
Exploiting User Context and Preferences for
Intelligent Web Search

Carlos I. Chesñevar† Carlos M. Lorenzetti‡ Ana G. Maguitman‡

Fernando M. Sagui‡ Guillermo R. Simari‡

†Artificial Intelligence Research Group – Department of Computer Science
Universitat de Lleida – C/Jaume II, 69 – E-25001 Lleida, SPAIN – Email: cic@eps.udl.es

‡ Departamento de Cs. e Ing. de la Computación – Universidad Nacional del Sur
Alem 1253, (8000) Bahı́a Blanca, ARGENTINA – Email: {cml,agm,fms,grs}@cs.uns.edu.ar

ABSTRACT

Seeking information relevant to a topic of interest has be-
come a common task in our daily activities. However,
searching the Web using current technologies still presents
many limitations. One of the main limitations is that ex-
isting tools for searching the Web restrict user queries to
a small number of terms. As a result, a single query may
not reflect the user information needs at a sufficient level
of detail. In addition, even if longer queries were allowed,
the user may not find the right terms to supply appropriate
queries, or may not be willing to put the effort required to
explicitly describe his or her information needs. Another
limitation of today’s search tools is that they are not capa-
ble of performing qualitative inference on the suggestions
they offer. For certain domains, such as news or scien-
tific articles, a good amount of structural information can
be usefully exploited to extract meaningful content. This
can help sort out the material returned by a search engine
and to perform a qualitative analysis to warrant some of the
search results. This paper shows how to enhance current
search engines capabilities by (1) taking advantage of the
user context, and (2) ranking search results based on pref-
erential criteria provided by the user. We describe ongoing
research on the use of context-specific terms to refine Web
search and on the use of a defeasible argumentation frame-
work to prioritize search results.

Keywords: web search, context, argumentation,
user preferences, intelligent aides.

1 INTRODUCTION

The World Wide Web is a huge source of information about
basically any topic. An important skill for any user is to
know how to find out about a topic of special interest, fo-
cusing the search on material that is relevant to the current
task. This search activity could be done more effectively if
“intelligent mechanisms” for information access and deliv-
ery were included as part of the system search tools. In or-
der to reduce the user cognitive overload, task-specific Web

search tools need to be adapted to deliver few but highly
relevant resources.

To support effective Web search we are developing a
family of intelligent aides that monitor the user and search
the Web for material related to the user current task and
preferences. An intelligent aide that makes relevant infor-
mation easily accessible can “make the user smarter” or at
least more competent in completing many of his or her daily
activities. Unfortunately, many support tools have the po-
tential to obstruct the tasks they are designed to support, by
providing inadequate information or doing it at the wrong
time. As a consequence an important requirement for our
tools is to provide relevant material, doing it at the right
time, and without causing undue or excessive distraction.

Two elements that can be exploited to enhance Web
search are user context and user preferences. User
context reflects the task in which the user is immersed
(e.g., [1, 7]). The context may consist of an electronic doc-
ument the user is editing, Web pages the user has recently
visited, etc. User preferences reflect the way in which a user
would prioritize search results. The user preferences could
be entered explicitly by the user or could be inferred by the
system (e.g., by monitoring the user’s behavior).

This paper presents techniques for taking advantage of
user context and preferences during Web search. Sec-
tion 2 presents methods for context-based information
search based on the dynamic extraction of topic descrip-
tors and discriminators. Section 3 describes how the search
process can be further enhanced by applying a defeasible ar-
gumentation framework to prioritize search results. Section
4 describes how the pieces are combined into an end-to-end
system for context-based search. Finally, in Section 5 we
present our conclusions.

2 SUPPORTING CONTEXT-BASED
INFORMATION SEARCH

For many computer-mediated tasks, the user context pro-
vides a rich set of terms that can be exploited to enhance

Web search. A context-based search tool can be embedded
in different kinds of computer utilities, such us email sys-
tems, browsers and text editors. In order to reflect the user
context, incremental search approaches are needed.1

The first query terms generated for a Web search may not
provide the definitive results. However, comparing the set
of search results to the user task can help to automatically
refine subsequent queries. As a first approximation, we as-
sume that documents that are similar to the user context are
relevant to the user task (although a different scheme could
be adopted [2, 11, 8]). Once the relevance of the retrieved
material is estimated, we can proceed to assess the impor-
tance of the terms found in the set of search results. This
requires a framework for weighting terms based on context.

Substantial experimental evidence supports the effective-
ness of using weights to reflect relative term importance for
traditional information retrieval (IR) [10]. The main pur-
pose of a term weighting system is the enhancement of re-
trieval effectiveness. The IR community has investigated
the roles of terms as descriptors and discriminators for sev-
eral decades. The combination of descriptors and discrim-
inators gives rise to schemes for measuring term relevance
such as the familiar term frequency inverse document
frequency (TF-IDF) weighting model [10]. The TF-IDF
scheme is a reasonable measure of term importance but is
insufficient for the task domain for our research. Search-
ing the Web to support context-based retrieval presents new
challenges for formulation of descriptors and discrimina-
tors.

Our basic approach is to use descriptors and discrimi-
nators automatically extracted from the user current context
to guide querying a Web search engine for relevant informa-
tion. Differently from conventional approaches for query-
ing the Web, search requests are not treated in isolation but
in the context of task-specific descriptors and discrimina-
tors.

In previous work [9] we have tested the following two
hypotheses:

• Good topic descriptors can be found by looking for
terms that occur often in documents similar to the
given topic.

• Good topic discriminators can be found by looking
for terms that occur only in documents similar to the
given topic.

In our proposal, similar documents on the Web play a
crucial role in deciding “what terms best describe the topic
at hand, and which ones best discriminate it”. Previous ex-
periments show that human assessments of term importance

1Search engines restrict queries to a small number of terms (e.g.,
the 10-term limit for Google). As a result, a single query cannot
reflect extensive contextual information.

in a topic are in good correspondence with the proposed no-
tion of term descriptive power. In addition, we have shown
empirically that queries constructed with terms dynamically
selected in light of the above notion of term discriminating
power result in better precision than the one achieved by the
traditional TF-IDF weighting scheme (see [9] for details on
these results). The next section summarizes our framework
for the dynamic extraction of topic descriptors and discrim-
inators.

2.1 A Framework for the Dynamic Extraction of
Topic Descriptors and Discriminators

Given a collection of m documents and n terms we can
build a m × n matrix H, such that H[i, j] = k, where k
is the number of occurrences of term tj in document di. We
define discriminating power of a term in a document
as a function γ : {t0, . . . , tn−1} × {d0, . . . , dm−1} →
[0, 1]:

γ(ti, dj) =
sign(H[j, i])√∑m−1
k=0 sign(H[k, i])

.

Analogously, we define descriptive power of a term
in a document as a function λ : {d0, . . . , dm−1} ×
{t0, . . . , tn−1} → [0, 1]:

λ(di, tj) =
H[i, j]√∑n−1

k=0(H[i, k])2
.

These simple notions of document descriptors and dis-
criminators share some insight with standard IR proposals
[10]. Another recurrent notion in IR is document similarity.
Let σ(di, dj) stand for the similarity measure between
documents di and dj . This measure can be computed in
terms of term descriptive power as follows:

σ(di, dj) =
n−1∑
k=0

[λ(di, tk) · λ(dj , tk)].

We are interested in identifying good topic discrimina-
tors to form queries that will result in high precision. Func-
tion γ allows discovering terms that are good discrimina-
tors of a document, as opposed to good discriminators of
the topic of a document. Because our goal is to refine
queries to best reflect the topic of the user task, we pro-
pose a topic-dependant definition of topic discriminators
based on the notion of similarity between documents. As
we informally formulated earlier, a term is a good discrim-
inator of a topic if it tends to occur only in documents
associated with that topic. We define the discriminating
power of a term in the topic of a document as a func-
tion Γ : {t0, . . . , tn−1} × {d0, . . . , dm−1} → [0, 1]
calculated as follows:

Γ(ti, dj) =
∑m−1

k=0
k 6=j

[[γ(ti, dk)]2 · σ(dk, dj)].

Thus the discriminating power of term ti in the topic of
document dj is an average of the similarity of dj to other
documents discriminated by ti. The notion of topic descrip-
tors was informally defined earlier as terms that occur of-
ten in the context of a topic. We measure term descrip-
tive power in the topic of a document as a function
Λ : {d0, . . . , dm−1} × {t0, . . . , tn−1} → [0, 1]. If∑m−1

k=0
k 6=i

σ(di, dk) = 0 then we set Λ(di, tj) = 0. Other-

wise we compute Λ(di, tj) as follows:

Λ(di, tj) =

∑m−1
k=0
k 6=i

[σ(di, dk) · [λ(dk, tj)]2]∑m−1
k=0
k 6=i

σ(di, dk)

Descriptive power of a term tj in the topic of a document di

is a measure of the quality of tj as a descriptor of documents
similar to di.

Guided by the notions of topic descriptors and discrim-
inators, it is possible to reinforce the weights of existing
and novel terms. This results in a better representation of
the user search context, facilitating query refinement and
context-based filtering.

3 EXPLOITING USER PREFERENCES

The previous sections describe methods for context-based
Web search, which have the potential to help the user fo-
cus on highly relevant material. However, user context may
not be sufficient to identify definitive results. For human-
generated queries, users frequently decide, based on initial
results, to refine their queries based on their own prefer-
ences.

Context-based retrieval methods as the ones described
above are insensitive to user preference criteria. These
methods perform search based on the user task, but do not
reflect the user’s preferences. Only the terms that appear in
the user search context (either explicitly or inferred by the
system) are used to describe the user’s information needs.
In addition, information sources that the user considers reli-
able cannot be prioritized over those considered unreliable.

For an increasing number of search situations, the key
to success is access to high-quality relevant information
guided by a simple specification of the information needs
and some preference criteria, without excessive distraction.
Consider, for example, the case of a journalist investigat-
ing certain events and searching for relevant information.
As the journalist browses the results returned by a conven-
tional search engine, she will apply some preference criteria
to manually select the most valuable results (e.g., those arti-
cles published during a specific date range will be preferred
over others). Much of the process of selecting such material
according to some preference criteria could be effectively
automatized. However, a full-spectrum analysis such as the
one described requires some form of qualitative analysis
of the search results based on the user preferences.

As part of our current research we are developing meth-
ods that evaluate and ranks search results based on the user’s
declared preference criteria. User preferences are captured
as a set of rules and facts, which can be made explicit in a
more intuitive manner than by the use of query special com-
mands. Such set of rules and facts will provide a knowl-
edge base upon which a qualitative analysis of the results
returned by a context-based search tool will be performed.

The next section presents an overview of DeLP, a
general-purpose argumentation formalism based on logic
programming that we have adopted for ranking search re-
sults based on user preferences.

3.1 Defeasible Logic Programming: Overview

Defeasible logic programming (DeLP) [5] is a general-
purpose defeasible argumentation formalism based on logic
programming, intended to model inconsistent and poten-
tially contradictory knowledge.2 A defeasible logic pro-
gram is a set P = (Π,∆) of Horn-like clauses, where Π
and ∆ stand for sets of strict and defeasible knowledge,
resp. The set Π of strict knowledge involves strict rules of
the form P ← Q1 , . . . ,Qk and facts (strict rules with
empty body), and it is assumed to be non-contradictory.
3 The set ∆ of defeasible knowledge involves defeasible
rules of the form P −−≺ Q1 , . . . ,Qk , which stands for
“Q1, . . . Qk provide a tentative reason to believe P .”
Strict and defeasible rules in DeLP are defined in terms of
literals P , Q1, Q2, A literal is an atom or the strict
negation (∼) of an atom.

Deriving literals in DeLP results in the construction of
arguments. An argument A for a literal Q (denoted
〈A, Q〉) is a (possibly empty) set of ground defeasible rules
that together with the set Π provide a SLD proof for a
given literal Q, satisfying the additional requirements of
non-contradiction (i. e., an argument should not involve
contradictory information) and minimality (i. e., the set
of defeasible information used should be minimal). Note
that arguments are obtained by the usual query-driven SLD
derivation from logic programming, performed by back-
ward chaining on both strict and defeasible rules; in this
context a negated literal ∼P is treated just as a new pred-
icate name no P . As a program P represents incomplete
and tentative information, conflicting arguments may arise.
An argument 〈B, R〉 is a counterargument for another
argument 〈A, Q〉 if Π ∪ A ∪ B′ is a contradictory set,
where B′ ⊆ B. Intuitively, this means that both arguments
cannot be accepted simultaneously as they their joint accep-
tance leads to contradictory conclusions. A preference cri-
terion among arguments “ � ” is used to determine when

2For space reasons, we will restrict ourselves to a basic set of
definitions and concepts which make this paper self-contained. For
more details, see [5, 3].

3Contradiction stands for deriving two complementary literals
wrt strict negation (P and ∼P) or default negation (P and not P).

an argument is a defeater for another argument. An argu-
ment 〈B, R〉 defeats another argument 〈A, Q〉 if 〈B, R〉
is a counterargument for 〈A, Q〉 (i. e., Π ∪ A ∪ B′ is a
contradictory set, B′ ⊆ B) and B′ � A.

However, as defeaters are arguments, they may on its turn
be defeated by other arguments, which could on their turn
be defeated by other arguments, and so on. This prompts
a recursive dialectical process rooted in a given argument
〈A0, Q0〉, considering all their defeaters, defeaters for such
defeaters, and so on. The process can be characterized in
a tree-like structure called dialectical tree T〈A0,Q0〉, in
which nodes are arguments, the root node is the original
argument at issue, and every children node defeats its par-
ent node. Every path in a dialectical tree is a sequence
[〈A0, Q0〉, 〈A1, Q1〉, 〈A2, Q2〉, . . . , 〈An, Qn〉 . . .] that
can be thought of as an exchange of arguments between two
parties, a proponent (evenly-indexed arguments) and an
opponent (oddly-indexed arguments). Each 〈Ai, Qi〉 is
a defeater for the previous argument 〈Ai−1, Qi−1〉 in the
sequence, i > 0. A path is won by the proponent if its
length is odd (i. e., the last argument in the path was given
by the proponent, and no defeater followed it); otherwise
the path is lost. An argument 〈A0, Q0〉 is warranted iff
every path in T〈A0,Q0〉 is won. Given a DeLP program
P = (Π,∆), a query Q0 wrt P is solved by computing
the preceding tree-like structure. Three answers are distin-
guished: YES (there is at least one warranted argument A0

for Q0); NO (there is at least one warranted argument A0

for∼Q0); UNDECIDED (none of the previous cases hold).

3.2 Applying DeLP to Prioritize Search Results

Our proposal is to apply DeLP to prioritize the search re-
sults returned by a context-based search system. In this set-
ting, users preferences and background knowledge can be
codified as facts and rules in a DeLP program P. These
facts and rules can come from different sources. For ex-
ample, user’s preferences could be entered explicitly by the
user or could be inferred by the system (e.g., by monitoring
the user’s behavior). Additional facts and rules could be ob-
tained from other repositories of structured (e.g., databases)
and semi-structured data (e.g., the Web).

A context-based search system will provide a list of
search results L =[s1, s2, s3, s4], where si is a unique
name characterizing a piece of information info(si). We
assume that a number of features (meta-tags, filename,
URL, etc.) can be identified and extracted from info(si)
by some specialized tool, as suggested by Hunter [6] in his
approach to dealing with structured news reports. Such fea-
tures will be encoded as a set Psearch of new DeLP facts,
extending thus the original program P into a new program
P′. A special operator Revise deals with possible incon-
sistencies found in Psearch with respect to P′, ensuring

P ∪ Psearch is not contradictory.4 For the sake of sim-
plicity, we will assume in our analysis that potential search
results will be DeLP terms associated with a distinguished
predicate name rel (which stands for relevant or accept-
able in light of the user preferences). For each potential
search result si, a new query rel(si) will be analyzed in
light of the new program P′. Elements in the original list L
of context-based search results will be classified into three
sets, namely: (a) Sw (warranted search results): those re-
sults si for which there exists at least one warranted argu-
ment supporting rel(si) based on P’; (b) Su (undecided
search results): those results si for which there is no war-
ranted argument for rel(si), neither there is a warranted
argument for∼rel(si) on the basis of P’, and (c) Sd (de-
feated search results): those results si such that there is a
warranted argument supporting ∼ rel(si) on the basis of
P. Finally, the output presented to the user will be a sorted
list L′ in which the elements of L are classified according
to their epistemic status with respect to P′. Note that the
resulting classification has a direct correspondence with the
doxastic attitudes associated with answers to DeLP queries.
For further discussion and examples on how to rank results
using DeLP see [4].

4 COMBINING THE APPROACHES

Our proposal is to combine quantitative and qualitative an-
alyzes to enhance Web search. Context-based search ap-
plies quantitative methods for the identification of context-
specific terms and documents. On the other hand,
preference-based search makes use of qualitative methods
to rank results according to preference criteria provided by
the user.

Search
context T

User
preferences

Facts
extracted from

L={s1..sk}

DeLP
Program P

DeLP
Program P’

DeLP
Interpreter

For every
si∈L,
analyze
rel(si)
wrt P’

Prioritized
search results
L’={s1’..sk’}

User
context C

User
query q

Context-based
search system

Search
Engine

Context-based
search results
L={s1..sk}

User
query and

context

Figure 1: Architecture for Web search based on user con-
text and preferences.

Figure 1 and the following algorithm summarize how the
set of methods are combined in order to exploit user context
and preferences for intelligent Web search:

4For example, contradictory facts may be found on the web. A
simple belief revision criterion is to prefer the facts with a newer
timestamp over the older ones.

ALGORITHM
INPUT:

Query q,
Set C = {t1, . . . , tm} describing the user context,
DeLP program P with user preferences,
Number h of iterations for incremental search.

OUTPUT:
List Lnew of search results based on user context
and preferences.

BEGIN
T [0] = {C}
FOR (i=0; i < h; i++)
DO
T [i + 1] = ∅.
FOR EVERY set of terms S ∈ T [i]
DO

Submit queries to a search engine based on q and S.
Use C to filter and weight results and add them to L.
Compare search results to C to identify best
descriptors and discriminators.
Use best descriptors and discriminators to expand C.
Use C to generate a set N of overlapping term clusters.
T[i+1]= T[i+1] ∪ N.

Let L = [s1, s2, . . . sk] be the set of context-based results
Psearch = {facts encoding info(si), i = 1 . . . k }
{info(si) stands for features associated with result si }
P′ := Revise (P ∪ Psearch).
Initialize Sw, Su, and Sd as empty sets.
{Sw, Su, and Sd stand for the set of results si’s which
are warranted as relevant, undecided and warranted
as non-relevant, respectively }

FOR EVERY si ∈ L
DO

Solve query rel(si) using DeLP program P′

IF rel(si) is warranted THEN add si to Sw

ELSE
IF ∼rel(si) is warranted THEN add si to Sd

ELSE add si to Sd

Return Lnew = [sw
1 , . . . , sw

j1, s
u
1 , . . . , su

j2, s
d
1, . . . , s

d
j3]

END

5 CONCLUSIONS

This paper has described ongoing research on exploiting
the information in the user context to refine Web search
queries. In addition it proposes a novel approach for en-
hancing Web search technologies through the use of qualita-
tive, argument-based analysis. In particular, we have shown
that DeLP is a suitable tool for carrying on such analysis
in a specific real-world application, providing thus a tool
for higher abstraction when dealing with users’ information
needs.

Current research trends show that the combination of
quantitative and qualitative analysis of user context and
preferences will play a major role in Web search technol-
ogy. We have proposed a set of methods to help carry out
this goal.

References

[1] BUDZIK, J., HAMMOND, K. J., AND BIRNBAUM,
L. Information access in context. Knowledge based
systems 14, 1–2 (2001), 37–53.

[2] BUDZIK, J., HAMMOND, K. J., BIRNBAUM, L.,
AND KREMA, M. Beyond similarity. In Proceed-
ings of the 2000 Workshop on Artificial Intelligence
and Web Search (2000), AAAI Press.

[3] CHESÑEVAR, C., MAGUITMAN, A., AND LOUI, R.
Logical Models of Argument. ACM Computing Sur-
veys 32, 4 (Dec. 2000), 337–383.

[4] CHESÑEVAR, C. I., AND MAGUITMAN, A. G. Com-
bining argumentation and web search technology: To-
wards a qualitative approach for ranking results. Intl.
Journal of Advanced Computational Intelligence 9, 1
(2005), 53–60.

[5] GARCÍA, A., AND SIMARI, G. Defeasible Logic Pro-
gramming: An Argumentative Approach. Theory and
Practice of Logic Programming 4, 1 (2004), 95–138.

[6] HUNTER, A. Hybrid argumentation systems for struc-
tured news reports. Knowledge Engineering Review
(2001), 295–329.

[7] LEAKE, D. B., BAUER, T., MAGUITMAN, A., AND

WILSON, D. C. Capture, storage and reuse of lessons
about information resources: Supporting task-based
information search. In Proceedings of the AAAI-
00 Workshop on Intelligent Lessons Learned Systems.
Austin, Texas (2000), AAAI Press, pp. 33–37.

[8] MAGUITMAN, A., LEAKE, D., AND REICHHERZER,
T. Suggesting novel but related topics: towards
context-based support for knowledge model exten-
sion. In IUI ’05: Proceedings of the 10th interna-
tional conference on Intelligent user interfaces (New
York, NY, USA, 2005), ACM Press, pp. 207–214.

[9] MAGUITMAN, A., LEAKE, D., REICHHERZER, T.,
AND MENCZER, F. Dynamic extraction of topic
descriptors and discriminators: Towards automatic
context-based topic search. In Proceedings of the
Thirteenth Conference on Information and Knowledge
Management (CIKM) (Washington, DC, November
2004), ACM Press.

[10] SALTON, G., AND YANG, C. On the specification of
term values in automatic indexing. Journal of Docu-
mentation 29 (1973), 351–372.

[11] SMYTH, B., AND MCCLAVE, P. Similarity vs. diver-
sity. In Proceedings of the 4th International Confer-
ence on Case-Based Reasoning. Vancouver, Canada
(2001).

