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Motivations for Term Weighting

e Improve Information Retrieval Systems
e Text Representation for Classification

Term Importance is typically taken as a fixed value independent of the task at hand.

Motivations for Context-based Term Weighting

e (Query formulation
e Term Relevance Scoring
e Variable Selection



Previous Work

Salton and Buckley (1988) claimed that at least three main factors are required in any
term weighting scheme.

e Local factor: frequent terms are semantically close to the content of the document.
o helps to improve recall.

e Global Factor: associated with each term, represents how frequent the term is in
the document collection.

o helps to improve precision.

e Normalization Factor: to penalize large documents.
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Proposed Technique

DESCR

The descriptive relevance of a term in a class
stands for a simple idea: those terms that
occur in many documents of a given class
are good descriptors of that class.

DISCR

The discriminative relevance of a term in a
class is based on the idea that a term is a
good discriminator of a class if it tends to
occur only in documents of that class.
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\:/) manually labelled by experts.




Validation |

e Validation by User Study

Terms were strategically selected from the dataset and manually scored by the

users with a score between 0 and 5. We want to see the correlation between the
human subject and our technique.

o A set of 50 terms for parameter tuning
o A set of 100 terms for validation
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Validation |

e Validation by User Study

Terms were strategically selected from the dataset and manually scored by the

Method

non-expert (averaged)

expert (averaged)

non-expert and expert (averaged)

TGF
IDF
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MI

OR
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GSS
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RF
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IDFEC_B
DESCR
DISCR
FDDg 477
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Validation Il - Retrieval Effectiveness

® A reduced set consisting of 100 expert-labeled news articles (not included in the
training set) was used as the validation set.

® The top-rated terms according to each technique were used as queries. The
precision, recall, and fl-measure was reported.



Validation I - Retrieval Effectiveness On Training
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Validation |1 - Retrieval Effectiveness On Testing
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Conclusion and Future Work

e Good performance as an estimator of human subjects’ relevance judgments.
e Good performance as a mechanism for selecting good query terms.
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Conclusion and Future Work

Good performance as an estimator of human subjects’ relevance judgments.

Good performance as a mechanism for selecting good query terms.

Test FDD with more than two categories.

Test differents  for differents datasets.

A subsequent modeling step would be to identify different types of dependency
relations between these variables (such as causal relations and close association).
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THANK YOU
Questions?

mariano.maisonnave@cs.uns.edu.ar
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