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Abstract. Topical search refers to the process of formulating queries that reflect
a thematic context. A combination of machine learning and information retrieval
techniques can be applied to automate this process. In this work we propose the
application of single- and multi-objective evolutionary algorithms to automati-
cally evolve a population of topical queries. We report on the results of different
strategies that attempt to evolve conjunctive and disjunctive queries. In our eval-
uations we observe that disjunctive queries have the potential to achieve better
retrieval performance than conjunctive queries. In addition, our analysis reveals
the limitations of the single-objective approach and highlights the advantages of
applying multi-objective evolutionary algorithms for the problem at hand.

Keywords: topical search, conjunctive queries, disjunctive queries, multi-objective evo-
lutionary algorithms.

1 Introduction

A major challenge for human information seekers is how to formulate queries that effec-
tively reflect their information needs. Automatic topical search refers to automatically
formulating queries with terms extracted from a thematic context. The resources col-
lected by the formulation of topical queries can be used in different scenarios, such as
responding to contextualized information needs [17, 3], fulfilling long term informa-
tion needs [27], collecting resources for topical Web portals [6], or accessing the Deep
Web [15], among others.

The effectiveness of a topical query depends on the task at hand. If the criteria for
evaluating query performance can be quantitatively specified then the problem of top-
ical search can be seen as an optimization problem where the objective function to be
maximized quantifies the optimality of a query. In this optimization problem, there-
fore, the search space is defined as the set of possible queries that can be presented to
a search interface. A particularity of this optimization problem is that the query space
is a high-dimensional space, where each possible term accounts for a new dimension.
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Usually, high-dimensional space problems are computationally very intensive and can-
not be effectively solved using analytical methods. On the other hand, a query can be
considered effective even if it is not an optimal one, at the same time as multiple queries
can provide satisfactory results. Therefore, we may be interested in finding many near
optimal queries rather than a single optimal one. Another aspect of this optimization
problem is that several objective such as high precision and high recall can be used as
criteria for evaluating query performance.

On the basis of the above discussion, Evolutionary Algorithms (EAs) [14, 11] are
applicable to the problem of learning to automatically formulate high-quality topical
queries. EAs are general-purpose search procedures based on the mechanisms of natural
selection. An important component in EAs is the fitness function, which in combination
with the selection mechanism determines which elements of the population are selected
to be members of the next generation. Therefore, it is necessary to establish some crite-
ria to determine if one solution is better than another. In the multi-objective case, there
is not only one criterion to conclude whether one solution is better than another. The
strategy adopted in this work applies the concept of Pareto optimality [22] as well as
an aggregative technique based on the harmonic mean of the given objectives to rank
the queries in a manner such that the most promising ones have a higher probability of
being selected. The proposed framework starts by generating an initial population of
queries using terms extracted from a topic description and incrementally evolves those
queries based on their ability to retrieve results satisfying a number of objectives. This
approach allowed us to address some interesting research question:

– Potential for evolution of queries: Is it possible to evolve queries in such a way
that they significantly outperform those generated directly from the initial topic
description?

– Generalization of evolved queries: Are the queries evolved from the training data
useful on a new corpus?

– Conjunctive vs. disjunctive queries: For the objectives analyzed here, how good
is the performance of conjunctive queries when compared to disjunctive queries?

2 An Overview of Evolutionary Algorithms

EAs [14, 11] are robust optimization techniques based on the principle of natural selec-
tion and survival of the fittest, which claims “in each generation the stronger individual
survives and the weaker dies”. Therefore, each new generation would contain stronger
(fitter) individuals in contrast to its ancestors.

To use EAs in optimization problems we need to define candidate solutions by chro-
mosomes consisting of genes and a fitness function to be maximized. A population of
candidate solutions (usually of a constant size) is maintained. The goal is to obtain better
solutions after some generations. To produce a new generation EAs typically use selec-
tion together with the genetic operators of crossover and mutation. Parents are selected
to produce offspring, favoring those parents with highest values of the fitness function.
Crossover of population members takes place by exchanging subparts of the parent
chromosomes (roughly mimicking a mating process), while mutation is the result of a

26      R. Cecchini et al.



random perturbation of the chromosome (e.g., replacing a gene by another). Although
selection, crossover and mutation can be implemented in many different ways, their
fundamental purpose is to explore the search space of candidate solutions, improving
the population at each generation by adding better offspring and removing inferior ones.

In Multi-Objective Optimization Problems (MOOPs) the quality of a solution is
defined by its performance in relation to several, possibly conflicting, objectives. Tradi-
tional methods are very limited because, in general, they become too computationally
intensive as the size of the problem grows [24, 18]. EAs are a suitable technique for
dealing with MOOPs [8, 9, 11] and are called in this case Multi-Objective Evolutionary
Algorithms (MOEAs). There are many approaches to multi-objective optimization us-
ing MOEAs, and in general, they can be classified in Pareto or non-Pareto EAs. In the
first case, the evaluation is made following the Pareto dominance concept [22] discussed
below. In the second case, the objectives are combined to obtain a single evaluation
value.

There are some basic definitions based on the Pareto concept that must be consid-
ered:

Definition 1. Pareto Dominance [7]: A vector u = (u1, u2, . . . , uk) is said to domi-
nate another vector v = (v1, v2, . . . , vk) (denoted by u � v) if and only if u is partially
less than v, i.e., ∀i ∈ {1, . . . , k}, ui ≤ vi ∧ ∃i ∈ {1, . . . , k} : ui < vi.

Definition 2. Pareto Optimality [7]: A solution x ∈ Ω is said to be Pareto Optimal
with respect to a Ω, if and only if @ x∗ ∈ Ω for which v = F (x∗) = (f1(x∗), . . . , fk(x∗))
dominates u = F (x) = (f1(x), . . . , fk(x)). Where Ω is a feasible region for the MOOP.

Definition 3. Pareto Optimal Set [7]: For a given MOOP, F(x), and a feasible region
for that MOOP, Ω, the Pareto Optimal Set, P∗, is defined as:

P∗ := {x ∈ Ω, @ x∗ ∈ Ω, F (x∗) � F (x)}

Definition 4. Pareto Front [7]: For a given MOOP, F(x), in a feasible region for that
MOOP, Ω, and a Pareto Optimal Set, P∗, the Pareto Front PF∗ is defined as:

PF∗ := {u = F (x) | x ∈ P∗}

Besides the Pareto or non-Pareto strategy, the EAs can be classified in elitist and non
elitist EAs. The difference resides in that the first uses a mechanism to retain the non-
dominated individuals. In the last years, a great number of elitist Pareto-based EAs
were developed. Several of them have shown very good performance in problems with
objective space of size less or equal than four [9].

The Non-dominated Sorting Genetic Algorithm – II (NSGA-II) is one of the most
studied and efficient EAs [10], consequently it was used in this work. The algorithm be-
gins creating a random parent population P0 of size n. The population is sorted based
on the non-domination concept. Each solution is assigned a fitness (or rank) equal to its
non-dominated level (1 if it belongs to the first front, 2 for the second front, and so on).
In this order, minimization of fitness is assumed. After ranking the solutions, a popu-
lation of n offsprings, Q0, is created using binary tournament selection, recombination
and mutation. The elitism is reached by comparing the current population with previ-
ously found best non-dominated solutions. The ith generation follows the next steps:
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1. A combined population Ri = Pi ∪Qi of size 2n is formed.
2. Ri is ordered according to non-domination. Since all previously and current pop-

ulation members are included in Ri, elitism is ensured. Solutions belonging to the
best front, F1, are the best solution in the combined population Ri.

3. If the size of F1 is smaller than n, all members of the set F1 are chosen for the
new population Pi+1. The remaining members of the population Pi+1 are chosen
from subsequent non-dominated fronts in the order of their ranking until no more
sets can be accommodated. If Fj is the last front from which individuals can be ac-
commodated in the population, but not all the members can enter in the population,
then a decision needs to be made to choose a subset of individuals from Fj . In order
to decide which members of this front will win a place in the new population, the
NSGA-II uses a selection criterion based on a crowded-comparison operator that
favors solutions located in lesser crowded regions.

In addition to the NSGA-II, an elitist non linear aggregation alternative was used. This
scheme was implemented using an adaptation of the well known F1 measure. This
measure is reviewed in section 3.2. The PISA platform [2] was used to implement the
strategies analyzed in this work.

3 Evolving Topical Queries with Multi-objective Evolutionary
Algorithms

In order to evolve topical queries we start with a population of queries composed of
terms extracted from an initial description of the given topic and rate the effective-
ness of each query according to the quality of the search results. The best queries have
higher chances of being selected for subsequent generations and therefore as genera-
tions pass, queries associated with improved search results will predominate. Further-
more, the mating process continually combines these queries in new ways, generating
ever more sophisticated solutions.

3.1 Population and Representation of Chromosomes

Each chromosome corresponds to a query, which is represented as a list of terms. For
our analysis of conjunctive queries, terms are assumed to be connected by the AND op-
erator while for disjunctive queries terms are connected by the OR operator. Each term
corresponds to a gene that can be manipulated by the genetic operators. The population
is initialized with a fixed number of queries randomly generated with terms from the
thematic description. Novel terms can be included in the queries after mutation takes
place. These novel terms are obtained from a mutation pool, which is an ever increasing
set of terms that may or may not be part of the initial context.

3.2 Fitness Function

The fitness function defines the criterion for assessing the quality of a query. One of the
objective functions considered in our analysis is precision at rank 10 (Precision@10),
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which is the fraction of the top 10 retrieved documents which are known to be relevant.
To define this fitness function we associate with the search space Q and topics T a
function Precision@10 : Q × T → [0, 1]. This objective function can numerically
evaluate an individual query q in terms of precision at rank 10 for a given topic t as
follows:

Precision@10(q, t) =
|Aq10 ∩Rt|
|Aq10|

,

where Aq10 is the set of top-10 ranked documents returned by a search engine when q
is used as a query, and Rt is the set containing all the documents associated with topic
t, including those in its subtopics.

Another fitness function adopted in this work, Recall : Q × T → [0, 1], is defined
as the fraction of relevant documents Rt that are in the answer set Aq:

Recall(q, t) =
|Aq ∩Rt|
|Rt|

.

Finally we use a function F* : Q × T → [0, 1] that aggregates Precision@10 and
Recall as follows:

F*(q, t) =
2 · Precision@10(q, t) · Recall(q, t)
Precision@10(q, t) + Recall(q, t)

.

The F* is an adaptation of the F1 measure, which is the weighted harmonic mean of
precision and recall [26]. Maximization of fitness is assumed to prefer a query over
another for the selection process. We have used a vector representation of the query
together with the TFIDF weighting function [1] for assigning scores to the retrieved
documents.

3.3 Genetic Operators

A new generation in our EAs is determined by a set of operators that select, recombine
and mutate queries of the current population.

– Selection: A new population is generated by probabilistically selecting the highest-
quality queries from the current set of queries. In the case when the query effec-
tiveness can be codified as a scalar value (single-objective or aggregative methods)
then two queries are chosen at random from the population and the one with high-
est effectiveness is selected for recombination and to populate the next generations.
This method is known as 2-way tournament selection. In addition, elitism is applied
to prevent losing the best queries. For the multi-objective case, selection is based
on the elitist Pareto strategy described in section 2.

– Crossover: Some of the selected queries are carried out into the next generations
as they are, while others are recombined to create new queries. The recombination
of a pair of parent queries into a pair of offspring queries is carried out by copying
selected terms from each parent into the descendants. The crossover operator used
in our proposal is known as single-point. It results in new queries in which the first
n terms are contributed by one parent and the remaining terms by the second parent,
where the crossover point n is chosen at random.
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– Mutation: Small random changes can be produced to the new population of
queries. These changes consist in replacing a randomly selected query term tq by
another term tp . The term tp is obtained from the mutation pool, which is a set
of terms that initially contains terms extracted from the thematic context and is in-
crementally updated with new terms from the relevant documents recovered by the
system.

4 Evaluation

To run our evaluations we collected 448 topics from the Open Directory Project (ODP)1.
The topics were selected from the third level of the ODP hierarchy. A number of con-
straints were imposed on this selection with the purpose of ensuring the quality of our
corpus. The minimum size for each selected topic was 100 URLs and the language was
restricted to English. For each topic we collected all of its URLs as well as those in
its subtopics. The total number of collected pages was more than 350K. The Terrier
framework [21] was used to index these pages and to run our experiments. We used the
stopword list provided by Terrier and Porter stemming was performed on all terms. We
divided each topic in such a way that 2/3 of its pages were used for training and 1/3 for
testing. The following scenarios were analyzed:

– A Single-objective EA with Precision@10 as the objective function.
– A Single-objective EA with Recall as the objective function.
– NSGA-II with both Precision@10 and Recall as objective functions.
– An aggregative MOEA with F* as the objective function.

The EAs were run for 10 different topics. For each analyzed topic a population of
250 queries was randomly initialized using the topic ODP description. The size of each
query was a random number between 1 and 32. The crossover probability was set to 0.7
and the mutation probability was 0.03.

4.1 Analyzing the Evolution of the Single-objective EAs

In our first experimental setting, we run a single-objective EA for 200 generations with
the purpose of maximizing Precision@10. Both conjunctive (AND) and disjunctive
(OR) queries were tested. In figure 1 we show the evolution of Precision@10 (left)
and Recall (right) for the ODP topic BUSINESS/BUSINESS SERVICES/CONSULTING
(CONSULTING). As can be observed in this figure, near-optimal queries were obtained
for both AND- and OR-queries after a small number of generations. However, this was
at the cost of very low Recall values.

Unsurprisingly, very low Precision@10 values were achieved when the objective to
be maximized was Recall, as shown in figure 2. Note, in addition that although high
Recall values were achieved for OR-queries, this was not the case for AND-queries.
Although these results are shown for a single topic, analysis of the rest of the topics
yielded similar behavior.

While increasing the level of one performance measure at the cost of reducing the
other is sometimes acceptable, we are typically interested in improving both measures.

1 http://dmoz.org
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Fig. 1. The evolution of Precision@10 (left) and Recall (right) for the topic CONSULTING when
the objective to be maximized is Precision@10.
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Fig. 2. The evolution of Precision@10 (left) and Recall (right) for the topic CONSULTING when
the objective to be maximized is Recall.

4.2 Analyzing the Evolution of the NSGA-II

In order to evolve topical queries that simultaneously attempted to achieve high levels of
Precision@10 and Recall we run the NSGA-II algorithm for 300 generations. In figure 3
we plotted the performance achieved at each generation for the topic CONSULTING
by looking at Precision@10 (left), Recall (center) and F* (right). It is interesting to
note that when OR-queries were evolved, NSGA-II allowed to achieve very high levels
of Precision@10 without compromising Recall. In the case of AND-queries, although
high Precision@10 is eventually achieved, the values for Recall remain low.
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Fig. 3. The evolution of Precision@10 (left), Recall (center) and F* (right) for the topic CON-
SULTING when applying the NSGA-II algorithm.
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The trend observed in figure 3 for topic CONSULTING was also observed for the
other topics in our corpus. The tables in figure 4 present the means over 10 topics for
the first and last generations based on Precision@10, Recall and F*. These comparison
tables show that the NSGA-II algorithm achieved a substantial improvement throughout
the successive generations.

NSGA-II: AND-queries
TRAINING mean Precision@10 mean Recall mean F*
First Generation 0.038 0.059 0.020
Last Generation 0.689 0.196 0.176

NSGA-II: OR-queries
TRAINING mean Precision@10 mean Recall mean F*
First Generation 0.055 0.049 0.022
Last Generation 0.953 0.653 0.766

Fig. 4. First generation vs. last generation of queries evolved with NSGA-II.

4.3 Analyzing the Evolution of the Aggregative MOEA

Finally, we monitored the evolution of the aggregative MOEA throughout 300 gener-
ations. The charts in figure 5 show these values for the topic CONSULTING while the
tables in figure 6 summarize the mean performance achieved for the 10 topics consid-
ered in our evaluation.
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Fig. 5. The evolution of Precision@10 (left), Recall (center) and F* (right) for the topic CON-
SULTING when applying the aggregative MOEA.

We observe that the performance of the aggregative MOEA is similar to that of
NSGA-II. This allows us to conclude that for the objectives analyzed here the results of
applying an aggregative approach to rank and evolve queries are comparable to those
obtained by a non-aggregative, more computationally intensive approach. In addition,
OR-queries have better potential for evolution than AND-queries.
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Aggregative MOEA: AND-queries
TRAINING mean Precision@10 mean Recall mean F*
First Generation 0.042 0.060 0.022
Last Generation 0.570 0.358 0.372

Aggregative MOEA: OR-queries
TRAINING mean Precision@10 mean Recall mean F*
First Generation 0.054 0.049 0.022
Last Generation 0.948 0.635 0.749

Fig. 6. First generation vs. last generation of queries evolved with the aggregative MOEA.

4.4 Evaluating Query Performance on the Test Set

In order to determine if the evolved queries are effective when used on a new corpus
we computed Precision@10, Recall and F* for each of the 10 topics on the test set.
The question addressed here is whether the evolved queries are superior to the baseline
queries (i.e., queries generated directly from the initial topic description). The tables
shown in figures 7 and 8 present this comparison for both NSGA-II and the aggregative
MOEA. This comparison shows that the tested algorithms are able to evolve queries
with quality considerably superior to that of the queries generated directly from the
thematic context. In particular, OR-queries achieved much higher performance than
AND-queries.

NSGA-II: AND-queries
TESTING mean Precision@10 mean Recall mean F*
Baseline 0.016 0.075 0.011
Evolved Queries 0.409 0.193 0.156

NSGA-II: OR-queries
TESTING mean Precision@10 mean Recall mean F*
Baseline 0.015 0.056 0.009
Evolved Queries 0.572 0.637 0.577

Fig. 7. Baseline vs. queries evolved with NSGA-II.

5 Conclusions and Future Work

This paper analyzes different strategies for evolving topical queries with single- and
multi-objective EAs. We noted that the single-objective EAs present limitations that
can be overcome by applying Pareto-based and aggregative techniques. Because the
aggregative MOEA is less computationally intensive than NSGA-II, we conclude it is
a better choice for the problem studied here. In addition, the aggregative techniques are

A Multi-Objective Evolutionary Algorithm Approach to Learn Disjunctive and Conjunctive Topical Queries      33



Aggregative MOEA: AND-queries
TESTING mean Precision@10 mean Recall mean F*
Baseline 0.018 0.077 0.013
Evolved Queries 0.500 0.336 0.338

Aggregative MOEA: OR-queries
TESTING mean Precision@10 mean Recall mean F*
Baseline 0.015 0.057 0.009
Evolved Queries 0.543 0.643 0.538

Fig. 8. Baseline vs. queries evolved with the aggregative MOEA.

more flexible, allowing to define aggregate fitness functions that favor one objective
over the other.

We have also compared the potential for evolution that OR-queries have in com-
parison to AND-queries, and observed that the former are considerably superior to the
latter. Interestingly, most popular search engines, such as Google or Yahoo, use con-
junctive matching, which means that it is mandatory for all the query term to appear in
a document (or to be associated with the document in some way) for it to be considered.
A reason for using conjunctive matching is that user information needs are more intu-
itively defined using the AND semantics: as the number of terms increases the answer
set is more selective and more precisely fits the information needs of the user. However,
as observed here, automatically generated queries can achieve better performance for
topical search when disjunctive matching is applied.

Another important result derived from our evaluations is that the evolved queries do
not overfit the training data. Therefore, once a population of topical queries is available,
it can be used to retrieve topical material from sources such as the Web, where no
relevance assessments are typically available.

Other attempts to apply EAs in information retrieval include the design of tech-
niques to evolve better document descriptions to aid indexing or clustering [13, 25],
term-weight reinforcement in query optimization [12, 28, 23], and optimization of key-
words and logical operators [20]. A related research area deals with the development of
evolving agents that crawl the Web to search for topical material [19]. A comprehensive
literature review of Web-based evolutionary algorithms can be found in [16].

Differently from most of the existing EA proposals to document retrieval, which
attempt to tune the weights of the individual terms, our methods take each query as an
individual. The proposed method is fully automatic as long as a training corpus is avail-
able and the objective functions have been defined. A powerful aspect of this method
is the use of a mutation pool containing new candidate terms collected throughout the
successive generations of queries. The use of this incrementally generated pool of terms
has shown to be effective in aiding the exploration of query space [4].

The techniques presented in this article are applicable to any domain for which it
is possible to generate term-based characterizations of a context. In [5] we proposed to
apply single-objective genetic algorithms to evolve AND-queries. In that case we used
the Web as a corpus for training the algorithm and the optimization criteria were based
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on the similarity of the retrieved material to the topic of interest. In the present work,
instead of using unlabeled material from the Web we take advantage of a taxonomy of
topics from ODP and its associated webpages, which are labeled as relevant or irrelevant
to the specific topics.

In the future we expect to run additional experiments applying other objective func-
tions coming from the information retrieval and Web search communities as well as
ad-hoc ones. Moreover, we plan to test different parameter settings for the EAs. In this
work we look at queries with simple syntaxes. An interesting follow-up study concerns
applying genetic programming to evolve queries with more complex syntaxes, includ-
ing boolean operators and other special commands.
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