED.

One limitation of the traditional word embeddings (like Word2vec and Fast-
Text) is that there is a single vector to represent each word. Therefore, the term
“bank” is associated with only one vector, where all the different semantics are
mixed. In this scenario, we will have the same vector for the term “bank” no
matter whether the words occurs in the sentence “I went to the park and sit on
a bank.” or the sentence “I need to go to the bank.”

Contextual embeddings, such as ELMo [37] and BERT [10], were proposed
to solve this problem of mixed semantics. This new type of embeddings achieves
ground-breaking performance on a wide range of natural language processing
tasks. We hypothesize that having vector sensitivity to the context is crucial
for the ED task, and it will bring a boost in performance. To illustrate this
hypothesis, consider the following two sentences: “The firm had to fire employ-
ees for ...” and “Fire burns a home near Brainerd airport.” They both use
the word “fire”, written in the same way, but with totally different meanings.
Word2vec will only have one vector for this word. In many cases, this difference
in semantics can be the reason behind many false-positives and false-negative
cases. Motivated by this intuition, we incorporated pre-trained contextual word
embeddings, in particular BERT embeddings (B), as an input to the model.

Another problematic situation occurs with a word that preserves its seman-
tics across different sentences but that can refer to an event trigger or not,
depending on its context of use. This was illustrated in Section 1 with the word
“crisis”, which can be used to refer to a recent or ongoing event (event trigger)
or to a historical, future, hypothetical or other forms of events that are neither
fresh nor current (non-event triggers). Following this intuition, we incorporate
for each token a 768-dimensional vector feature representing a contextual em-
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bedding for the whole sentence. Note that each token in the same sentence will
have the same contextual sentence embedding as input. The intuition behind
using a common contextual sentence embedding for each token in a sentence is
that sentences usually give information either about past, future and hypothet-
ical situations (which were irrelevant to us), or about current events (which are
the ones that we want to detect). It was uncommon for a sentence to mix these
two types of information. So, sometimes to determine if the current token was
an event, it was necessary to know if the sentence was describing past, hypothet-
ical, future or present circumstances. Guided by this intuition, we hypothesize
that a representation of the context of use of the tokens provided by contextual
sentence embeddings can boost the performance of the ED task. So the final
feature we incorporate is a contextual sentence embedding (S)built by adding
up the BERT embeddings for each token in the sentence.

In summary, we use eight input features. In the first place, we use classical
Word2vec embeddings to represent the semantics of a word. The dep, tag, and
pos embeddings extracted using NLP tools are used to encode syntactic and
grammatical information. Another input is represented by entities identified by
the Spacy NER tagger. We implemented these five inputs using five Keras layers
of size 300, 10, 10, 10, and 10. We initialized the last four layers with random
weights, while we use the pre-trained embeddings for initializing the first layer.
The sixth feature is the 96-dimension Spacy contextual word embedding. The
seventh and eighth features are the BERT word and sentence embeddings, of
size 768 each. Since it is not feasible to model these three contextual inputs as
a Keras embedding layer, we directly pass the embeddings to the next layer in
the model. Since each word has a different context, each word of the corpus has
a different contextual embedding. The one-hot encoding would require a length
of the total count of tokens in the dataset (∼84K). Although such an encoding
is possible, it is not useful and may result in inferior performance given that
it may lead to overfitting due to the large number of parameters. Since these
inputs are not modeled with a Keras layer, they will not be fine tuned during
training for the ED task. A summary of the features used for the RNN models
is presented in Table 1.

Architecture. We chose an RNN architecture based on Long-Short Term
Memory (LSTM) cells to exploit the dependencies between previous and sub-
sequent tokens for the classification of the current word. The inputs for each
word, which are seven embeddings, are all concatenated together to form a
vector of 1962 dimensions. We added a Dropout layer after the concatenated
embeddings. Following the dropout layer, we added a Bidirectional LSTM (Bi-
LSTM) layer with fifteen hidden units. A final dense layer with only one hidden
unit was attached to the Bi-LSTM Layer. The output of this final layer is the
prediction. Although this architecture is the one used during the experiments
on the data held-out for testing, we tested other architectures, with different
numbers of Bi-LSTM layers, with different numbers of hidden units. The results
of these experiments, with varying numbers of Bi-LSTM layers, can be found in
Appendix Appendix B.
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Hyperparameters. For the embedding layers we use the default configu-
ration, only changing the random initialization for the Word2vec embeddings.
We use a probability of 0.1 for the Dropout layer. We tested different num-
bers of Bi-LSTM layers and hidden units, including one three Bi-LSTM layers
model, two with two Bi-LSTM layers, and five single Bi-LSTM layer models.
We set up every Bi-LSTM using the default configuration, adding only L1L2
regularization with values of 0.001 for both L1 and L2. For the final experiments
on the data held-out for testing, we used a single Bi-LSTM layer architecture
with fifteen hidden units, which was the architecture with the best performance
during the preliminary studies. Finally, we set up the dense layer using the
sigmoid activation function. The number of layers and hidden units for the
Bi-LSTM layers were selected based on several pilot studies that are described
in appendix Appendix B.

4. Experimental Setup

4.1. Dataset
In our work, we are not interested in pre-defining all the possible event

types. Instead, we only label each word as event trigger or non-event trigger,
transforming the ED task into a binary classification task. We consider as event
trigger any ongoing real-world event or situation reported in the news articles.
It is important to distinguish those events and situations that are in progress
(or are reported as fresh events) at the moment the news is delivered from
past events that are simply brought back, future events, hypothetical events, or
events that will not take place. In our dataset we only labeled as event trigger
the first type of event. Based on this criterion, some words that are typically
considered as events are labeled as non-event triggers if they do not refer to
ongoing events at the time the analyzed news is released. Take for instance
the following news extract: “devaluation is not a realistic option to the current
account deficit since it would only contribute to weakening the credibility of
economic policies as it did during the last crisis.” The only word that is labeled
as event trigger in this example is “deficit” because it is the only ongoing event
refereed in the news. The word “devaluation” is labeled as non-event trigger as a
devaluation may not take place. Similarly, the word “weakening” is a non-event
trigger as it is a hypothetical event. Finally, the word “crisis” is considered
a non-event trigger as the news refers to a crisis from the past. Note that the
words “devaluation”, “weakening” and “crisis” could be labeled as event triggers
in other news extracts, where the context of use of these words is different, but
not in the given example.

The rationale for the adopted criterion is that the ultimate goal of our work
is to detect causal relations from digital media based on the identified events.
As a consequence, the focus is on ongoing events and situations only. The event
detection model proposed and evaluated in this work has the ability to capture
both context-independent and context-dependent cues and, as we will see later,
it is able to effectively identify ongoing events from those that are not in the
most common situations.
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Features
Abbr. Size Description

W 300 Pre-trained word embeddings: Word2vec.
P 10 Part-Of-Speech tag embeddings, simplified version.
T 10 Part-Of-Speech tag embeddings, detailed version.
D 10 Dependency parser tag embeddings.
E 10 Entity tag embeddings. Computed using the Spacy NER tagger.
Sp 96 Spacy contextual word embeddings.
B 768 Pre-trained contextual word embeddings: BERT embeddings
S 768 Contextual sentence embeddings. Computed adding the B embeddings.

Table 1: Description of all the features used by the RNN models. Each of the RNN models
used in this work uses these features, or a subset of them, as input. The first two are fixed
pre-trained vectors. The second two are pre-trained vectors that are fine-tuned during the
training. The last three are randomly initialized vectors that are updated during the training.

Sp

(1, 96)(1, 768)

(i-1)th token features

Dense layer

B S

Bi-LSTM layer
0. 1. 0.[ ]... ...0.

0.371 0.158[ ]

Keras 
Emb. 
Layer (W)

Keras 
Emb. 
Layer (T)

Keras 
Emb. 
Layer (P)

Keras 
Emb. 
Layer (D)

Keras 
Emb. 
Layer (E)

...

ŷi-1
ŷ

(1, 300) (1, 10) (1, 10) (1, 10) (1, 10)(1, 768)

one-hot encodings

(1,vocab. size)

(1,emb. size)

Keras Emb. Layer

(one-hot encodings)

(embedding repr.)
Pre-trained emb. layers.

ith token features

Prediction

(1, 1972)
Concat layer

Variable during preliminary studies.
Rest of the network.

Dropout layer

Figure 2: Outline of the proposed architecture (RNN) used in the experiments on the
held-out data. From bottom to top. A representation of the eight inputs, for the ith and the
(i − 1)th token. For each token, three of the inputs are vector representations (B, S, Sp);
the other five are one-hot encodings that enter five Keras embedding layers. Each of thee
dense layers is depicted in the top-right corner diagram. One of these embedding layers start
with pre-trained weights (W ), the others with random weights. After the embedding layer,
the eight vectors are concatenated together in a single 1972-dimensional vector. This vector
enters a dropout layer. The output of the dropout layer enters a Bi-LSTM layer with fifteen
hidden units. During the preliminary studies, we tested different numbers of Bi-LSTM layers
and hidden units. For the held-out data, we use the configuration depicted in this Figure. The
output of the Bi-LSTM layer is the input to a last dense layer, which makes the prediction.
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We tokenized the full New York Times (NYT) archive using the Spacy NLP
library and divided the dataset into sentences. Afterward, we selected a subset
of those sentences for labeling. We choose three episodes of real-world crises:
the Mexican peso crisis of 1994, the Russian financial crisis of 1998, and the
Asian financial crisis of 1997. We set up the search engine Lucene3 (with the
default configuration) to search sentences related to these three episodes. We
performed a search using keywords manually selected by experts. Examples of
these keywords include “Mexico”, “Crisis”, “Debt”, “capital flight”, “devalua-
tion”. From the obtained results, we randomly selected two thousand sentences.
Also, we randomly selected from these results a separate set of two hundred
sentences that were held out for testing purposes.

We developed a simple active learning tool to assist the labeling process of
the training and validation data. This tool used an early prototype of the RNN
model used for event prediction (described in section 3) to suggest labels. The
tool marked each possible event trigger candidate in the text while the user was
in charge of correcting the suggestions by removing candidate event triggers
proposed by the tool or adding events that were not suggested. We employed a
consensus-based approach to minimize errors during the labeling process. Each
sentence was presented to four users for labeling, along with the corresponding
suggestion generated by the model. Then the four users had to agree on keeping
a suggested label, removing it or adding a new one. The whole process took a
total of fifteen sessions of approximately two hours each.

To avoid biasing the users’ decisions when tagging events in the held-out set
used for testing, we had to adopt a different approach from the one used for
labeling the training and validation set. Therefore, the process of labeling the
testing set was not assisted by the RNN model. Instead, the four users were
presented with sentences with no suggestions provided by the tool and had to
reach a consensus on which words had to be marked as event triggers.

4.2. Baseline Model
As detailed in section 2, existing datasets for ED have several drawbacks, and

those drawbacks make them unsuitable for our work. Therefore, as explained
in section 4.1, we designed and built a dataset specifically for our work. Since
no previous model was validated using our dataset, existing metrics, and results
from the ED field are not directly comparable to ours. For this reason, to be
able to compare our work with other works from the literature of ED, we had
to choose and replicate an ED model from the state-of-the-art, to be used as a
baseline.

Baseline selection. The Convolutional Neural Network (CNN) presented
in [32] was used as the baseline. Despite being proposed several years ago,
this model is still competitive with the available state-of-the-art methods. For
example, it presents an F1-score of only 4.1 percentage points lower than more

3Apache Lucene https://lucene.apache.org/
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Full Dataset (training/validation + testing)
Sentence Count 2,200
Word Vocab. Size 8,647
Entity (E) Vocab. Size 34
Part-Of-Speech Simplified (P) Tag Vocab. Size 16
Dependency Parser (D) Tag Vocab. Size 47
Part-Of-Speech Detailed (T) Tag Vocab. Size 47

Table 2: Statistics about the vocabularies found in the full manually labeled dataset for
ED (training/validation + testing). This dataset consists of 2000+200 sentences extracted
randomly from a subset of sentences of the full NYT dataset (1987-2007). The subset consists
of sentences related to three relevant economic events. We manually labeled each word of each
sentence either as an event or as a non-event trigger. For the count of unique words, the only
NLP tool required was a tokenizer. We included the punctuation marks found in the texts
as part of the word vocabulary. We used a Named Entity Recognition (NER) tagger to build
the vocabulary of unique entities, and a Part-Of-Speech and Dependency tagger to build the
following three vocabularies (T , P , D). We used the taggers and tokenizer from the Spacy
NLP library.

Metric Training/Validation Testing Full Dataset
Total Avg. per Sent Total Avg. per Sent Total Avg. per Sent

Token Count 76,629 38.31 7,382 36.91 84,011 38.19
Word Count 67,032 33.52 6,442 32.21 73,474 33.40
Entity Count 11,502 5.75 950 4.75 12,452 5.66
Event Count 5,119 2.56 416 2.08 5,535 2.52

Table 3: Total number of tokens, words, entities, and events found in the two different parti-
tions of the dataset (and in the sum of both). The training/validation portion is the one we
used for building the different training and validation sets randomly. The testing portion is
the data held out for testing the proposed and baseline model. Therefore, we do not use that
portion for training nor for choosing the hyperparameters. The active learning system was
not used to assist the labeling of the data held out for testing to avoid introducing bias on this
set. We report token count (words+punctuation), words, entities (extracted with the Spacy
NER), and Events (manually generated). For each metric and dataset portion, we report the
total and average per sentence.

12



recent models, such as [34]. The selected baseline reports an F1-score of 69% for
the ED task using gold-standard entity annotations, while the model from [34]
reports an F1-score of 73.1% on the same dataset (ACE 2005 Corpus) and using
the same gold-standard entity annotations. The authors do not report in [34]
the result of the more recent neural model for predicted entities. However, they
do report in [32] the F1-score for predicted entities for the model we use as our
baseline. For this setting, the model achieves an F1-score of 67.6%. Several
other models are not considered as baselines because they perform ED as part
of the EE task. Consequently, they are not directly comparable with our model
as they make use of information that is not used during the ED task.

Although we tried to replicate the model exactly as it was in the original
paper, to adapt it to our dataset, we had to make some minor changes. Further-
more, since the code was not available, some minor implementation details may
not be the same as in the original model. We had to make some decisions about
some aspects and configuration of the models which were not explicit in the
original paper. For example, we had to decide which NLP tools to use for entity
extraction. When facing these decisions, we always tried to choose the option
that yields the best performance based on results reported in the literature. For
example, when we had to choose an NLP tool, we chose for both models the
Spacy library which, as far as we know, is one of the best tools available for
NLP4 [8]. In the remainder of this section, we describe in detail the baseline
model used. We also describe some minor changes and decisions that we had to
make, explaining the rationale behind them.

Features. As in the original paper, we use three input features for the
baseline model. First, we use the Word2vec embeddings as in our RNN model
(W ). Second, we use entities embeddings (E). For building this feature, we
use the Spacy Named Entity Recognition (NER) tagger and a Keras embedding
layer for building the embeddings, using the former to get categorical variables
(tags) and the latter for transforming these variables into vectors. We chose
Spacy as our NER tagger, as in the original paper there is no mention of a specific
tool, and because of the state-of-the-art performance of the Spacy library in
several NLP tools. The last feature employed for the baseline model is a position
embedding (Po), which represents the relative position of each word with respect
to the current token under classification. The word embedding layer starts with
a representation learned from the pre-trained Word2vec vectors, while the other
two start with random weights, as in [32]. The three layers are updated while
training for the ED task.

Architecture. The architecture used in [32] is a one layer CNN, followed
by a max-pooling layer and lastly a dropout layer followed by a dense layer for
the prediction. The inputs of this network are three lookup tables, with the
three types of embeddings. The representation in theses lookup tables improves
along with the training for the ED task. We replicated the same architecture and
behavior, by replacing the lookup tables with embedding layers that meet the

4https://spacy.io/usage/facts-figures
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same purpose: storing and providing a vectorized representation, and improving
the representation while training for the ED task. The remaining of the network
follows the same architecture as in [32].

Hyperparameters. While many of the hyperparameters remain the same,
since our data is different from the one used in [32], the window size used had
to be changed to better suit the data. Since in our dataset, each data item is a
sentence and not a whole document like in ACE 2005 (the dataset used in [32]),
the window sizes had to be adjusted. We tried with smaller window sizes, 1, 3,
5, 11, 21, and also for comparison sake we tested with window size 31. We use
the same number of filters (150), and the same size for the filters (2, 3, 4, 5),
as in the original paper. We used the sigmoid activation function for the final
dense layer to use the same performance metrics as in our RNN model. We use,
as in the original paper, batch size 50, a probability for the dropout layer of
0.5, and we set the hyperparameter for the l2 norms to 3. We used the binary
Cross-Entropy loss function and Adam’s optimizer.

5. Results and Discussion

In this section, we present the results and discussions for seven different vari-
ations of the proposed model and four different variations of the baseline model.
For each variation and each model, we randomly split the training/validation
part of the dataset into different training and validation subsets. For each vari-
ation, we trained the model until the model did not improve the F1-score in
the validation set for 400 epochs (Early Stopping with patience 400). We used
consecutive seeds from 1 to 10 to guarantee the replicability. The model with
the best performance in the validation set was selected and used to make the
predictions in the data held-out for testing. It is important to notice that we
used the same held-out data to test all the models and this data was never used
during the training stage. In this section we present and discuss the average
performance of each model variation on the validation splits and testing data.
Because we have seven variations of the proposed model and four variations of
the baseline model, we report results for a total of eleven different models. For
selecting each of these model variations, we run several preliminary studies. The
preliminary studies and their discussion are presented in the appendices.

For each model variation, we report the average metrics for the ten trials,
which include the average sensitivity, specificity, and harmonic mean between
these two metrics, namely F1-score. We do not report the average accuracy
for the model, because, in the presence of highly unbalanced data (93.41% are
non-events), the accuracy is a misleading metric. Measuring the accuracy is
not useful, considering that a model that always predicts non-event triggers
has more than 90% accuracy. For these reasons, we focus our analysis on the
more balanced F1-score metric. To thoroughly analyze the F1-score metric
on the testing set we also report the confidence intervals (CI) at 95% level of
confidence and the p-value for a t-test between the model considered and the
best model of each table. For example, in the first row of Table 4, we report
the p-value of a single-tail t-test between the F1-score values achieved by the
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Figure 3: Outline of the baseline model (CNN) with window size 5. Descriptions are
given from left to right. (a) Inputs. A representation of the three different inputs (Word
embedding W , Entity embeddig E and Position Embeddig P o) for the five tokens in the
window. Each input is a one-hot encoding. (b) Embedding layer. Input enters a Keras
embedding layer (a depiction of this layer can be found in Fig. 2). (c) Concatenation layers.
We concatenated the resulting embeddings in a single 400-dimension vector that represents
each token. Another concatenation layer stacks these five vectors into one matrix. (d) A
convolutional layer applies 600 filters of four different sizes (2, 3, 4, and 5) with 150 filters for
each size. (e) MaxPooling layer. A max-pooling layer is applied afterward. (f) Dropout and
Dense layers. Finally, the last two layers are a dropout and a dense layer. The dense layer is
the last one of the network and is the one that makes the prediction.
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the first model (model 1) and the best model of the table (model 7). We used
the F1-score metric on the testing data for the t-test.

5.1. Experiments on the Test Set
For the proposed model (RNN), we run ten trials for seven different

sets of features (models 1 to 7). The first model is the model with the full set of
features (as depicted in Table 4). The following models are models with the full
set of features removing some particular set of features for each experiment. Al-
though we tried different numbers of Bi-LSTM layers and hidden units, we only
evaluated on the testing set the architecture that achieved the best performance
during the preliminary studies, i.e., the architecture with a single Bi-LSTM layer
with 15 hidden units. The architecture is depicted in Figure 2 and the results
are reported in Table 4.

We conducted these experiments for two main reasons. First, to test the
hypothesis that the contextual word embeddings (B) are having a significant
positive impact on the overall performance. We tested this hypothesis during
the preliminary studies, and we found further evidence during the experiments
on the testing dataset. The significant drop in performance (of 11.7 percentage
points) from including or excluding the contextual word embeddings (model 1
vs. model 2) is indicating the importance of these features for the ED task.

Second, we carried out the rest of the experiments (models 3 to 7) to asses
the impact of several of the proposed features to the overall performance. We
measure the contribution of each feature during the preliminary studies. During
the experiments on the testing dataset, we found further evidence that several
inputs are not contributing to the performance in the presence of the other
features. These results allowed us to simplify the model and obtain even better
results.

Model 3 allows to analyze the impact of the grammatical information, ex-
tracted with the Part-Of-Speech (T , P ) and Dependency Parser (D) taggers.
The impact of the model excluding these three features showed a negligible
drop in performance compared to the model with all the features (model 1).
We believe that these results can be the consequence of three influencing fac-
tors. Firstly, an inadequate embedding representation due to the small amount
of data. Note that, unlike the pre-trained embedding Sp and W , the T , P , D
embeddings are randomly initialized and improve during training in a super-
vised fashion using the available dataset consisting of 2000 sentences. Secondly,
the grammatical information can already be available in the other features (i.e.,
B). Finally, the NLP technologies used for extracting the tags have an inherent
error that could be harming the performance. For the rest of the models, models
4 to 7, we exclude the T , P , and D features to test our hypothesis that the good
performance is mainly due to the contextual embeddings. To test this hypothe-
sis, besides excluding the T , P and D features, we exclude the Word2vec word
embeddings (model 4), and the Contextual Spacy word embeddings (model 5),
the entity embeddings (model 6), and all the previously mentioned features
(model 7).
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Models 4 to 6 showed a negligible variation in performance compared to the
model with all the features (model 1). These variations were of +1.4, +0.7, and
-0.1, respectively. These results provide evidence to support our hypothesis that
the contextual embeddings are crucial for the ED task and are the features that
most contribute to the good results. Model 7, which excludes all the attributes
except the contextual word and sentence embeddings, is the model with better
performance. This result shows that the other features are not relevant in the
presence of these two other features, and they were adding noise and complex-
ity to the model. This simpler model, with only the contextual information,
performed better than all the previous models. The statistical analysis between
model 7 and the others shows that all the differences are significant at the level
of 90%, namely all the p-values are smaller than 0.1. Furthermore, except for
model 4, all the p-values are smaller than 0.05, showing a statistical difference
at the level of 95%.

The baseline model (CNN) was run for ten trials with two different
window sizes (1 and 11), and for each window size, we trained models with
two different sets of features. For both window sizes, we run experiments with
and without the entity embedding, but always including the word embeddings.
For windows size 1, we excluded the position embeddings. The results of these
experiments are presented in Table 5.

The results for both window sizes show a negligible impact of the entity
embedding. Furthermore, in both cases, the impact is negative, showing better
performance using the word embeddings alone. For window size 11, the results
suggest a tendency for both sets of features to overfit the data, showing a drop
in performance when we use the model for making predictions on the testing
data. The best baseline model shows an F1-score of 56.9% on the testing data,
which is significantly lower than the performance of all the proposed models.

5.2. Discussion
In this section, we discuss the conclusions we derive from the experiments

with the variations of the proposed model (models 1 to 7) and the models based
on the selected baseline (models 8 to 11). In particular, we focus the discussion
on the best of the proposed models (model 7), the model without the contextual
word embeddings (model 2), and the two best baseline models (models 8 and
9). To compare the proposed and baseline models, we present in Table 6 the p-
values of single-tail t-tests between the average F1-score for each model against
each other on the testing data.

In the rest of this section we present observations on the behaviour of the
best performing models 2, 7, 8 and 9.

Model 2. We hypothesize that the contextual embeddings are a crucial fac-
tor for boosting the performance of the proposed models. Therefore, in model
2, we exclude only the contextual word embeddings to asses the impact of them

5We describe the features used by each model by indicating which features are removed
from the full set of features (all), where the full set of features is {B, S, W , Sp, P , T , D}.
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RNNs on the Testing Dataset

Model Architecture Features validation testing

sens spec F1 sens spec F1 F1 CI p-value
1 〈15〉 all 5 0.696 0.945 0.712 0.667 0.931 0.676 ± 0.026 0.024
2 〈15〉 all-{B} 0.545 0.957 0.591 0.522 0.948 0.559 ± 0.046 0.000
3 〈15〉 all - {T , P , D} 0.677 0.949 0.697 0.654 0.935 0.666 ± 0.031 0.012
4 〈15〉 all-{T , P , D, W} 0.703 0.948 0.718 0.686 0.935 0.690 ± 0.018 0.076
5 〈15〉 all-{T , P , D, Sp} 0.689 0.945 0.706 0.672 0.931 0.683 ± 0.013 0.007
6 〈15〉 all- {T ,P ,D, E} 0.686 0.949 0.706 0.662 0.936 0.675 ± 0.023 0.012
7 〈15〉 all - {T , P , D, Sp, W , E} 0.726 0.943 0.734 0.706 0.928 0.704 ± 0.012 —

Table 4: Average performance of the proposed model (RNN) for seven different sets
of features using an architecture with a single single Bi-LSTM layer and 15 hidden units
(indicated as 〈15〉 with this notation explained in Appendix B). For each set of features,
we run ten trials and report the average sensitivity, specificity, and F1-score for both the
validation and testing data. For the testing data, we also report the confidence intervals at
a 95% level of significance for the F1-score. We also report the p-value of a single-tail t-test
for each model against the best model of the table. The test is performed between the F1-
score on the testing data for each of the two models. A small p-value gives evidence to reject
the hypothesis that the models have the same F1-score, indicating that the best model is
statistically significantly better.
In this experiment, we tested two different hypotheses. First, we examine our intuition that
some features are not useful for prediction on the presence of others. As the preliminary
studies show several features are not useful for the ED task as long as the other features
are present in the model. Furthermore, removing such features improves the performance by
eliminating the noise they add to the task. We tested this hypothesis with the experiments
for models 3 to 7 using model 1 as the baseline. Where model 7, with all the features excluded
except the contextual word and sentence embeddings, showed the best performance. Secondly,
we tested the hypothesis that the exclusion of contextual embeddings significantly impacts
the overall performance, even more than any other feature. The second experiment provides
evidence to support our second hypothesis.

CNNs on the Testing Dataset

Model Win Size Features validation testing

sens spec F1 sens spec F1 F1 CI p-value
8 1 {W ,E} 0.477 0.971 0.570 0.499 0.968 0.575 ± 0.031 —
9 1 {W} 0.472 0.972 0.565 0.493 0.969 0.569 ± 0.031 0.384
10 11 {W ,E,Po} 0.507 0.963 0.596 0.326 0.960 0.394 ± 0.028 0.000
11 11 {W ,Po} 0.499 0.965 0.589 0.345 0.942 0.406 ± 0.035 0.000

Table 5: Average performance of the baseline model (CNN) for two different window
sizes, including and excluding the entity embedding input, and excluding the position embed-
ding input when appropriate (for window size one). We run ten trials and report the average
sensitivity, specificity, and F1-score on both the validation and testing data. We also report
the confidence intervals at a 95% level of significance for the F1-score on the testing data and
the p-values of a single-tail t-test of each model against the best model of the table. The
test is performed to compare the F1-score of each of the two models on the testing data. A
small p-value gives evidence to reject the hypothesis that the models have the same F1-score,
indicating that the best model is statistically significantly better.
In these experiments, we try to determine the best configuration for the baseline chosen from
the literature. The experiments showed a tendency to overfit the data for those models with
window size 11. By using early stopping, we selected the best model for the training and
validation data, but the results show a lack of generality in what the model learned for win-
dow size 11. On the other hand, for windows size 1, the evidence suggests that there was no
overfitting, and the models were statistically significantly better than the other two.
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proposed model baseline models
model 7 (all-{T ,P ,D,Sp,W , E}) model 8 ({W ,E}) model 9 ({W})

proposed models model 2 (all - {B}) 0.000 0.264 0.344
model 7 (all - {T ,P ,D,Sp,W , E}) — 0.000 0.000

baseline models model 8 ({W ,E}) — — 0.384

Table 6: P-values of single-tail t-tests between the best two baseline models (models 8 and 9)
and two of the proposed models (models 2 and 7). For each model, we compute the p-values
of the t-test against each of all the other models. A high p-value implies that there is not
enough evidence to reject the null hypothesis that the models have the same performance.
Here we measure performance based on the F1-score on the testing data. For example, the
t-test between models 8 and 9 has a p-value of 0.384. This high p-value indicates that the
difference in performance of these two models is not statistically significant.
In other words, the model without the contextual word embeddings is close in performance to
the baseline model. In contrast, the model with contextual word embeddings is statistically
significantly better than all the others (having a p-value of 0.0 for all the t-tests). This result
highlights the significant impact that the contextual embeddings have on the performance of
the ED task.

on the performance. Since this model lacks the contextual word embedding,
we expected a poor performance in comparison to model 7 (which has the con-
textual word and sentence embeddings). The poor performance of model 2,
which is closer to the baseline than to model 7, provides evidence to support
our hypothesis. The first row of Table 6 gives additional information supporting
our conclusion since model 2 has a higher p-value for the baseline model and
a smaller one for the other proposed model (model 7). These p-values indicate
that we have more statistical evidence to assume model 7 and 2 are different, but
less evidence to tell apart model 2 and the baselines. Moreover, the inclusion of
the other features (W , Sp, T , P , D, E) are not useful for the ED task once the
contextual word embeddings are included. We derive this conclusion from the
fact that the best model only has B, S as features, indicating that once the con-
textual word (B) and sentence (S) embeddings are present in the model, other
features can be removed with a positive effect on performance. In conclusion,
we found evidence to support the hypothesis that contextual embeddings play
a key role in the overall performance of the proposed models.

Model 7. We hypothesize that the models using contextual embeddings
are superior in performance to the baseline and the proposed model without
contextual embeddings. The experiments confirm our hypothesis. A p-value of
0.0 for the three t-tests involving model 7 provides evidence to support the fact
that its performance is statistically significantly better than the performance
achieved by models 2, 8 and 9.

Models 8 and 9. The high p-values in the t-tests of these two models
suggest that there is little evidence to conclude that the models have different
performances. Since the only difference between the two models are the entity
embeddings, these results are indicating that the entity embeddings have a
negligent impact on performance.
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6. Conclusions

The first contribution of this work is the presentation of an extensive study
on the use of RNN models for the ED task, as well as a baseline CNN model
for the same task. We studied eight different types of features and their impact
on the overall performance.

The ultimate goal of our research work is to identify causal relations from
digital media based on the detected events. Since we define a notion of event
that suits this goal and created our own dataset for the ED task it was not
possible to rely on existing benchmarks for assessing the performance of the
proposed models. Therefore, we also replicated and performed an extensive
analysis of a state-of-the-art CNN model [32], which was used as baseline for
comparison purposes.

The analysis of the proposed model showed promising results. The best of
the proposed models based on an RNN architecture shows an improvement of
13.3% in F1-score with respect to the best baseline model on the testing data.
Considering that some more recent approaches for ED are only a couple of
percentual points ahead of our baseline (4.1% for [34]), we have enough evidence
to believe that our model achieves a performance competitive to the state-of-
the-art, even outperforming some of the most advanced models. It is also worth
mentioning that, differently from some of the state-of-the-art models, the code
for replicating our model is fully available.

By analysing the performance achieved by different combinations of features
in our proposed model, we reach three conclusions. First, among the proposed
models, the one with the worst performance was the model that includes all
the features except for the the contextual word embeddings. Although superior
to the baseline, this model was relatively close to it with a difference of only
4 percentage points. This result provides evidence to support our hypothesis
that the contextual embeddings are better suited for the ED task than the other
analyzed embeddings. This is an important result that highlights the usefulness
of contextual embeddings for capturing contextual cues, which are crucial in
the ED task. Further studies are required to evaluate the impact of contextual
embeddings on other ED settings (using other datasets and other models).

Second, some features proved to have a negligible impact on performance,
in the presence of other features. For example, grammar information captured
using Part-Of-Speech and Dependency Parser taggers and represented using em-
beddings (T , P , and D) showed to have no positive impact on performance as
long as contextual embeddings are accounted in the model. Furthermore, the
model with the best performance was the model with three types of features
only (B and S). We believe that this result is due to two possible reasons. The
first reason is that the information contributed by some features is already cap-
tured by other features. For example, the non-contextual word embeddings (W )
offer no improvement in performance when added to the model. The absence
of a positive impact is not because these features do not carry useful informa-
tion, but probably because this information is already provided by contextual
embeddings. The second reason may be that the embedding representations for
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the poorly-performing features (T , P , D, E) were not sufficiently robust since
these embeddings were learned from a small dataset. Note that the absence of a
large dataset for learning embeddings does not affect the pre-trained embedding
(W ) as much as the other embeddings (T , P , D, and E), which were randomly
initialized and trained in a supervised fashion using the training data available
for the ED task. A third reason why some embeddings do not have a favorable
impact on performance may be the inherent error of the NLP tools used. This
issue arises for the T , P , D, and E embeddings, which we constructed using
different NLP taggers (NER, POS, and Dependency Parser).

The analysis of the baseline model showed some limitations of the CNN
models when compared to the RNN models. In particular, a detailed study
of the window size for the context of the CNN models showed that the CNN
models do not handle the context of each word properly. The fact that a larger
window size decreased the performance of the model supports this conclusion.
In particular, for window size 11, the results show a tendency to overfit the data.

The third conclusion we derive from the results is that although RNN models
showed more flexibility and suitability for the ED task than CNN models, the
major difference in performance between the baseline and the proposed models
relied on the features used, in particular the contextual embeddings. In fact,
the performance achieved by the RNN models that lack contextual embeddings
was only slightly superior to that achieved by the baseline models. This indi-
cates that although the improvements are due in part to the use of an RNN
architecture, the major boost in performance relies on the features being used.

The second important contribution of this work is the construction of a
dataset for the ED task using an active learning approach and the public release
of the dataset. A major obstacle in the ED field is the limited amount of available
labeled data. In this work, we implemented a simple active learning system for
assisting the user in the process of labeling event data. As part of our work
we have created a dataset of news extracts with event triggers manually labeled
using a consensus-based approach. To the best of our knowledge, this is the first
time Active Learning is applied to create an ED dataset and we consider this
to be a promising approach to partially overcome the data scarcity problem in
the ED field.
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[4] Boroş, E. (2018). Neural Methods for Event Extraction. PhD thesis, Uni-
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Appendices
Appendix A. Preliminary Studies for the Baseline Model

In this appendix, we describe the preliminary study for the baseline model.
Based on this study, we chose the final four variants of the baseline model that
were evaluated on the testing data. We conducted this preliminary study for
determining the best window size to be used in the baseline model.

For each of the models in the preliminary study, we run five different trials.
We used consecutive seeds from 1 to 5 for each model to guarantee replicability.
For each model we report the average sensitivity, specificity, and F1-score of the
five trials in both the training and validation data. We do not report accuracy
because we are in the presence of highly unbalanced data. To thoroughly an-
alyze the F1-score on the validation data, we compute two additional metrics.
Firstly, we calculate the confidence intervals (CI) at the 95% level of confidence.
Secondly, we compute the p-value for a t-test between each model and the best
model reported in each table. We select the best model in terms of the F1-score
in the validation data. For example, the p-value of 0.410 in the fourth row
of Table A.7 is indicating that there is no enough evidence to reject the null
hypothesis that model 4 has a statistically significantly different F1-score from
the best model of the table (model 1) in the validation data.

Appendix A.1. Results of the Preliminary Study for the Baseline Model
We run the baseline model with six different window sizes. Although in the

original paper, the authors used a fixed window of size 31, we run experiments
to determine if this was the best window size for our setting. We do not use
the original window size of 31 because our data was different from the data
used in the original paper. While they used full news articles, we only used
text fragments (sentences). Therefore, our instances were much smaller. Hence,
we required smaller window sizes to avoid using too much padding. Given our
setting, a window of size 31 would result in a large amount of padding for many
tokens. For example, in a sentence of length 31, only the middle word will not
have padding while every other word will have. This extra unnecessary padding
will add noise and increase the computational cost of the model with little gain
in performance. Guided by this intuition, we conducted preliminary studies to
explore different window sizes.

In table A.7, we present the result of the models with the six analyzed
window sizes. Since the position embedding is used for representing the relative
position inside the window, a window of size 1 does not require a position
embeddings. Therefore, we excluded the position embedding from this model.
All the other features were used in the reported experiments.

Appendix A.2. Discussion
We derive the following conclusions from these preliminary experiments. As

we hypothesized, long window sizes were not suitable for our setting. We find
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evidence to support this intuition in the results from models 5 and 6. For these
models, the specificity reached 1.0, and the F1-score dropped to almost 0. For
this reason, we do not select this model for the final experiments on the testing
dataset.

The model with window size 1 (model 1), achieves the best performance
with an F1-score of 59.4% in the validation data. Therefore, we selected this
model to use it in the testing data. We also selected model 4 because of its
high performance in the validation data. Furthermore, the high p-value pro-
vides no evidence to reject the null hypothesis that model 1 has a performance
statistically different from this model. Although models 2 and 3 have a decent
performance (56.2% and 55.8%, respectively), the statistical analysis shows that
we can reject the null hypothesis. Therefore, we have evidence to believe that
model 1 is statistically better than models 2 and 3.

In summary, the best model of the table is model 1, with a window of size
1. Model 4, with a window of size 11, has comparable performance, and the
analysis showed that there is no statistical difference between them. Therefore,
we choose these two window sizes for the experiments on the testing data.
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CNNs on the Validation Dataset: Assessing Window Sizes

Model Win Size Features train validation

sens spec F1 sens spec F1 F1 CI p-value
1 1 {W ,E} 0.608 0.980 0.692 0.502 0.970 0.594 ± 0.019 —
2 3 {W ,E,Po} 0.749 0.986 0.808 0.466 0.975 0.562 ± 0.015 0.003
3 5 {W ,E,Po} 0.816 0.988 0.858 0.464 0.975 0.558 ± 0.023 0.006
4 11 {W ,E,Po} 0.811 0.979 0.852 0.500 0.965 0.590 ± 0.043 0.410
5 21 {W ,E,Po} 0.015 1.000 0.022 0.002 0.999 0.002 ± 0.002 0.000
6 31 {W ,E,Po} 0.001 1.000 0.001 0.001 1.000 0.001 ± 0.002 0.000

Table A.7: Average performance of the CNN model for six different window sizes. For each
window size, we run five trials and report the average sensitivity, specificity, and F1-score for
both the training and validation data. For the validation data, we also report the confidence
intervals at a 95% level of significance for the F1-score. We also report for each model the p-
value of a single-tail t-test against the best model of the table. The test is performed between
the F1-score of each of the two models in the validation data. A small p-value gives evidence
to reject the hypothesis that the models have the same F1-score, indicating that the best
model of the table is statistically better.
In these experiments, we try six different window sizes to determine the best one for using
on the testing dataset. The baseline achieved the best performance with window size 1. We
found evidence that suggests that the model is statistically better than the ones with window
sizes 3, 5, 21 and 31. Although the model with window size 1 performs slightly better than the
one with window size 11, we could not find statistical evidence to suggest that one is better
than the other. Therefore, the experiment on the testing dataset were carried out with these
two window sizes.

Appendix B. Preliminary Studies for the Proposed Model

In this appendix, we describe the preliminary studies carried out to evaluate
the proposed model (RNN). Based on these studies, we chose the seven final
variant models to use on the testing data. We conducted two preliminary stud-
ies. One for determining the number of Bi-LSTM layers and hidden units, and
another for studying the features used.

For each of the models in the preliminary study, we run five different trials.
We report the average of the five trials for each model. We used consecutive
seeds from 1 to 5 for each model to guarantee replicability. We report for each
model, the average sensitivity, specificity, and harmonic mean between these
two metrics, namely F1-score, for both the training and validation data. We
exclude the accuracy of the analysis because we are in the presence of highly
unbalanced data. To thoroughly analyze the F1-score on the validation data,
we compute two additional metrics. Firstly, we calculate the confidence interval
(CI) at the 95% level of confidence for this metric. Secondly, we compute for
each model the p-value for a t-test between the model considered and the best
model of each table. We define the best model in terms of the F1-score in the
validation data. For example, the p-value of 0.160 in the fifth row of Table B.8
is indicating that there is no enough evidence to reject the null hypothesis that
model 5 has a statistically different F1-score from the best model of the table
(model 6) in the validation data.
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Appendix B.1. Results of the First Preliminary Study for the RNN Model
We run the proposed model with eight different architectures (by varying

the number of Bi-LSTM layers and hidden units). We configured the number
of hidden units to be in descending order, with the first layer having the largest
number and the last layer having a smallest number of units. This configuration
follows the intuition that each layer should take the input from the previous one
and build less but more elaborate features with higher levels of abstraction. For
the remaining of this paper, we will describe each architecture as a sorted list of
hidden units, where the first number is the number of hidden units of the first
BLSM layer, and so on. For example, the architecture 〈100,15,5〉 is a three-layer
architecture, with 100 hidden units in the first layer, 15 in the next one, and 5
in the last one. Except for the Bi-LSTM layers, the remaining of the network
is the same for the eight models. The general description of the proposed RNN
model is in section 3.

In table B.8, we present the result of the models for the eight different
configurations for the Bi-LSTM layers. The first model has three-layers of Bi-
LSTM, with 100, 15, and 5 hidden units in the first, second, and third layers,
respectively. The second and third models have two layers of Bi-LTSM each,
with varying numbers of hidden units. For the second model, we use 15 and 5
hidden units, while for the third, we use 5 and 2. The remaining five modes are
all single-layer, with different numbers of hidden units. We present the models
from the most complex to the simplest. Models 4 to 8 have 200, 50, 15, 7, and
1 hidden units, respectively. As we previously mentioned, the remaining of the
network is the same for the eight models.

Appendix B.2. Discussion
The results achieved by the multiple-layer models 1 and 2 are similar to

(69.2% and 68.2%, respectively) and considerably worse than those achieved
by model 6 (72.9%), which is a much simpler model. Model 3 and 4 are the
worst two models, with a performance of 66.8% and 66.0%, respectively. These
results show the importance of finding the right balance between complexity
and simplicity. A three-layer model (model 1) achieves good performance, but
not as a good as that achieved by the considerably simpler single-layer models
(models 5 to 8). However, too simple models, such as model 3, with a small
number of hidden units, also perform poorly.

The best model is model 6, which is a single-layer model with 15 hidden units,
and hence has a good balance between complexity and simplicity. Furthermore,
the four best models are all single-layer models, with 50 hidden units or less (50,
15, 7 and 1). From the results achieved by these models, we observe an inverse
relation between complexity and performance. Simpler models achieve better
performances. These results confirm the intuition that big and complex models
require more data to learn general patterns and avoid overfitting. Therefore, in
the context of ED, where the datasets are in the order of hundreds of documents,
complex models are prone to harm the performance. Guided by this intuition,
which is confirmed by the results, we selected the architecture of model 6 for
the second preliminary study and the experiments on the testing set.

29



RNNs on the Validation Dataset: Assessing Different Architectures

Model Architecture Features train validation

sens spec F1 sens spec F1 F1 CI p-value
1 〈100,15,5〉 all 0.722 0.988 0.742 0.654 0.962 0.692 ± 0.037 0.026
2 〈15,5〉 all 0.732 0.984 0.748 0.648 0.958 0.682 ± 0.019 0.002
3 〈5,2〉 all 0.723 0.981 0.741 0.628 0.964 0.668 ± 0.053 0.015
4 〈200〉 all 0.741 0.982 0.758 0.630 0.956 0.660 ± 0.043 0.004
5 〈50〉 all 0.729 0.982 0.747 0.685 0.950 0.704 ± 0.059 0.160
6 〈15〉 all 0.757 0.977 0.765 0.709 0.952 0.729 ± 0.026 —
7 〈7〉 all 0.749 0.983 0.763 0.681 0.948 0.698 ± 0.039 0.052
8 〈1〉 all 0.763 0.977 0.771 0.694 0.945 0.708 ± 0.026 0.070

Table B.8: Average performance of the proposed model (RNN) for eight different architectures.
The architecture is depicted with a list that represents the number of hidden units of each
layer. The architecture 〈15,5〉 is a network with two Bi-LSTM layers with 15 and 5 hidden
units in the first and second layers, respectively. The layers before and after the Bi-LSTM
layers do not vary and are as described in section 3. For each architecture, we run five trials
and report the average sensitivity, specificity, and the harmonic mean between these two
metrics, namely F1-score, on both the training and validation data. For the validation data,
we also report the confidence interval at a 95% level of significance for the F1-score. We also
report the p-value of a single-tail t-test of each model against the best model of the table. The
test is performed between the F1-score for each of the two models on the validation data. A
small p-value gives evidence to reject the hypothesis that the models have the same F1-score,
indicating that the best model of the table is statistically better.
In these experiments, we tried eight different number of architectures (number of Bi-LSMT
layers and hidden units) for our proposed model. Model 6, the single-layer model with 15
hidden units, is the one with the best performance. The four models with the best results
are single-layer, indicating that in this context of small datasets, simpler models perform
better. Models that are too complex, such as model 4, with 200 hidden units, and models
that are too simple, such as model 3, with only two small Bi-LSTM layers, perform poorly.
The results provide evidence to believe model 6 achieves the best balance between complexity
and simplicity. Therefore, we use the architecture of model 6 for the subsequent experiments.
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Appendix B.3. Results of the Second Preliminary Study for the RNN Model
We performed a second preliminary study by varying the features used in

the model to study the impact of each feature on the overall performance. We
conducted these experiments in a similar way to an ablation study. We first
measure the performance of the model with all the features, and for each model
or hypothesis we wanted to test, we run a new model with different features
removed and compared its performance with that of the model that maintained
all the features.

The goal of this preliminary experiment was to assess the impact of each
feature on the overall performance. This allows us to remove those features that
are not useful for the task or that add noise and therefore harm the performance.
We performed five trials for each set of features using the best architecture
found in the previous preliminary study. The results of these experiments are
in Table B.9, where the first row reports the performance of the model with all
the features, and the following are the same model with one or more features
removed.

We tested nine different feature configurations, including model 1, which
contained all the features (all). To assess the impact of contextual embed-
dings we evaluated three different models (models 2 to 4). Model 2 contains
all the features except for the contextual embeddings (all-{B}). Model 3 in-
cludes all but the contextual sentence embeddings (all-{S}), which are features
constructed by adding up the contextual embeddings (B) for all the words in
the sentence. Finally, model 4 has both the contextual word and contextual
sentence embeddings removed (all-{B,S}).

We also evaluated two different models to measure the impact of the use
of grammatical information. First, we evaluated model 5, where the Part-Of-
Speech tags are removed, both the simplified version and the detailed ones
(all-{P ,T}). Second, we evaluated model 6, where the dependency tags were
removed (all-{T}).

Finally, we evaluated three additional models to test the impact of the three
remaining features: the entity embeddings (E), the Word2Vec embeddings (W ),
and Spacy contextual word embeddings (Sp). These are models 7, 8, and 9,
respectively.

Appendix B.4. Discussion
We observe that the performance drops considerably (a drop of 15.1% in

F1-score) for the model that does not contain the contextual word embeddings
(model 2) in comparison to the model that contains all the features (model 1).
Similarly, the model without the contextual sentence embeddings (model 3) has
a drop in performance of 10.3%. On the other hand, the performance of the
model without both features (model 4) has a performance similar to that of the
model where only the contextual sentence embeddings are removed (model 3).
A statistical analysis shows that for the three models, the hypothesis that they
are equal to the best model can be rejected with a confidence level of over 95%.
The two individual analyses of the contextual embeddings show the significant
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RNNs on the Validation Dataset: Assessing Feature Contribution

Models Architecture Features train validation

sens spec F1 sens spec F1 F1 CI p-value
1 〈15〉 all 0.757 0.977 0.765 0.709 0.952 0.729 ± 0.026 0.326
2 〈15〉 all-{B} 0.707 0.980 0.728 0.528 0.963 0.578 ± 0.072 0.001
3 〈15〉 all-{S} 0.671 0.995 0.710 0.571 0.971 0.626 ± 0.061 0.003
4 〈15〉 all-{B,S} 0.781 0.997 0.790 0.594 0.935 0.637 ± 0.023 0.000
5 〈15〉 all-{T ,P} 0.752 0.976 0.761 0.667 0.957 0.698 ± 0.037 0.026
6 〈15〉 all-{D} 0.747 0.980 0.758 0.718 0.944 0.733 ± 0.017 0.430
7 〈15〉 all-{E} 0.761 0.977 0.769 0.697 0.950 0.721 ± 0.034 0.182
8 〈15〉 all-{W} 0.629 0.973 0.644 0.707 0.954 0.727 ± 0.049 0.341
9 〈15〉 all-{Sp} 0.748 0.979 0.759 0.721 0.946 0.735 ± 0.018 —

Table B.9: Average performance of the proposed model (RNN) for nine different sets of features
using the best architecture (single Bi-LSTM layer with fifteen hidden units). For each set of
features, we run five trials and report the average sensitivity, specificity, and F1-score in
both the training and validation data. For the validation data, we also report the confidence
intervals at a 95% level of significance for the F1-score. We also report for each model the p-
value of a single-tail t-test against the best model of the table. The test is performed between
the F1-score in the validation data for each of the two models. A small p-value gives evidence
to reject the hypothesis that the models have the same F1-score, indicating that the best
model of the table is statistically significantly better.
In these experiments, we examine nine different sets of features. We use the complete set of
features for comparison, and remove each different input to measure its impact. We removed
T and P together because they are semantically the same input (i.e., the simplified and the
detailed versions of Part-Of-Speech). And we remove B and S inputs together because those
are the two contextual-embedding-related inputs. The contextual-embedding-related features
show the most significant impact. The results show that features D, E, W , and Sp have
a negligible impact on the performance. We can conclude from these results that, in the
presence of all the other features, we can remove each of these features without harming the
performance. On the other hand, the T and P features have a small but statistically significant
effect when removed. We conducted further experiments to find additional evidence for these
findings.
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impact of each in the overall performance and indicate a slightly higher impact
of the contextual word embeddings over the contextual sentence embeddings.

The results for the model without the dependency information (D) (model 6)
are similar to those obtained by the model that preserves all the features (model
1). These results provide evidence that suggests that the model could not take
advantage of the information of this input. Three factors can be influencing
these results, which are discussed in section 5.1. By removing the Part-Of-
Speech information (T , P ) (model 5), we have a small drop in performance
(3.1%). This result suggests that the feature can be useful for the ED task. We
further explore the inclusion and exclusion of all this grammatical information
(T , P , D) in the testing set.

Rows 7 to 9 of table B.9, corresponding to models 7 to 9, show the mod-
els with all the features excluding the entity embeddings (E), the Word2vec
word embedding (W ), and the Spacy contextual embeddings (Sp), respectively.
Model 9 is the one with the best performance. However, the high p-values show
that there is no statistical difference between the best model and the other
two. Furthermore, there is no statistical difference between the best model and
the model with all the features (model 1). These results show that removing
any of these three features (E, W , Sp) has a negligible impact on the overall
performance. We further study the effect of including and excluding these fea-
tures in the testing set. However, based on these results, it is expected that,
in the presence of the other attributes, excluding these three features improves
performance.
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