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Abstract

Technical writing in professional environments, such as user manual authoring, requires
the use of uniform language. Non-uniform language refers to sentences in a technical doc-
ument that are intended to have the same meaning within a similar context, but use
different words or writing style. Addressing this non-uniformity problem requires the per-
formance of two tasks. The first task, which we named Non-uniform Language Detection
(NLD), is detecting such sentences. We propose an NLD method that utilizes different sim-
ilarity algorithms at lexical, syntactic, semantic and pragmatic levels. Different features
are extracted and integrated by applying a machine learning classification method. The
second task, which we named Non-uniform Language Correction (NLC), is deciding which
sentence among the detected ones is more appropriate for that context. To address this
problem, we propose an NLC method that combines contraction removal, near-synonym
choice, and text readability comparison. We tested our methods using smartphone user
manuals. We finally compared our methods against state-of-the-art methods in paraphrase
detection (for NLD) and against expert annotators (for both NLD and NLC). The exper-
iments demonstrate that the proposed methods achieve performance that matches expert
annotators.

1 Introduction

Technical writing, such as creating device operation manuals and user guide hand-

books, is a special writing task that requires the description of a certain product or

operation in an accurate manner. To avoid ambiguity and maximize the chances of

being understood by most readers, technical writing requires consistency in the use

of terminology and uniform language Farkas (1985). There are always demands from

modern industries to improve the quality of technical documents in cost-efficient

ways Soto et al. (2015).
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Our goal in this paper is to avoid inner inconsistency and ambiguity of tech-

nical content by identifying non-uniform sentences. Two main subtasks are clearly

involved: Non-uniform Language Detection (NLD) and Non-uniform Language Cor-

rection (NLC). NLD refers to the identification of sentences that are intended to

have the same meaning or usage within a similar context but use different words or

writing style. Meanwhile NLC refers to the selection of the sentence that is more

formal, precise or easier to understand, and thus more proper for technical writing

than other candidate sentences.

The NLD task goes beyond the recognition of similar sentences. Although non-

uniform sentences tend to have similar wording, similar sentence pairs do not neces-

sarily indicate a non-uniform language instance. For example, here are four similar

sentence pairs cited from an iPhone user manual Apple Inc. (2015), where only two

pairs are true non-uniform language instances:

(1) tap the screen to show the controls.

tap the screen to display the controls.

(2) start writing the name of the item.

start entering the name of the item.

(3) if the photo hasn’t been downloaded yet, tap the download notice first.

if the video hasn’t been downloaded yet, tap the download notice first.

(4) you can also turn bluetooth on or off in control center.

you can also turn wi-fi and bluetooth on or off in control center.

The pattern of differences within each sentence pair could be between two indi-

vidual words, between one word and multiple words, or just one sentence having

extra words that the other sentence does not have. Each pattern could be a true or

false non-uniform language instance depending on the content and context. As we

mentioned earlier, non-uniform language refers to sentences that are intended to

deliver the same information and meaning but use different wording. In Example

(1), both sentences describe the action of making the control unit visible, but used

synonyms, i.e. ‘show’ and ‘display’. Therefore, Example (1) is an instance of non-

uniform language. Similarly, in Example (2), even though ‘entering’ and ‘writing’

are not synonyms, since the two sentences aim to describe the same operation but

using different verbs to describe the input action, they should be considered as

non-uniform language as well. In Example (3), despite of the fact that the only

differing words between the sentences, i.e. ‘photo’ and ‘video’, are both media

contents, since they are different objects referring to two different functionalities,

they should not be regarded as non-uniform language. Example (4) is a false non-

uniform language candidate because each sentence refers to different actions. Note

that non-uniform sentences can differ in word length, which makes their identifi-

cation more difficult than the case of equal word length sentences. Therefore, it is

challenging to distinguish true and false occurrences of non-uniform cases based on

text similarity algorithms only, and thus finer grained analyses need to be applied.

The NLC task, which aims to choose the most appropriate sentence between

a non-uniform sentence pair is also challenging, since in most cases the sentences



can be both syntactically and semantically correct. For instance, in Example (1),

which was identified as a non-uniform language case, we aim at selecting one of

the two phrases and replace the other one. We refer to this process as correcting

or unifying the sentence pair. The strategy to select the best sentence should be

based on selecting the one that is simpler and more common for that context.

To address the problems of NLD and NLC, this paper proposes a pipeline of

methodologies for detecting non-uniform language within a technical document

at the sentence level, and correcting its instances. The schematic diagram of our

approach is shown in Figure 1.
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Fig. 1. Schematic diagram of our approach to NLD and NLC

It is worth mentioning that NLD is similar to plagiarism detection and para-

phrase detection as all these tasks aim to capture similar sentences with equivalent

meaning Das and Smith (2009). However, the goal of authors in plagiarism and

paraphrasing is to change several words to increase the lexical differences between

texts Androutsopoulos and Malakasiotis (2010), whereas in technical writing, the

authors try to avoid such differences, which tend to be subtler. While true positive

cases for both NLD and paraphrase detection can exist, they are not likely to hap-

pen in practice since textual differences in paraphrase detection tend to be much

larger than in NLD.

To address the NLD task, we propose the application of Natural Language Pro-

cessing (NLP) techniques at lexical, syntactic, semantic, and pragmatic levels. Our

approach integrates different techniques such as a Part-of-Speech (POS) tagger Bird
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et al. (2009), WordNet Miller et al. (1990), Google Tri-gram Method (GTM) Islam

et al. (2012); Mei et al. (2015), and a Flickr-based metonymy tool1. In addition,

given that recent methods based on recurrent neural networks using Long Short-

Term Memory (LSTM) and word embeddings represent the state of the art in

sentence similarity Neculoiu et al. (2016), we also integrate a deep siamese LSTM

network Mueller and Thyagarajan (2016) into our NLD method. In this way, we

apply textual analysis at different levels, and we treat the results as independent

features that are finally integrated by applying a classification method based on a

Support Vector Machine (SVM).

To address the NLC task, an unsupervised method based on web-based sta-

tistical data is proposed. The method we propose here uses the Google N -gram

corpus Brants and Franz (2009). Text simplicity and readability measures based

on combining different linguistic features, such as De Clercq and Hoste (2016) and

Coh-Metrix L2 Reading Index McNamara et al. (2014), are also applied.

Ground truth datasets for both NLD2 and NLC3, which were created from three

smartphone user manuals are used for evaluation, and they are made publicly avail-

able. The experiments on these datasets demonstrate the effectiveness of the pro-

posed approaches for the NLD and NLC tasks.

This paper is organized as follows. Next section discusses related work to the

task of identifying non-uniform language. Section 3 and Section 4 describe the main

methods used for the NLD and NLC tasks. The experimental work and results are

presented in Section 5 and concluding remarks can be found in Section 6.

2 Related Work

Paraphrase Detection (PD) is closely related to NLD. Paraphrasing is a restatement

using different words to make it appear different from the original text, and PD aims

to detect pairs of texts that have essentially the same meaning. We reviewed studies

in the PD area based on convolutional and recurrent neural networks Agarwal et al.

(2018); Wang et al. (2018); Bhargava et al. (2017), Recursive Auto-Encoders (RAE)

Socher et al. (2011), and Semantic Text Similarity (STS) Islam and Inkpen (2008).

However, PD techniques do not perform well on the NLD task as they focus on

variations at a coarser granularity. For instance, the four examples provided in

the introduction section are recognized as paraphrases, even though only two of

the pairs are real non-uniform language cases. Thus, standard PD techniques are

unable to make accurate judgments on non-uniform language instances as they do

not address the necessary level of detail for the NLD task. Recent approaches on

recurrent neural networks for measuring sentence similarity Neculoiu et al. (2016);

Mueller and Thyagarajan (2016); Chen et al. (2018) provide interesting directions

to account for textual similarity that can be adapted to be used in the context of

detecting non-uniform language.

1 Flickr Service: https://www.flickr.com/services/api/flickr.tags.getRelated.html
2 NLD data: https://goo.gl/6wRchr
3 NLC data: https://goo.gl/7vZSJW
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Near-duplicate text detection is another area related to NLD. It focuses on short

text such as mobile phone short messages, or tweets, which are intended to have the

same meaning but differ in terms of informal abbreviations, transliterations, and

cyberspeak Gong et al. (2008). The detection and elimination of near-duplicate text

are of major importance for other NLP tasks such as clustering, opinion mining,

and topic detection Sun et al. (2013). However, the studies in this area focus on

reducing the comparison time in large scale text databases and creating informal

abbreviation corpora, rather than exploring the text similarity methods. Basic sim-

ilarity methods, such as Longest Common Subsequence (LCS) are utilized, but they

are not sufficient to address the NLD task. LCS accounts for matching words and

their order between texts, so using LCS alone will give high recall and low precision

for the NLD task. For the following negative example of non-uniform language, LCS

returns a high similarity score:

(5) If the photo hasn’t been downloaded yet, tap the download notice first.

If the music hasn’t been downloaded yet, tap the download notice first.

Examples of this type are common in technical writing, so other measures are

needed besides LCS to recognize NLD positives.

Near-duplicate document detection focuses on web documents that are identical

in terms of written content but differ in a small portion of the document such as

advertisements, counters and timestamps Manku et al. (2007). Such documents are

important to be identified for web crawling and indexing of digital libraries. Since

this area focuses on the variations between two documents, especially the varia-

tions on metadata rather than the written content within one document, existing

solutions are not a good fit for NLD either.

Locality-Sensitive Hashing (LSH) is also worth mentioning here as it can find

near-duplicates in linear time Gionis et al. (1999). Moreover, LSH has been used for

technical writing to find reuse opportunities (i.e. duplicates or near duplicates) Soto

et al. (2015). LSH can be a potential approach to be applied for NLD, or as a pre-

filtering of candidate senteces, in case a time complexity improvement were needed.

However, LSH may miss cases of non-uniform language when semantic variance is

present. Moreover, since optimizing time complexity is not a major objective here,

but minimizing the chances of missing true instances of non-uniform language, we

refrain from applying it in this paper.

Controlled language is another related topic worth mentioning here. Controlled

languages have been described as restricted versions of natural languages; they

constrain the words, phrases or syntactic constructions that may be used in the

composition of a text Höfler (2012). Controlled languages are mainly used to achieve

three goals: (1) to make it easier for humans to read and interpret a text, (2) to

facilitate translation into other languages, (3) to allow for a direct mapping onto

some formal semantic representation accessible to automated reasoning. The first

goal above is also a major target of our NLD task. However, controlled language

and NLD are different in the way they can be assessed. In controlled languages,

a preset guideline rule set is required, and the evaluation is majorly performed by

checking whether the text follows all the rules of the guideline. In our NLD task,
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on the other hand, there is no such strict set of rules. In addition, non-uniform

language cases depend on the occurrences of other sentences in the document.

Non-uniform Language Correction (NLC) is applied on detected instances of

non-uniform language, where a sentence pair has minor differences. In such cases,

detailed comparison is required to analyze the meaning and usage between the

different wording, so that it can be determined which wording fits best given the

context. Therefore, NLC has some commonalities with word sense disambiguation

methods. Besides the differing word, its context needs to be analyzed to determine

which surrounding words are more frequent. A popular resource that has been used

in this area is the Google N-gram Corpus Nulty and Costello (2009). Google tri-

grams and unigrams have been used to determine the similarity between two texts

Islam et al. (2012) and to detect and correct real-word spelling errors Islam and

Inkpen (2009). In addition, the semantic relation that holds between two nouns

in a noun-noun compound phrase such as “flu virus” or “morning exercise” was

deduced using lexical patterns from the Google N -gram corpus.

NLC is also related to the areas of text simplicity and readability because an

objective of NLC is to select the sentence that is easier to read and understand

from a non-uniform language sentence pair. The most popular and classic methods

in this area include the Gunnings Fog index Gunning (1969), the Flesch-Kincaid

Reading Ease Index Kincaid et al. (1975), the Automated Readability Index Senter

and Smith (1967) and the Coleman-Liau Index Coleman and Liau (1975). All the

four tests evaluate the readability of a text by consistently breaking the text down

into its basic structural elements, which are then combined using an empirical

regression formula.

Recent work in NLP combines traditional text readability methods and language

features related to text comprehension, cognitive processes, and other factors. Coh-

Metrix Graesser et al. (2004) is a computational tool that measures cohesion and

text difficulty at various levels of language, discourse, and conceptual analysis. Later

on, Crossley et al. proposed L2 readability formula based on Coh-Metrix, which in-

corporated features that better reflected the psycholinguistic and cognitive reading

processes Crossley et al. (2009). Meanwhile, Feng et al. explored various readability

approaches and categorized them into different feature groups, i.e. discourse fea-

tures, language modeling features, parsed syntactic features, POS-based features,

and shallow features Feng et al. (2010). These feature groups are compared and a

method based on the combination of these features was demonstrated to be one

of the state-of-the-art approaches by 2010. One year later, another study that re-

viewed multiple traditional text readability methods showed that Coh-Metrix L2

Reading Index performed significantly better than traditional readability formulas,

which suggests that the variables used in this index are more closely aligned to the

intuitive text processing employed by authors when simplifying texts Crossley et al.

(2011). In 2016, De Clercq and Hoste grouped 87 popular text readability meth-

ods into 10 feature groups and proposed a fully automatic readability prediction

pipeline. The experiment has proven that their approach is on par with other ap-

proaches using gold-standard deep syntactic and semantic information De Clercq

and Hoste (2016).



Natural Language Engineering 7

This paper represents an extension of Wang et al. (2016), where the NLD task

was first presented. In this work, we improve our NLD method as well as present

a new dataset and method for correction that aims to select the most suitable

sentence when a non-uniform language sentence pair is detected.

3 Text Similarity Methods

This section describes the text similarity methods that we experiment with in this

work. These algorithms have different characteristics, which intend to provide com-

plementary information when measuring similarity.

Cosine similarity is one of the most popular text similarity algorithms. It mea-

sures the degree of similarity of two documents as the correlation between their

corresponding bag-of-words vector representations, which can be quantified as the

cosine of their angle. Despite the fact that it ignores the relative order of the words

in the document, it offers a competitive baseline for text similarity.

GTM is an unsupervised approach based on the Google N -gram corpus for mea-

suring semantic relatedness between texts Islam et al. (2012). The Google N -gram

corpus contains English word n-grams (from uni-grams to 5-grams) and their ob-

served frequency counts calculated over one trillion words from web pages collected

by Google in January 2006. The text was tokenized following the Penn Treebank

tokenization, except that hyphenated words, dates, email addresses and URLs are

kept as single tokens. To find the relatedness between a pair of words, GTM takes

into account all the trigrams that start and end with the given pair of words. Then,

it normalizes their mean frequency using the uni-gram frequency of each of the

words as well as the most frequent uni-gram in the Google Web N-gram corpus.

The word relatedness metric is then used as a basis to measure document or sentence

relatedness. To compute this sentence relatedness, each word from each sentence is

compared against any other word in the other sentence, using the tri-gram word

relatedness measure. Those pairs of words whose similarity is above a mean and

standard deviation, are aggregated to compute the final document or sentence simi-

larity. The specific formulae to compute GTM can be found in its publication Islam

et al. (2012) whilst a web service to compute GTM is available online.4

Longest Common Subsequence (LCS) is another widely employed technique to

measure similarity between texts. It measures the total length of the longest match-

ing substrings in both texts, where these substrings are allowed to be non-contiguous

as long as they appear in the same order Chin and Poon (1991); Irving and Fraser

(1992). While the original algorithm was applied to find sub-strings of characters,

a natural extension is to consider it for words, i.e. the longest common substring

has to be composed by a sequence of full words only. The final similarity score can

be obtained by dividing the number of words of the longest common subsequence

by the length in words of the shortest text under comparison.

A deep LSTM siamese network Mueller and Thyagarajan (2016) was proposed

4 Online GTM: http://cgm6.research.cs.dal.ca:8080/DalTextWebApp

http://cgm6.research.cs.dal.ca:8080/DalTextWebApp
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as a siamese adaptation of a recurrent neural network for labeled data comprised of

pairs of variable-length sequences with human-annotated similarity. The network

is trained using pre-trained word embeddings and a thesaurus-based data augmen-

tation is applied to minimize the effect of the particular wording/syntax in the

training data. The network learns to project text strings into a fixed-dimensional

embedding space by using only information about the similarity between pairs of

strings, and provides text similarity based on this embedding space.

4 Non-uniform Language Detection and Correction

A framework consisting of four stages proposed to address the NLD and NLC tasks

is shown in Fig. 1. The first stage extracts candidate sentence pairs that have

high text similarity within a document. The second stage performs comprehensive

analyses on each candidate sentence pair. The analyses are performed at lexical,

syntactical, semantic, and pragmatic levels, where multiple NLP resources such as

a POS tagger, WordNet, GTM, a Flickr-based metonymy tool, LSTM networks

and pre-trained word embeddings are utilized. The third stage integrates all the

previous analyses by applying a classification method based on SVM to classify

the candidate sentence pairs as true or false cases of non-uniform language. The

final stage performs further analysis on the detected non-uniform sentence pairs,

and corrects the non-uniform language by choosing the “best” sentence. The se-

lected sentence is expected to avoid informality, the use of words is expected to be

common for its context, as well as it should favor sentences that are easy to under-

stand. To achieve these goals, we propose a three-component approach, which uses

a combination of methods based on near-synonym choice, removal of contractions

and readability scores.

4.1 Stage 1: Detection of Similar Sentences

The main goal of this stage is to reduce the number of pairs of sentences that

need to be analyzed in depth for detecting non-uniform pairs. Domain knowledge

on non-uniform language indicates that some minimum level of textual similarity

must exist in order for a sentence pair to be considered non-uniform language. To

extract candidate sentence pairs, we firstly break down the technical document

into sentences, and then use different text similarity measures to compare every

sentence in the document against every other. We combine three of the similarity

methods described in Section 3. GTM is an unsupervised corpus-based approach

for measuring semantic relatedness between texts. LCS focuses on the word order of

sentences. Cosine similarity on a bag-of-words representation accounts for matching

of common words regardless of their order. We combine GTM, LCS, and Cosine

Similarity to filter out candidate non-uniform sentence pairs based on semantics,

sentence structure, and word frequency, respectively. Two sentences become a can-

didate pair only when LCS, Cosine Similarity, and GTM scores are all greater than

the filtering thresholds.

The filtering thresholds were set by running experiments at the sentence level
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on the iPhone user manual Apple Inc. (2015). Algorithm 1 is used to adapt the

filtering thresholds for each average sentence length5.

Input : Technical Document, Similarity Function (Sim)
Output: Threshold-Length List [(T1, L1), ...]

1 begin
2 S[n]←− SentenceDetector(Technical Document)
3 L←− 2 /*Initial average length of a sentence pair*/
4 T ←−Initial similarity threshold
5 Step←−Threshold increasing step
6 while (L ≤ 10) do
7 C ←− ∅ /*Initialize the output sentence container.*/
8 do
9 Tlow ←− T

10 Tup ←− T + Step
11 for (i=0; i<n; i++) do
12 for (j=i+1; j<n; j++) do
13 AvgL←− (S[i] + S[j])/2
14 if AvgL ∈ [L− 1, L) then
15 if (Tlow ≤ Sim(S[i], S[j])) and (Sim(S[i], S[j]) ≤ Tup) then

16 C
add←− (S[i], S[j])

17 end

18 end

19 end

20 end
21 T ←−T+Step

22 while (Check(C)) /*Check against human labels.*/ ;

23 Threshold-Length List
add←− (Tlow, L)

24 L←−L+1

25 end

26 end

Algorithm 1: Setting similarity thresholds

We utilize a sentence detector and a tokenizer6 to divide the text of the manual

into a sentence set of N sentence pairs (Line 2). We separately run Algorithm 1

three times to set the threshold sets for GTM, LCS, and Cosine. The thresholds are

set based on the average lengths of both sentences of a sentence pair. The average

length starts from 2 and is increased by one once the threshold for the current length

is set. We discovered that once the sentence length goes above 10, the thresholds

vary little. Therefore, we stop the algorithm when the threshold for pairs of average

length equal to 10 is found (Line 6).

For each different average length, the algorithm starts by setting an initial simi-

larity threshold and a step value (Line 4-5). This defines a threshold range, where

its lower bound is T and the upper bound is T+Step (Line 9-10). Then, the algo-

rithm loops over all the sentence pairs (Line 11-20) and add the pairs within the

current threshold range into set C (Line 14-16). The similarity of sentence pairs

above the previous threshold and below the current threshold are captured and

analyzed (Line 15-16). If they consist of all false non-uniform language candidates,

we repeat the loop with a higher threshold to filter more false candidates. Once we

5 See the Example (4) in Section 1, where the sentences of a pair could be unequal in
length, thus we compute the average length to represent the length of each candidate
pair.

6 OpenNLP: https://opennlp.apache.org/documentation/1.5.3/manual/opennlp.
html

 https://opennlp.apache.org/documentation/1.5.3/manual/opennlp.html
 https://opennlp.apache.org/documentation/1.5.3/manual/opennlp.html
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Candidate Sentence Pairs with POS Tags Ground Truth
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Table 1. POS analysis on candidate sentence pairs

discover that a true candidate is filtered by the current threshold, we stop increas-

ing it and set the threshold to its previous value to minimize the chances of missing

a potential candidate pair. The whole experiment is repeated for different sentence

pair lengths and different similarity methods.

Fig. 2. Candidate filtering thresholds
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It is worth mentioning that the thresholds are tunable based on the annotators’

capacity to review the candidate pairs and the existing labels. The higher the

threshold values are set, the less candidate pairs that this stage will produce. The

idea is to set these threshold values as high as possible—as this would reduce the

number of sentences to be checked—while aiming at not discarding true positive

pairs. The final thresholds are shown in Fig. 2. For example, assume there are two

sentences that are nine words long on average. The similarity scores of this pair

have to be above all the GTM, LCS and Cosine thresholds (0.943, 0.836, and 0.932,

respectively according to Fig. 2) to make it a candidate instance.

Stage 1 could be skipped, if the NLD method is applied on an exhaustive manner

on every pairwise sentence combination. However, by applying this filtering, candi-

date pairs could be reduced in reasonable scale in terms of the size of the corpus

with compromising recall. As for precision, around 40% of the candidates we found

in our dataset are true non-uniform language cases, where the remaining candi-

dates are expected to be filtered in the second stage. In this way, we can focus our

evaluation on the candidate cases (the difficult cases) rather than on every single

pair, since most of the pairs in the documents are likely to be negative non-uniform

instances, and hence including them in the analysis would lead to over-optimistic

results.

4.2 Stage 2: Sentence Pair Analysis

In this stage, we aim to determine for the two sentences of a candidate pair whether

they describe the same object or operation using different words or writing style

(i.e. true non-uniform language) or they just appear similar but actually have differ-

ent intended meanings. We describe here different text analysis approaches, where

each of them is used afterwards as a feature in a classifier to determine whether

sentence pairs are instances of non-uniform language or not.

4.2.1 Part-of-Speech Analysis

POS tags are assigned to each candidate pair using the NLTK Bird et al. (2009)

tagger to gain a grammatical view over the sentences. As Table 1 shows, some

differences in sentence content can be captured using POS tags, while for other

sentences it is not possible. Thus, it is necessary to make further syntactic and

semantic analyses to distinguish true candidates from false ones.

We categorized the different POS tags of the differing words, and depending on

sentence lengths, into the groups shown in Table 2. The different POS tags are

mapped to different categories, which are then used as one more feature of the

sentence pair representation.

4.2.2 Character N-gram Analysis

In the character N-gram analysis, the relatedness between the different words of

each candidate pair is calculated in terms of character unigram, bigram and trigram
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Label Description Examples

1 Equal length, same POS tag /NN vs. /NN, /VB vs. /VB

2 Equal length, plural noun with /NN vs. /NNS

singular noun

3 Equal length, different POS /NN vs. /VB

4 Unequal length, extra article /NN vs. /DT/NN

5 Unequal length, extra conjunction /NN vs. /CC/NN

6 Unequal length, extra adjective /NN vs. /JJ/NN

7 Other POS tag types. /NN vs. N/A

Table 2. Categorization based on POS tags and sentence length differences

similarity. This similarity can be calculated using the Common N-gram distance

(CNG) Kešelj and Cercone (2004):

d(f1, f2) =
∑

n∈dom(f1)∪dom(f2)

(
f1(n) − f2(n)

f1(n)+f2(n)
2

)2. (1)

In the equation above, n represents a certain character N-gram unit, fi(n) represents

the frequency of n in sentence i (i=1,2), and dom(fi) is the domain of function fi.

If n does not appear in sentence i, fi(n)=0. The lower bound of CNG is 0 (when the

two units to be compared are exactly the same), but there is no upper bound. CNG

was demonstrated to be a robust measure of dissimilarity for character N-grams in

different domains Wo lkowicz and Kešelj (2013).

4.2.3 WordNet Lexical Relation Analysis

For a given candidate sentence pair, if the different wordings are synonymous to

each other, there is a high likelihood that the two sentences try to convey the same

meaning but using different expressions. On the other hand, if the different parts of

a candidate pair are not related at the lexical level, then it is reasonable to assume

that this pair is describing different objects/actions, and thus they might not be

instances of non-uniform language.

WordNet is utilized here to analyze the lexical relationship within each candi-

date pair to determine whether they are synonyms to each other. To perform this

analysis, we only used synset information from WordNet, and we only considered

words as synonyms if they belong to a same synset. The rationale is that a simi-

lar sentence pair tends to be an instance of non-uniform language if the different

words are synonyms, rather than having other relationships such as hypernymy,

hyponymy, and antonymy. For example, given a similar sentence pair:

(6) if the photo hasn’t been downloaded yet, tap the download notice first.

if the video hasn’t been downloaded yet, tap the download notice first.

The sentence pair above is not a non-uniform language instance. However, the re-
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latedness score between ‘photo’ and ‘video’ given by Wu-Palmer metric Wu and

Palmer (1994) using WordNet is 0.6, which is fairly high compared to a random

word pair. Yet we do not know how these words are related, e.g. “photo is a kind of

video”, “photo is a part of video”, or “photo and video are examples of media con-

tent”. Thus, we might make wrong judgments based on such a similarity score only.

However, using synset information, we know that these words are not synonyms,

and thus probably not suggesting a non-uniform language instance. Therefore, we

considered as one more feature of our classifier whether mismatching words belong

to the same synset or not.

4.2.4 GTM Word Relatedness Analysis

Besides text similarity, GTM also measures semantic relatedness between words

Islam et al. (2012). To find the relatedness between a pair of words, GTM takes

into account all the trigrams that start and end with the given pair of words. Then,

GTM normalizes their mean frequency using unigram frequency of each of the words

as well as the most frequent unigram in the Google Web 1T N-gram corpus Brants

and Franz (2009) to capture the semantic relatedness among words.

4.2.5 Flickr-Based Concept Analysis

In some cases, word-to-word relatedness exists that goes beyond dictionary defi-

nitions, such as metonymy, in which a thing or concept is called not by its own

name but rather by the name of something associated in meaning with that thing

or concept Kövecses and Radden (1998). Metonymy detection is actually a task at

the pragmatic level of NLP that can be applied for NLD in technical writing.

Flickr is a popular photo sharing website that supports time and location meta-

data and user tagging for each photo. Since the tags are added by humans and aim

to describe or comment on a certain photo, the tags are somehow related from a

human perspective. As a result, Flickr becomes a large online resource with the

potential to find metonymy relationships in text.

Flickr made available statistical information about their dataset that can be used

to query related concepts of a certain word or phrase online7. We utilized this re-

source to detect whether the different parts within a candidate sentence pair are

related at the pragmatic level. A boolean value that indicates metonymy relation-

ship is obtained and regarded as another feature of our sentence pair representation

for our NLD analysis. Examples of relatedness that could be discovered in this stage

are given in Table 3.

4.2.6 Deep LSTM Siamese Network Analysis

The use of recurrent neural networks for text similarity has recently received much

attention. Therefore, we take the approach proposed by Mueller and Thyagarajan

7 Flickr Service: https://www.flickr.com/services/api/flickr.tags.getRelated.html
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Different Content Is Metonymy

aeroplane, A380 True

film, hollywood True

apple, iPhone True

audio, grayscale False

Table 3. Examples of metonymy determination using Flickr

(2016), as it has been considered to be the state-of-the-art model for semantic text

similarity between pairs of variable-length sentences. This method uses a siamese

LSTM-based network that encodes the meaning of a sentence in a fixed-length

vector.

We train the model using the Stanford Natural Language Inference (SNLI) Cor-

pus, which collects 570k labeled human-written English sentence pairs8. When

it comes to word embeddings, we considered the four most popular resources:

BERT Devlin et al. (2019), Word2Vec9, fastText10, and GloVe11.

4.3 Stage 3: SVM Classification

All the metrics described above are regarded as features of our candidate sentence

pairs. To make a comprehensive judgment based on these different signals, we apply

a classification method based on SVM Vapnik (2013) using a Radial Basis Function

(RBF) kernel. With regard to hyperparameters, a common practice is to set γ =

1/m, where m corresponds to the number of independent features, which in our

case is 8. Therefore, we train our SVM with γ = 0.125 and the default values of the

e1071 package 12 in R for the rest of the hyperparameters.

In order to account for the variance in the specific train-test split of the data,

we split our labeled corpus using different ratios, 50%-50%, 55%-45%, 60%-40%,

65%-35%, 70%-30%, 75%-25%, and 80%-20%, and then train five models based on

five random samples with the given split ratio. For each split ratio, we calculate

the average performance and its standard deviation to account for the performance

and stability of the models.

As we can see from Table 4, between 60%-40% and 65%-35% we obtain the

smallest standard deviation. We repeated the above steps within the range from

60%-40% to 65%-35%, and we found that a 61.5%-38.5% split to train the SVM

model, the results reach minimum standard deviation. We note that finding the

8 SNLI Corpus: https://nlp.stanford.edu/projects/snli/
9 Word2Vec: https://code.google.com/archive/p/word2vec/

10 fastText: https://fasttext.cc/
11 GloVe: https://nlp.stanford.edu/projects/glove/
12 https://cran.r-project.org/web/packages/e1071/e1071.pdf
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Training - Test Split Ratio F1 σF1

50% - 50% 83.24 2.98

55% - 45% 84.72 2.79

60% - 40% 87.42 1.95

65% - 35% 88.63 2.05

70% - 30% 86.24 3.77

75% - 25% 88.11 3.63

80% - 20% 89.36 5.18

Table 4. Stability of the NLD method based on different training-test split ratio

for our three datasets

most stable split (and not the best performance) helps provide a reliable estimate

of the generalization capacity of our NLD method.

4.4 Stage 4: Non-uniform Language Correction

The goal of this stage is to unify all the non-uniform language cases by choosing the

sentence that is more proper for technical writing for each non-uniform sentence

pair. Based on interviews and collaborative work with technical writers, we set up

the following criteria for sentence selection:

1. Formal writing should be preferred over informal. Contractions are the most

common source of informality in technical writing, and thus they should be

avoided.

2. The choice of words should read natural for the given context.

3. Reading simplicity should be preferred over more complicated grammar struc-

tures.

Based on the criteria above, in this stage we distinguish three main subtasks:

contraction removal, near-synonym choice, and text readability comparison. The

final decision is made by firstly replacing all contractions and then choosing the

sentence with the best near-synonym choice score. If there is a tie in the near-

synonym choice score or both sentences fail to find a match, we select the sentence

with the best readability score as the best sentence.

4.4.1 Contraction Removal

Contraction removal is straightforward as contractions form a fixed set with a one-

to-one mapping with no contracted forms. We created a contraction dictionary that

includes all contracted expressions along with their uncontracted format (e.g. won’t

→ will not, don’t → do not, can’t → cannot, etc.), so that contracted forms can be

replaced accordingly.
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4.4.2 Near-synonym Choice

Near-synonyms are words that have similar meaning or high relatedness, but differ

in lexical nuances Islam and Inkpen (2010). For example, error, mistake, and blunder

all mean a generic type of error, but blunder carries an implication of accident or

ignorance Inkpen (2007). Methods for near-synonym selection fit our task because

they look at lexical nuances as well as at the occurring context. This is, when

trying to replace a word by a near-synonym, the selected word should fit well with

regard to the other words in the sentence. This scenario is indeed what we need to

address when deciding which sentence should be kept during NLC if only one word

is differing between each sentence. For example, given a non-uniform sentence pair:

(7) You must be logged in to a YouTube account to use this feature.

You must be signed in to a YouTube account to use this feature.

We compare the only differing words, i.e. logged and signed, to determine which

one fits better within the sentence. The target words logged and signed become

our candidate choices. The task is to choose the highest scoring candidate word as

the correct word to unify non-uniform language cases. To score the near-synonym

candidate words, a two-phase method using the Google N-gram corpus is proposed.

We represent each sentence using the following notation:

Sk = (. . . wi−4 wi−3 wi−2 wi−1 wi wi+1 wi+2 wi+3 wi+4 . . .)

where wi represents the target word at position i, which can be chosen from the

set of candidate words. In Example 7, wi is “logged” for S1 and “signed” for S2.

Let define s1 to be the differing word for S1 (“logged”) and s2 the differing word

for S2 (“signed”). We take into account at most four words before wi and at most

four words after wi since 5-gram is the longest length in the Google N-gram corpus.

Our task is to choose the differing word that best matches with the context. To

address this task, we created n-gram units for each sk, where 2 ≤ n ≤ 5, and looked

up these units in the corresponding Google N-gram corpus. All the target n-gram

units and the corresponding n is listed in Table 5.

We determine the score for each candidate word considering the tar-

get position and all N -grams containing that word. In our task, we

have two candidate choices for each non-uniform sentence pair at the

target position, i, which are s1 and s2, and their n-gram frequencies

f(1,1), f(1,2), · · · , f(1,j), · · · , f(1,14), f(2,1), f(2,2), · · · , f(2,j), · · · , f(2,14), where f(k,j) is

the frequency of a N -gram of type number j (as indicated in Table 5) for candidate

sk, where 1 ≤ j ≤ 14. In our case, we are looking for as many word matches as

possible in the largest context to determine the best near-synonym choice. There-

fore, we search starting from 5-grams. If no match is found in 5-grams, we search

4-grams, 3-grams and 2-grams likewise. For each N-gram, we compute a normalized

frequency value for each f(k,j) by dividing by the maximum frequency among all
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N-gram Type No. Target N-gram units

1 wi w(i+1) w(i+2) w(i+3) w(i+4)

2 w(i−1) wi w(i+1) w(i+2) w(i+3)

5-gram 3 w(i−2) w(i−1) wi w(i+1) w(i+2)

4 w(i−3) w(i−2) w(i−1) wi w(i+1)

5 w(i−4) w(i−3) w(i−2) w(i−1) wi

6 wi w(i+1) w(i+2) w(i+3)

7 w(i−1) wi w(i+1) w(i+2)

4-gram 8 w(i−2) w(i−1) wi w(i+1)

9 w(i−3) w(i−2) w(i−1) wi

10 wi w(i+1) w(i+2)

3-gram 11 w(i−1) wi w(i+1)

12 w(i−2) w(i−1) wi

13 wi w(i+1)

2-gram 14 w(i−1) wi

Table 5. List of n-gram units used for the selection of a candidate word

types in the current N -gram frequencies:

F (s(k,j)) =



f(k,j)

max(f(1,1), f(1,2), · · · , f(1,5), f(2,1), · · · , f(2,5))
(5-gram)

f(k,j)

max(f(1,6), f(1,7), · · · , f(1,9), f(2,6), · · · , f(2,9))
(4-gram)

f(k,j)

max(f(1,10), f(1,11), f(1,12), f(2,10), f(2,11), f(2,12))
(3-gram)

f(k,j)

max(f(1,13), f(1,14), f(2,13), f(2,14))
(2-gram)

(2)

Finally, we represent the final score F (sk) for each candidate word sk by selecting

the maximum value among F (s(k,j)):

F (sk) =


max(F (s(k,1)), F (s(k,2)), · · · , F (s(k,5))) (5-gram)

max(F (s(k,6)), F (s(k,7)), · · · , F (s(k,9))) (4-gram)

max(F (s(k,10)), F (s(k,11)), F (s(k,12))) (3-gram)

max(F (s(k,13)), F (s(k,14))) (2-gram)

(3)
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Phase 1: Word Choice with Exact Match

First, we obtain 5-gram units from types 1 to 5 for both candidate s1 and s2,

and calculate F (s1) and F (s2) using Equation 2 and 3, respectively. If we have

F (s1) > F (s2), we choose s1, and vice versa. If we could not find any match for

neither s1 nor s2, we obtain 4-gram units from types 6 to 9 for s1 and s2, and

compare F (s1), F (s2) likewise. If no match is found again, we apply the same

method to search for 3-grams from types 10 to 12, and for 2-grams from types 13

and 14, respectively. If no n-grams of types 1 to 14 are found for neither candidate

s1 nor s2, we perform Phase 2.

Phase 2: Word Choice with Relaxed Condition

In technical writing, sentences may contain special terminology, numerical param-

eters, or domain-specific words that could result in a zero match with the Google

N -gram corpus. For example, in this non-uniform sentence pair:

(8) Use a dock connector to usb cable to connect the 30-pin port of the adapter

to your computer.

Use a dock connector to usb cable to connect the 30-pin jack of the adapter

to your computer.

the target word set is {“port”,“jack”}, but the adjacent word “30-pin” is not com-

mon enough in the Google N -gram corpus, therefore we could hardly find a match

in N -grams.

In order to address this issue, we follow Phase 1 with some small changes. To

increase the chance of finding matches in the Google N-gram corpus, we relax the

matching condition by assigning a wildcard to the first word of all the N-gram

units. For example, in the given sentence pair above, any 5-gram unit in the form

of ‘* connect the 30-pin jack/port’, ‘* the 30-pin jack/port of’, ‘* 30-pin jack/port

of the’, ‘* jack/port of the adapter’, where * could represent any word, will be

regarded as a match. Likewise, we apply relaxed matching for 4-gram, 3-gram, and

2-gram units.

4.4.3 Text Readability Score

Some non-uniform sentence pairs differ in more than one word. For instance, in the

following non-uniform sentence pair:

(9) Save an attached video to your Camera Roll album: Touch and hold the

attachment, then tap Save Video.

Save a video from an email message to your Camera Roll album: Touch

and hold the attachment, then tap Save Video.

we decide which sentence to keep based on the third criterion, which is to penalize

sentence complexity, so that the most simple and easy-to-read sentence is kept.

We first considered traditional text readability as our baseline methods. In this

stage, we considered the Flesch-Kincaid Reading Ease Test and the Coleman-Liau
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Index (CLI), which are based on well-differentiated features, i.e. features based on

syllables per word and features based on characters per word. However, preliminary

assessments indicated that CLI seemed better suited for short technical text, so we

decided to use it as our baseline method for measuring text readability.

After defining the baseline method, we explored more recent work in text read-

ability. One of the state-of-the-art approaches in automatic text readability has

been proposed by De Clercq and Hoste (2016). However, when applying their on-

line method to our data 13, we found that it does not perform well on short text and

it is not able to quantify readability differently in most of our candidate sentence

pairs. Another popular approach is Coh-Metrix L2 Crossley et al. (2009), which has

been evaluated in an extensive benchmark Crossley et al. (2011), and it was imple-

mented as part of an automated text evaluation system McNamara et al. (2014).

Therefore, as a second readability approach for our NLC task we incorporated the

Coh-Metrix L2 index.

5 Experiments and Evaluation

In this section we present the datasets, experimental work and results, including a

comparison with other baseline methods.

5.1 Datasets

We collected smartphone user manuals from iPhone Apple Inc. (2015), LG LG

(2009) and Samsung Samsung (2011), which are available online. Then, we per-

formed Stage 1 on the three different datasets, and identified 325 candidate sen-

tence pairs, which we regard as our candidate dataset. Before applying the sentence

analysis and classification stages, each candidate sentence pair in the dataset was

labeled by three different annotators as true or false. The annotators worked sep-

arately to label the sentence pairs. Cases of disagreement were sent again to the

annotators to double-check their judgment. Then, the ground truth for each in-

stance is generated by annotators’ voting. Some statistics from the manuals are

shown in Table 6.

User manual Data volume (Pages) Candidate pairs (True, False)

iPhone 196 208 (102, 106)

LG 274 54 (16, 38)

Samsung 190 63 (32, 31)

Table 6. Dataset statistics

Before the SVM-based classification stage, we split the dataset, which consists

13 https://www.lt3.ugent.be/tools/machine-learning-readability/
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of 150 true positives and 175 true negatives, into a training set (DStrain), and a

testing set (DStest). Following the procedure discussed in Section 4.3, 61.5% of the

data was used for training and the remaining for testing. Considering that the data

distribution is nearly balanced in terms of true and false instances, there was no

need to take stratified samples. This validation procedure was repeated ten times

to account for rthe variance of the results.

5.2 Evaluation Methods and Results

In this section we discuss evaluation and results for both NLD and NLC tasks using

the datasets mentioned in the previous section.

5.2.1 Evaluation of NLD Method

The performance of each annotator against the majority voting is evaluated in

terms of Precision, Recall, Accuracy, and F-measure. These results along with the

number of true/false, positive/negative cases for each annotator are presented in

Table 7.

Parameters Expert 1 Expert 2 Expert 3

True-positive 130 99 125

True-negative 161 164 166

False-positive 20 51 25

False-negative 14 11 9

Precision 86.67 66.00 83.33

Recall 90.27 90.00 93.28

Accuracy 89.54 80.92 89.54

F-Measure 88.43 76.15 88.03

Table 7. Evaluation of annotator performance against majority voting

To measure the agreement among annotators, the Fleiss’ Kappa test Fleiss and

Cohen (1973) is used. Fleiss’ Kappa is an extension of Cohen’s Kappa Cohen (1968).

Unlike Cohen’s Kappa, which only measures the agreement between two annotators,

Fleiss’ Kappa measures the agreement among three or more annotators.

In our case, we have 3 annotators (the annotator number n is 3), each annotator

labeled 325 candidate pairs (the subject volume N is 325), and each candidate pair

was labeled as either negative or positive (the value of category k is 2). The final

Fleiss’ Kappa Value is 0.545, which indicates a moderate agreement level (0.41-

0.60) based on the Kappa Interpretation Model Fleiss and Cohen (1973). In other

words, the performance of the annotators reveal that the NLD task is not simple,
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since there are many cases that are ambiguous and hard to make correct judgments

on, even for humans. For instance:

(10) If you keep entering zhuyin without spaces, sentence suggestions appear.

If you keep entering pinyin without spaces, sentence suggestions appear.

Both zhuyin and pinyin refer to a sound-based writing system for Chinese. From

some online resources, zhuyin and pinyin are regarded as the same language system,

which starts by the syllables ‘bo’, ‘po’, ‘mo’ and ‘fo’. However, some resources point

out some differences in history and usage between pinyin and zhuyin 14. In general,

it is hard to tell the difference in meaning between zhuyin and pinyin, and there-

fore, it is difficult to determine whether the sentence pair above is describing the

same language feature (positive non-uniform language case) or describing different

language features (negative non-uniform language case).

The best performance of annotators is highlighted and regarded as the upper

bound performance (UB) of the NLD task on our dataset, as shown in Table 7. An

unsupervised paraphrase detection system named STS Islam and Inkpen (2008), as

well as a supervised PD system named RAE Socher et al. (2011), are utilized to

generate the baselines of the NLD task. STS uses the similarity score of 0.5 as the

threshold to evaluate their method in the PD task. RAE applies supervised learning

to classify a pair as a true or false instance of paraphrasing. These approaches are

utilized in our evaluation as baselines for the NLD task.

After defining the upper bound and baseline performances of the NLD task, we

performed a series of experiments to determine which pre-trained word embed-

dings with our LSTM network among BERT, Word2Vec, fastText and GloVe. We

performed a series of cross-validation for our LSTM network by varying the pre-

trained word embeddings. In the end, we calculated both the average and standard

deviation of recall precision, accuracy, and F1 score for each word embedding.

Word Embedding (R, σR) (P , σP ) (A, σA) (F1, σF1)

BERT (76.8, 1.8) (86.1, 2.0) (81.6, 0.9) (81.2, 0.7)

Word2Vec (73, 1.1) (73, 4.8) (75.2, 1.8) (73, 2.6)

fastText (74.2, 2.1) (80, 2.4) (78, 2) (77, 2.1)

GloVe (73.4, 2.0) (79.1, 2.0) (77.2, 1.8) (76.2, 1.8)

Table 8. Pre-trained word embedding selection

BERT achieves the best performance among the four methods, as shown in Ta-

ble 8. Therefore, we use BERT word embeddings for the deep LSTM siamese net-

work to calculate text similarity for all our candidate sentence pairs.

After having each feature calculated, we evaluated our proposed NLD method by

14 https://en.wikipedia.org/wiki/Bopomofo
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training the SVM classifier on DStrain, and then performing classification using the

SVM classifier on DStest. The result of our NLD method is shown in the last row of

Table 9. The first row presents the upper bound performance and the following two

rows present the baseline performances. To assess the importance of each feature

utilized in the proposed framework, we performed a feature ablation study Cohen

and Howe (1988) on N-gram, POS analysis, lexical analysis 15, Flickr, and LSTM

siamese networks separately on the DStest. These results are listed in the remaining

rows of Table 9.

Method R(%) P (%) A(%) F1(%)

UB 93.28 86.67 89.54 88.43

STS 100 46.15 46.15 63.16

RAE 100 46.40 46.40 63.39

POS 77.78 72.77 78.40 76.52

CNG Uni-gram 11.11 35.29 52.80 16.90

CNG Bi-gram 44.44 61.54 64.00 51.61

CNG Tri-gram 50.00 62.79 65.60 55.67

GTM + WordNet 85.18 59.74 68.80 70.23

Flickr 48.96 94.00 74.00 64.38

LSTM Siamese 81.29 82.35 82.76 81.82

NLD method 88.16 87.58 88.62 87.87

Table 9. Evaluation of NLD method

Student’s t-tests are applied after running NLD, STS, RAE, and UB methods

on the F-measure metric. The tests reveal that the performance of NLD method is

significantly better than STS and RAE, no significant differences could be found

between UB and NLD methods. These results demonstrate that NLD method would

represent an effective approach for NLD that is on the par with annotator judgment

and improves on state-of-the-art approaches for related tasks.

5.2.2 Evaluation of NLC Method

The Fleiss’ Kappa test showed that our candidate sentence pairs contain several

difficult cases that human annotators disagreed on, as indicated in the previous

section. Such cases are controversial and therefore not appropriate for the evaluation

of NLC. To evaluate NLC, we only selected non-uniform language cases, where all

15 We combine GTM and WordNet by applying SVM regression on the two features to
represent the lexical analysis result.
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the human annotators labeled them as true candidates. Based on this criterion, 78

sentence pairs that are “definite” true NLD cases were selected for evaluating the

NLC task.

In order to evaluate our proposed NLC method, five human annotators were

invited to annotate the 78 sentence pairs. Each annotator labeled each sentence

pair by choosing one of the following options:

1. Sentence 1 is more appropriate than Sentence 2.

2. Sentence 2 is more appropriate than Sentence 1.

3. It is hard to say which sentence should be selected.

For each sentence pair, if Sentence 1 (or Sentence 2) receives the majority of the

votes (more than 3 votes), we regard Sentence 1 (or Sentence 2) as the correct one.

Otherwise, we label the ground truth as “Hard to Say”. 22 out of 78 sentence pairs

were labeled as“Hard to Say”, which shows that the NLC task is not a simple task

either.

Analogous to the evaluation of NLD method, Fleiss’ Kappa test is performed

on the annotated dataset that is used to evaluate our NLC method. In this case,

we have 5 annotators (the annotator number n is 5), each annotator labeled 78

candidate pairs (the subject volume N is 78), each candidate pair is labeled as

either “Sentence 1”, “Sentence 2”, or “Hard to Say” (the value of category k is

3). The final Fleiss’ Kappa Value is 0.59. Similar with NLD method, this Kappa

test result for NLC method also achieves a moderate agreement level (0.41-0.60)

based on the Kappa Interpretation Model Fleiss and Cohen (1973), which reveals

the difficulty of the NLC task.

We performed our NLC method on the evaluation dataset along with an ablation

study. Excluding the “Hard to Say” cases, we compared the results of the method-

ology described in Section 4.4 against the ground truth. The results are shown in

Table 10.

Method R(%) P (%) A(%) F1(%)

Contraction Removal 11.54 9.09 5.36 10.17

CLI 71.42 60.61 62.50 65.57

Coh-Metrix L2 76.47 78.79 73.21 77.61

Near-synonym Choice 80.80 84.84 78.57 82.35

NLC method 93.94 86.11 87.5 89.86

Table 10. Evaluation of NLC method

We performed four methods to select a sentence for each sentence pair, shown in

Table 10. By performing Contraction Removal only, we acquire very poor results. By

applying the baseline text readability method CLI only, we can only achieve 62.50%
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overall accuracy while by using Coh-Metrix L2 Reading Index we achieve 73.21%.

Finally, by using the Near-synonym Choice method only, we achieve 78.57% overall

accuracy. Yet by combining Contraction Removal, Coh-Metrix L2 Reading Index

and Near-synonym Choice as the proposed NLC method, we are able to achieve an

overall accuracy of 87.5%.

5.3 Discussion

The PD systems STS and RAE regard almost all the test cases as true non-uniform

language cases, so the recall is 100% but the precision is very low, as shown in Table

9.

It is worth noting that by using character N-gram analysis alone, it is not possi-

ble to obtain good results. This is because the character N-gram analysis is unable

to capture semantic relatedness, while the NLD task relies heavily on discovering

such relatedness. The reason we applied the N-gram analysis is to use it as a sup-

plementary method to catch differences such as between ‘shut down’ (two words)

and ‘shutdown’ (one word), or for spelling variations.

POS analysis provides a syntactic perspective for the text instances. For instance,

‘then(/RB)’ versus ‘and(/CC)’, and ‘store(/NN)’ versus ‘stores(/NNS)’, the

differences can be reflected in POS tags. Yet, POS analysis alone could not capture

the difference between words such as ‘writing(/VBG)’ versus ‘entering(/VBG)’

since they share the same POS tag. These features make POS analysis outperform

the character N-gram analysis, but not semantic-based approaches.

Lexical analysis (GTM and WordNet) achieves the best recall ratio since it can

provide semantic relatedness, which is the most important aspect for the NLD task.

Flickr is utilized as a supplementary resource to provide pragmatic relatedness.

In addition to these classical NLP methods, the LSTM siamese network trained

on the SNLI corpus provides a good overall insight of text similarity and achieves

the best F1 score. Since the model captures different characteristics of each sentence

and takes into account lexical, structural and semantic aspects, it is not surprising

to see this method achieving both good recall and precision.

By combining the different types of analyses above, the differences of each sen-

tence pair are analyzed at different NLP levels, and thus the relatedness and differ-

ence from structural, grammatical, syntactic, semantic and pragmatic perspectives

can be captured and integrated by the classification method. In this way, the com-

bination of all these features yield better performance than any of the previous

methods independently.

As for the NLC task, using CLI and Coh-Metrix L2 Reading Index alone did not

achieve high performance because text complexity and readability is not a major

factor that influences sentence selection. The major factor is whether the word fits

the context and that is why using Near-synonym Choice method alone, which con-

siders the context of the sentence, achieves 78.57% overall accuracy. By combining

the Contraction Removal, Near-synonym Choice method and Coh-Metrix L2 Read-

ing Index, our proposed NLC method is able to analyze whether words within the
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sentence fit in a natural way and achieve a good overall readability, and therefore

matches expert annotation better when deciding which sentence to use.

6 Conclusions

This paper discussed non-uniform language in technical writing and proposed to

divide it into two main tasks. The first task, Non-uniform Language Detection

(NLD), aims to detect non-uniform language for technical writing at the sentence

level, while the second task, Non-uniform Language Correction (NLC), aims to de-

cide which sentence among the detected non-uniform sentences is more appropriate

for the context. We first proposed the NLD method by integrating different simi-

larity algorithms at the lexical, syntactic, semantic, and pragmatic levels through

an SVM-based classification method. We then proposed the NLC method, which

takes into account semantic relatedness, context association, and text readability

methods.

To evaluate the proposed NLD method, we created a dataset of candidate sen-

tence pairs using several smartphone user manuals. Three annotators manually

labeled all the candidate instances identified in the detection of similar sentences

(stage 1). With the generated ground truth, a series of experiments using our im-

plemented system were carried out. We compared our NLD method against state-

of-the-art paraphrase detection methods. All the sentence pairs that were labeled

as true non-uniform language cases by the three annotators in the previous task

were used in the evaluation of NLC method. To determine which sentence is more

appropriate for technical content in that context, five annotators labeled the true

instances of non-uniform language. We finally compared our NLC method output

against the ground truth generated by the human annotators. We also performed

an ablation test using individual features on both NLD and NLC methods.

Our experiments show that our proposed methods achieve F1 scores above 87%

and 89% for NLD and NLC tasks, respectively. Considering the agreement of an-

notator judgments as reflected by Fleiss’ Kappa value, the NLD and NLC tasks

are fairly difficult. Yet, the experiments reveal that the performance of our NLD

and NLC methods is close to human annotation performance. Technical writing

is an area that has not been extensively investigated and we consider that there

are other research avenues that can be explored. One of them is the considera-

tion of non-uniform language as a real-based value that is linked to the degree of

non-uniformity that a sentence pair exhibits. In addition, intelligent user interfaces

could be studied that incorporates the methods hereby provided for the assistance

of technical writers.
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Kövecses, Z. and Radden, G. 1998. Metonymy: Developing a cognitive linguistic

view. Cognitive Linguistics (includes Cognitive Linguistic Bibliography), 9(1):37–

78.
LG 2009. LG600G User Guide. https://www.manualslib.com/manual/92956/

Lg-Lg600g.html#product-LG600G [Accessed: 15-Dec-2015].
Manku, G. S., Jain, A., and Das Sarma, A. 2007. Detecting near-duplicates

for web crawling. In Proceedings of the 16th International Conference on World

Wide Web, pp. 141–150. Association for Computer Machinery.
McNamara, D. S., Graesser, A. C., McCarthy, P. M., and Cai, Z. 2014. Au-

tomated evaluation of text and discourse with Coh-Metrix. Cambridge University

Press, Cambridge.
Mei, J., Kou, X., Yao, Z., Rau-Chaplin, A., Islam, A., Moh’d, A., and Mil-

ios, E. E. 2015. Efficient computation of co-occurrence based word relatedness.

DemoURL:http://ares.research.cs.dal.ca/gtm/ [Accessed: 01-Dec-2015].
Miller, G. A., Beckwith, R., Fellbaum, C., Gross, D., and Miller, K. J.

1990. Introduction to WordNet: An on-line lexical database. International journal

of lexicography, 3(4):235–244.
Mueller, J. and Thyagarajan, A. 2016. Siamese recurrent architectures for

learning sentence similarity. In Proceedings of the Thirtieth AAAI Conference on

Artificial Intelligence, AAAI’16, pp. 2786–2792. AAAI Press.
Neculoiu, P., Versteegh, M., and Rotaru, M. 2016. Learning text similarity

with Siamese recurrent networks. In Proceedings of the 1st Workshop on Rep-

resentation Learning for NLP, pp. 148–157, Berlin, Germany. Association for

Computational Linguistics.
Nulty, P. and Costello, F. 2009. Using lexical patterns in the google web 1t cor-

pus to deduce semantic relations between nouns. In Proceedings of the Workshop

on Semantic Evaluations: Recent Achievements and Future Directions, SEW 09,

5863, USA. Association for Computational Linguistics.
Samsung 2011. Samsung 010505d5 cell phone user manual. http://cellphone.

manualsonline.com/manuals/mfg/samsung/010505d5.html?p=53 [Accessed:

01-Dec-2015].
Senter, R. and Smith, E. A. 1967. Automated readability index. Wright-

Patterson Air Force Base. AMRL-TR-6620, 3.
Socher, R., Huang, E. H., Pennington, J., Ng, A. Y., and Manning, C. D.

2011. Dynamic pooling and unfolding recursive autoencoders for paraphrase

detection. In Proceedings of the 24th International Conference on Neural Infor-

mation Processing Systems, NIPS11, 801809. Curran Associates Inc., Red Hook,

NY, USA.

https://www.manualslib.com/manual/92956/Lg-Lg600g.html#product-LG600G
https://www.manualslib.com/manual/92956/Lg-Lg600g.html#product-LG600G
Demo URL: http://ares.research.cs.dal.ca/gtm/
http://cellphone.manualsonline.com/manuals/mfg/samsung/010505d5.html?p=53
http://cellphone.manualsonline.com/manuals/mfg/samsung/010505d5.html?p=53


Natural Language Engineering 29

Soto, A. J., Mohammad, A., Albert, A., Islam, A., Milios, E., Doyle,

M., Minghim, R., and Ferreira de Oliveira, M. C. 2015. Similarity-based

support for text reuse in technical writing. In Proceedings of the 2015 ACM

Symposium on Document Engineering, DocEng ’15, Lausanne, Switzerland, pp.

97–106. Association for Computer Machinery.

Sun, Y., Qin, J., and Wang, W. 2013. Near duplicate text detection using

frequency-biased signatures. In Web Information Systems Engineering–WISE

2013, pp. 277–291, Berlin, Heidelberg. Springer.

Vapnik, V. 2013. The nature of statistical learning theory. Springer Verlag, New

York, 2nd edition.

Wang, W., Mohd, A., Islam, A., Soto, A. J., and Milios, E. 2016. Non-

uniform language detection in technical writing. In Proceedings of the 2016 Con-

ference on Empirical Methods in Natural Language Processing, pp. 1892–1900,

Austin, Texas. Association for Computational Linguistics.

Wang, X., Li, C., Zheng, Z., and Xu, B. 2018. Paraphrase recognition via com-

bination of neural classifier and keywords. In 2018 International Joint Conference

on Neural Networks (IJCNN), pp. 1–8. IEEE.
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