UNIX FILE SYSTEM

NEZER J. ZAIDENBERG

AGENDA

® UFS

® EXT2

® EXT3,EXT4-NEW FEATURES
® /PROC FILE SYSTEM

® VIRTUAL FILE SYSTEM

REFERENCES

® UNIX FILESYSTEMS—-S. PETE

® ADVANCED PROGRAMMING IN THE UNIX
ENVIRONMENT CHAPTERS

® UNDERSTANDING LINUX KERNEL

WHAT PURPOSE FILE
SYSTEM SERVE

® Manage used and free blocks on the disks
® Manage multiple files

® Manage multiple devices

® User permissions

® And more (wear leveling, links, devices)

Something about physical disks
drives and logicgpartiton

Hard drive- where data is kept
JBOD-just bunch of disks. (several hard drives that olining realy special)

RAID — Redundant array of independent disks = severasdisk operi® in special way to

improve read/write/reliability performance usuallycost of sk space oreliability(for

example, mirroring = using 2 disks data is savellotitn disksDouble read performance,

much better availability, same write speed, datagdwice thespace. Striping = using two

\éolumest\;here data is saved on both. Doubles pedace of rea@nd write but reliability is
amaged.

Hard drive may have multiple partitions each isitieel as a sapate disk for most OS related
issues.

Today high end storage project (big iron from vasduch as I8 (Shark/ESS), EMC
(Symmetrix Clarion), HDS, SUN(STK) etc.) have many physabales that re usually not
visible to the User. Instead the machine exponerse logicalpartition, each may be mapped
to one or several disks.

In this course when | use the term disk | refdotpcal parttion

Hard drives

Mechanical- What most of you have in your PC

® BB BB P

Spinning heads over metal plates

Slow compared to memory

Slow seek time

Relatively fast sequential read

Tend to be unreliable compared to other hardwangpoments
In this course | assume standard hard drives

Solid State- New technology-

®

® ® ® B

Uses solid state technology

Slow compared to memory

Seek time = identical to sequential read time

Relatively reliable

Require wear leveling (some solid state disks melwear levang in hardware)

Other types of hardware

®

CDROM - fast sequential read, very slow seek, ROM

® Tapes drive- usually dont have“file systeni — veryveryslow seek

Types of file system

® Physical file systers we take a disk (or partition!) and we want
to arrange files on It.

® Logical file system*file system that demonstrate some logical
state of the system such as /proc /dev or /syséthle systms
demonstrate running processes or devices detegtéat b
system or system info- Those file system donhdeal with real
file and are beyond scope. (but we acknowledge éxestence)

® Virtual file system- we take several physical and logical merge
them into one file system.

Some definition

Disk (n), partition(n —where | put the files on. (I doincare
about type of disk or disk/partition semantic.daignore for
now network file system logical file system etc.)

Mount(v) — the action in which | make a file system usable by
the system (occur automatically in windows and sameey

Unmount(v) — making the file system no longer usable to the
system-for example if | want to eject it

File (n)— unless noted otherwise | would refer to a real {imt
socket, pipe etc. those are not written on disk)

Disk based file system

UFS (early design + Not very
accurate)

® UFS was first available starting versiotvérsion 7 Linux from AT&T. (early 1988)
® UFS (UNIX file system) is the modern name of thekeééey fast fle system (FFS)

® UFS was first described in a USENIX letter from 498led“A fast file system for UNIX (by
Mckusicket al)

® UFS derived file system exist and improved in nmstlern UNIX lox. (indeed the Linux ext2 file
system is almost direct extension.)

® Today UFS implementation (found in Solaris for epéah have mayiadditional features, beyond
our scope. Here we describe the some of the b8t iinplemerdtion. (It is easier to understand
UFS first then ext2)

® This review—which by no means attempts to be historically aaieuor desdbe any specific version
in any way- is helpful to understand the ideghat UNIX file system implement. (note that nibt a
ideas were introduced in one version and with rieas also caemnew optimization concepts that
complicate things that | left out)

® lignore (as beyond the scope or no longer relgvaahy consiération that were made regarding
physical positioning of the data on the disks.

Basic building block ofifs

® Block and fragments
® Inode

® Superblock

Block

® Place to store data.

® 512 bytes (version 7) and 4096 bytes and up (BSErdions) (|
ignore fragments intentionally.)

® Each block is identified by unigue address it camubed or not

® Files are saved on discrete number of blocks. K(arfde either
use a block or not)

® Each block Is identified by unigue

® Nothing smart here

lnode

® Reference to a file

® Points directly and indirectly to blocks
® Contain the OS info on a file

® Does not contain the file name

® Eachlnodeis identified by unique number

® ® & ®&® & & B

Thelnodestrcture

Permissions, user id, group id etc.

Timers

Everything we can get in stistat

Directreferance$o block that the file is made of

Indiret (reference to block containing references) refezdndlocks
Indirect™2 (reference to references to referenads)yence tdolock

Etc. (modern UNIX system have indirect”4 referehces

The super block

® The file system catalog

® General information about the file system such as
® Number oflnodes
® Number of blocks
® Number of used and framodesand blocks

Maximum file size?

® Maximum file size=total number of blocks that we gaint to.
® Derived from the number of indirect levels of pomgtto blocks

® |n most cases it is practically unlimited in modé&hNIX boxes
(but old versions had limit of 2GB to couple ofaieytes)

Filenames and directories

A directory type of file is a file containing lisf i-Nodes (specified by
|-node number) and names that are contained In ta@etolry

(The directory can contain other directories)
The FNodes are the files that are contained in the tirgc

For each4Node we have the name that will be used to actegs |
file with several hard links can have several ngmes

Permissions for directory we have = read permissibgan readhe
directory (Is(1)) write = | can create files in theectory (buch(l))
execute = | caed into the directory

Hard links

Hard links are two-Nodes pointing to the same file

Usable when two users want to work on the saméda¢a)
each from his own directory

Also when one binary is used (such as bzge?) and decides
based on how it is called what to do (check argid0f
bunzip2? Is igcc? g++?)

When hard link is deleted the file is not deletedt (heinode
count on thanodeis reduced by 1)

When the last (and onlyhodeis deleted the blocks are marked
free

Soft (Symbolic) links

® Windows : Short cuts
® Those files contain a path where another file caled

® When UNIX reads the file it moves to the other &led operate

on it. (so open (unless op on symbolic links atyuzdlls open
on the file it points)

Broken links

® Symbolic links are not counted in thaode

® That means that if the file the symbolic link psimg deleteave
have®broken link

® Homework - not for submissior create a broken link

ldeas from Berkeley

® Some Iideas for improvement was added in UFS

®

® &

Blocks were too speed on the disks that caused seak/for the
next block and low throughput. Therefore, UFS laagdr block
size (with continuous data)

Fragments were added to support partial usageook$l

Super block is now replicated several times ordilk (stabilty
and reliability as well as performanedaster seek time for nearest

superblocl
Many new features are added (but | dtdnade distinction)

Fragments

® In an effort to reduce waste, and maintain low der&s, UFS
allowed blocks to be broken to fragments to stal@ @ends of a

file

® When new data was appended to files with fragniaetsaew
data was either filled in the fragment block (fith the block)or
copied to a new block.

Catalog based file system

Most file system that resides on disk are cataksed.
There exist a catalog (such as $shiperbloch with info regarding the file system
The catalog is in specific place

Catalog based file system can be mounted easib/¢oty needso read the file system catalog and
know whais up)

Catalog based file system are not suitable foradsvihat reqre wear leveling (The catalog is
written to and accessed to much more often theer @irts oftiefilesysten)

Catalog based file systems are suitable for mechbhard dries are less suitable for Solid state
devices (some solid state disks implement weatitey@ternaly so catalog based file system can
be used)

Catalog based file system are used now days in UMIKdows, IBM mainframes and most
computer systems. They are not used in SS devioehwxplainavhy the OS has to read the entire
disk on key when you plug it in (why it takes laoimgrecognize)

®

@

Problems with the UFS model

No log—incase of crash we didrknow what happened with last I/O
and may have problems in recovering

Fragmented file- as we have seen (also frdoerkeley we have the
problem of fragmented fileswhen file is broken to many blocks that
span all over the disk we need to seek for eaatkblbhis grety
reduce throughput. Berkeley allocation algorithmg Erger blgk
sized improved performance by factor of 10 (i.0Q%!) when frst
Implemented (compared to version 7 UFS measuratiy to ue
disk throughput!) however Berkeley still achievady 40-50% of

disk throughput

Wear leveling-the catalog is written much more then other pdrts o
the file system

EXT2

® Ext2 contains some logical performance extensioes o
Berkeley

® Multiple block size

® Disk is implemented as several block groups eaokaoo
superblockinodesand data and block amabdebitmap (to assist
In finding free blockhode — Using block groups helps to reduce
fragmentation as files are extended to nearby klock

® 8 blocks at a time are allocated at write to furtnerimize fie
fragmentation

® Ext2 added other enhancement (long file names, fdg Bystem,
large files (indirect”3), reserved space (for rppériodic fle
system check etc. that are beyond scope)

®

®

®

®

®

Ext2 rnode 1/2

structext2_inode {

__le16i_mode /* File mode */
__lel6i_uid; /* Low 16 bits of OwnelJid */
__1e32i_size /* Size in bytes */
__le32i_atime /* Access time */
__1e32i_ctime /* Creation time */
__|e32i_mtime; /* Modification time */
__le32i_dtime /* Deletion Time */
__le16i_gid; /* Low 16 bits of Group Id */
__le16i_links_couni /* Links count */

__1e32i_blocks /* Blocks count */

Ext2 rnode 2/2

__1e32i_flags /* File flags */

union { le32} osdl; /* OS dependent 1 */
__le32i_block[15];/* Pointers to blocks */
__le32i_generation/ * File version (for NFS) */
__1e32i_file_acl /* File ACL */
__1e32i_dir_act /* Directory ACL */

® ® & & & B B

__le32i_faddr, /* Fragment address */
® union {} osd2; /* OS dependent 2 */

® }

® & & &

Ext2 super block (important

fields)

Inode blocks, count, size, free

count etc.

Timers (mount time, write time)

Block group

User id/group id

How many blocks to prallocon

each write

Magic number (to identify ext2 file

system)

Following the extXuperblockon
serperatdlocks) we will fine the
ext2 block bitmap and exiRode

bitmap

struct ext2_super_block {
0o

preall oc:di r_block:
paddingl;
ournal_uuid[16];

* Inodes count

Free blocks count
Free inodes count

hen detecting erri
minor revision level #/

time of last check */

ime between check:

Nr of blocks to try to preallocate*/
Nr to preallocate for

uuid of journal superblock
" inode number of journal file
device number of journal file
art of list of inodes to delete *

metablock block group */
dding to the end of the block */

Log based file system

® |n attempt to Improve stability we implement a figstem log
(similar to database log)

® We will record operation we are about to take m Ity

® The log will help recreate

Ext3/4 file system

The ext3 file system Isasiclya log added to the ext2 file
system

Ext3 is currently the default file system in Linux
Ext4 is the next (experimental file system)

Both file system add additional features that ayoind the
scope of this course (and the usability requiresiehimost
users)

Other disk file systems

® Linux has many file system projects

®

® ® B

ReiserFS- very fast and stable log based file system that los
popularity after its author Hafgeiserwas arrested for allegedly

killing his wife.
Xfs —yet another log based file system by SGI
Jffs (andvarientg —file system for solid state disks

Cdrfs— cdromfile system

Logical file system

/proc

/proc Is aspeicalfile system that contain some info regarding
the system (for example max size of shared mentory e

There Is also directory for each running processaining
Information about the process (CPU accounting métron,
open file descriptors etc.)

/proc Is used by performance monitors and othegnaras that
manipulate or monitor processes

Other logical file system are implemented

Virtual file system

The virtual file system

Several file systems are accessed by the samé¢thestiD,
maybe another HD (with dos partition maybe?), a DUD-R,
USB disk on key and a network share or two)

Each file system is MOUNTED and Is assigned inecHsT
place.

UNIX also puts soméspecial files in place— sockets, pipes
etc.

All those files have a name and are accessed byXUNI

All those files are part of the Virtual file systemerface

The need for VFS

® We want to use files from many different file systeach has
(or maybe has not got) different super block affigicnt
properties

® Each file system driver has to support several otthhat are
supposed to be common to all file system (also wirerreate a
new file system we register the new method anchéve file
system name for mount to use)

® When we call mount(1), unmount(1), open(2), read{2ixte(2)
etc. The kernel calls the VFS interface methoddempnted by
the file system driver (the piece of kernel cods tinake us d&
to read the files on the file system)

The VES Interface

® Vfs _mount— mount a file system
® Vfs _unmount- ubmounta file system

® Vfs root—return the roovnodefor the file system (what is
vnodée&? Bare with me)

® Vfs_ statfs—return file system specific info (answer to sta&tj$(
® Vfs_sync—flush data to disk

® Vfs_fid, vfs_vget— beyond the scope (used by network file
system)

So what 1synode

® Vnodeis a kernebtructthat points to a file (if the file is
Implemented on a UFS or similar file system-mode will point
on node)

® All file operation are done using tv@aodeoperation vector
which contain pointers to function that can hanbispecific
vnode(based on the file system thatodepoints on. Obviously
a \+node pointing to ext2 file system will be differdram v-
node pointing tamsdosfile system.)

® Not all vnodefunctions has to be implemented for every type of
file system (for example one may implement filetegs that
does not support hard links)

Vnodeoperation vector functions
(partial list)

Vop_select-implement select(2)
Vop_rdwr—read to or write from file
Vop_link—implement link(2)
VOp_rename- obvious

Vop_mkdir— make directory

Vop_rmdir—remove directory

® ® & & & B &

Vop_symlink—implement symlink(2)

Linux specific stuff

® Linux file system driver are implemented as kemeldule
(remember from class 17?)

® A file system driver inform the system he is a driv

® A file system driver supply the system with listfohctions to
call when a file operation is done on said fileteys (astructis
given with pointers to functions) and a hame giieemount.
When mounting a file system from that specific tyipe specific
API will be called.

® A file system specifiapiis used with the new driver.

Other file systems

® Linux also support network file systems (file sysgethat are
received via the network from windows or UNIX hgsts
distributed file systems (file are saved on sevepahputers aah
accessed by group of computers)

® Modules that are (below file system layer) thatenpent
software RAID products

® File system interface written by several prograrsll those are
considered beyond the scope

