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Abstract

In the fields of pharmaceutical research and biomedical sciences, QSAR mod-

eling is an established approach during drug discovery for prediction of biological

activity of drug candidates. Yet, QSAR modeling poses a series of open chal-

lenges. First, chemical compounds are represented on a high-dimensional space

and thus feature selection is typically applied, although this task entails a chal-

lenging combinatorial problem with potential loss of information. Second, the

definition of the applicability domain of a QSAR model is a desirable aspect to

determine the reliability of predictions on unseen chemicals, which is often dif-

ficult to assess due to the extent of the chemical space. Finally, interpretability

of these models is also a critical issue for drug designers. The purpose of this

work is to thoroughly assess the application of neural-based methods and recent

advances deep learning for QSAR modeling. We hypothesize that neural-based

methods can overcome the need to perform a descriptor selection phase. We de-

veloped three QSAR models based on neural networks for prediction of relevant

chemical and biomedical properties that, in the absence of any feature selection

step, can outperform the state-of-the-art models for such properties. We also

implemented an embedded applicability domain technique based on network

output probabilities that proved to be effective; its application improved the
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predictive performance of the model. Finally, we proposed the use of a post hoc

feature analysis technique based on an aggregation of network weights, which

enabled effective detection of relevant features in the model.

Keywords: neural networks, QSAR modeling, model interpretability,

applicability domain, feature selection

1. Introduction

The integration of computational sciences into the pharmaceutical and biomed-

ical industry has yielded several applications and technological advances during

the last decades [14, 48]. The pharmaceutical industry is primarily headed to-

wards improving the long and costly process of discovery and development of5

new drugs, which involves several stages including in vitro and in vivo wet-

lab experiments. Computer-aided rational drug design has allowed accelerating

drug candidate identification and prioritization while reducing costs and has

helped improve the critical attrition rate in drug discovery projects [12, 44]. The

purpose of in silico drug discovery is to design models for predicting biological10

activity and physicochemical properties of drug candidate compounds. These

models, referred to as Quantitative Structure-Activity Relationship (QSAR),

are regression or classification models used in chemical and biological sciences

to predict the relationship between features encoding the molecular structure of

compounds and the target property or biological activity under study. QSAR15

models are extensively used for virtual screening and prediction of categorical

properties of drug candidates [77].

The development of QSAR models generally involves dealing with high-

dimensional data representations. Drug candidates can be described by a large

number of features or descriptors, which encode structural properties of the20

molecules. Feature selection is usually applied prior to the development of a

QSAR model in order to harness high dimensionality [16, 59], and mostly be-

cause traditional machine learning techniques do not perform properly in this

high-dimensional scenario [22]. However, considering the large variety of possi-

2



ble descriptors that can be calculated from compounds, feature selection repre-25

sents a difficult combinatorial problem that may neglect valuable information.

Another important aspect of QSAR modeling is determining the reliability of

predictions on unseen compounds. The Applicability Domain (AD) of a QSAR

model is the molecular subspace where predictions performed by the model

are expected to be accurate. AD analysis is a significant step in the process30

of building a reliable QSAR model [65] and the identification of the AD of a

QSAR model remains a current matter of research [36, 32]. A last important

aspect of QSAR modeling is interpretability, as such models are managed by

medicinal chemists in the process of searching for drug candidates. Being able

to gain insight into the features that are the most relevant for prediction is35

valuable for experts [69], as such interpretation makes it possible to understand

the molecular substructures that play a significant role in the biological activity

or property of the chemical compound.

Regarding the techniques that have been used for QSAR modeling, two of

them stand out. On the one hand, the use of meta-classifiers and consensus40

approaches has been widespread in QSAR modeling, and these methods have

become the state of the art for predicting several physicochemical properties and

biological activities [34, 6]. On the other hand, artificial neural networks—a bio-

inspired technique [15]—have also been used for QSAR modeling, although their

adoption has been criticized due to their lack of generalization and the difficulty45

in the interpretation of such models in physicochemical terms [7]. Moreover,

in recent years QSAR modeling has witnessed the advent of deep learning,

which has brought several advantages as well as challenges. Recent advances in

Deep Neural Network (DNN) approaches have made neural models less prone

to overfitting, and hence more likely to be applied successfully for predicting50

unseen compounds. In addition, DNN-based models have been found effective

for solving large-scale and high-dimensional data analysis problems [8].

The goals of this work are to build QSAR models that incorporate recent

advances in deep neural networks for prediction of three relevant properties in

biomedical sciences, and to benchmark these models against the state of the55
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art. In addition, we aim to explore the potential of applying confidence esti-

mation to neural-based models as an effective way for AD assessment, as well

as to study the possibility to interpret these models in terms of the molecular

features used to represent the chemical data. In order to address these goals,

we propose the development of neural-based QSAR models for bioactivity pre-60

diction of three different properties. On these models, we evaluate the network

output probabilities as a means of performing an AD estimation. In addition,

we provide a post-hoc analysis of the most relevant features for each property.

The first two properties are Cytochrome P450-drug interaction for isoforms 2C9

and 3A4, which are a family of enzymes involved in the oxidation of compounds.65

These two isoforms are particularly relevant to drug metabolism. It has been

proven that inhibition of CYP enzymes leads to adverse side effects of drug-drug

interactions [10], and hence the study of CYP interactions has become of major

interest in the fields of drug discovery. The third property is Ready Biodegrad-

ability (RB). Biodegradation is highly relevant to biomedical sciences, since the70

presence of certain substances persisting over an extended period of time has

been linked to major health risks, such as cancers, neurological dysfunction and

hormonal changes [62, 56]. Biodegradation properties are also relevant in the

design of polymeric materials used for biomedical purposes [57]. Therefore, pre-

dicting biodegradability properties on chemicals represents a critical aspect for75

several biomedical areas.

The contributions of this work can be summarized as follows:

• We applied recent advances in deep neural networks to the development of

neural-based QSAR models and obtained higher performance compared

to state-of-the-art models, while at the same time overcoming the need80

for a potentially detrimental feature selection phase.

• We proved the effectiveness of using network output probabilities to per-

form AD estimation, which represents an advancement over consensus-

based AD models that merely provide a binary signal with regard to in-

clusion or exclusion in the applicability domain.85

4



• We applied a post hoc interpretability method based on an analysis of

the network weights that has never been applied before in the context of

QSAR models. We presented the results by means of a novel visualization

based on heat maps, and proved that it effectively allows to gain insight

into the interpretability of the proposed neural-based models.90

• Our models outperformed the current state of the art for three different

properties of high relevance in biomedical sciences.

This paper is organized as follows: in Section 2 we conduct a survey on

relevant articles in the area and how they relate to our work. In Section 3,

the datasets used for our experiments as well as the proposed methods are95

detailed. We present the results obtained for our proposed models and discuss

their implications in Sections 4 and 5. Finally, conclusions and future lines of

work are presented in Section 6.

2. Related Work

For the past decades the process of rational drug design has relied on com-100

puter modeling techniques, and various in silico methods have been widely

applied with the aim of both speeding up the discovery process and reduce

costs [28, 73, 26]. Traditional techniques, such as Support Vector Machines

(SVM), Decision Trees, Näıve Bayes and k-Nearest Neighbors, have been exten-

sively used for building QSAR models because of their relatively good perfor-105

mance and simplicity [74, 3, 47]. Recently, there has been a strong tendency to

consensus-based approaches, which consist in assembling different base classi-

fiers to combine their predictions and, as a consequence, increase the prediction

capabilities of the model [38, 17, 39, 2, 67]. This type of models are typically

among the top performing techniques for the prediction of several chemical prop-110

erties in QSAR modeling, but at the expense of limited interpretability. Besides,

they are constrained by their base models, which usually rely on a feature selec-

tion step in order to perform at their best [23, 41], and they are normally not
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able to capture complex relationships between descriptors or rule out redundant

information [63, 38].115

2.1. Prediction techniques for Cytochrome P450-drug interaction and Ready

Biodegradability

Extensive research work has been carried out for predicting Cytochrome

P450-drug interaction, and the majority of these works usually involve a feature

selection process [31, 13, 68]. Jensen et al. [31] presented two Gaussian ker-120

nel weighted k-Nearest Neighbors models. It was the first work to incorporate

the use of Extended Connectivity Fingerprints (ECFP) and Functional Class

Fingerprints (FCFP) [61] as features for CYP2D6 and CYP3A4 inhibition pre-

diction. Cheng et al. [13] developed consensus-based models for prediction of five

different CYP isoforms, using SVM, C4.5 Decision Tree, k-Nearest Neighbors125

and Näıve Bayes as base classifiers, combined by a backpropagation artificial

neural network. they also showed an AD estimation that improves prediction

accuracy. More recently, Shah et al. [68] developed a joint QSAR model based

on feed-forward multi-layer neural networks for prediction of drug metabolism

of isoforms 3A4, 2C9 and 2D6 of Cytochrome P450. Fingerprints were used as130

input features, and the three biological activities were embedded in a multitask

deep neural network. Nembri et al. [54] developed two consensus-based models

for prediction of isoforms 3A4 and 2C9 inhibition, and also performed an AD

analysis. Both of the reported models were constructed upon two different vot-

ing approaches and used variations of k-Nearest Neighbors and a classification135

tree as base classifiers. Each base classifier was constructed employing either

ECFP or a small number of molecular descriptors obtained from a two-phase

feature selection process. The best performing model reported for isoforms 2C9

and 3A4 was one of the voting approaches (namely Consensus 1 ). Since the

work by Nembri et al. [54] reports one of the best prediction performances of140

biological activity for Cytochrome P450 and also due to the provision of all the

data necessary for reproducibility, it constitutes the reference research work on

CYP inhibition that we use for comparison.
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There are also several research studies for prediction of both Biodegradability

and Ready Biodegradability of compounds [46, 18, 11, 5, 36, 21], where two main145

approaches stand out: consensus and neural-based models. Consensus mod-

els are predominant for the prediction of this property, where feature selection

techniques are applied in most cases [46, 18, 5, 50]. Involving neural-based tech-

niques, Goh et al. [21] developed a multimodal architecture for biodegradability

prediction combining a Convolutional Neural Network with a fully-connected150

multi-layer perceptron, and using both domain-specific hand-engineered fea-

tures and learned representations from raw data. In Mansouri et al. [46], two

consensus models were proposed for prediction of Ready Biodegradability of

compounds over three different base classifiers: Partial least Squares Discrimi-

nant Analysis (PLS-DA), SVM and k-Nearest Neighbors. The proposed consen-155

sus models were based on two different voting approaches and an AD analysis

was carried out on the developed QSAR models. The best voting approach

Consensus 2 is reported as the best predictive model, which represents the

best classification performance compared to other published QSAR models on

biodegradation, and thus we chose this work Mansouri et al. [46] as our reference160

method for comparison.

Deep learning has emerged in the last years as a widely used soft-computing

technique for the development of QSAR models and other areas in drug dis-

covery research, and it has established itself as the state-of-the-art prediction

technique [12, 19]. Although artificial neural networks have already been used165

for QSAR models in the past [79, 26], there is a recent tendency to adopt new

strategies for training neural-based models, such as the application of novel

techniques for avoiding overfitting and vanishing/exploding gradients during

training. Although the application of deep learning in QSAR modeling is still

in its beginnings, several research studies have developed deep learning-based170

models for various drug discovery problems successfully [43, 40, 37]. In Ma et al.

[43], models based on DNNs achieved higher prediction performance than Ran-

dom Forest on a group of large and diverse QSAR datasets. Lenselink et al. [40]

compared five different techniques over a ChEMBL bioactivity benchmark set
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and found that DNNs outperformed traditional methods. They also showed that175

an ensemble of DNNs with additional tuning further improves the performance

obtained by more simple DNN-based models. Koutsoukas et al. [37] showed

that DNN-based models statistically outperform models based on traditional

methods, such as Näıve Bayes, k-Nearest Neighbors, SVM and Random Forest

over diverse datasets.180

2.2. Applicability domain and interpretability of prediction models

The determination of the applicability domain of a QSAR model is a cru-

cial aspect of the modeling process, since it allows to determine the molecular

subspace of compounds where the QSAR model is expected to make reliable pre-

dictions [36, 55]. Most research articles in the area address AD determination185

using a standalone method, where different strategies and statistical measures

are adopted to determine AD boundaries [36]. A good number of them focus

on defining different molecular similarity criteria for identifying outliers, which

are then excluded from the AD of the model [64, 42, 9]. Klingspohn et al. [36]

performed a comprehensive study in order to define a taxonomy of AD methods190

and find the best approaches for estimating the AD of different classification

methods. In this article, two main categories of techniques for determining the

AD were identified and compared: those based on novelty detection (identifi-

cation of outliers) and those based on confidence estimation (inferred from the

trained classifier). Experiments using six different binary classification tech-195

niques on ten datasets were performed. It was concluded that AD measures

based on confidence estimation consistently perform better than novelty detec-

tion techniques, and thus they are suitable approaches for defining the AD.

Since QSAR models are meant to assist experts during drug discovery, their

results should be as interpretable as possible [58]. Consensus-based approaches,200

in spite of having good predictive performance, tend to lack interpretability since

their output result is a combination of different base classifiers. Interpretability

of neural network-based models has been studied for several years within the

machine learning community [70, 76, 33] and it also remains a matter of research
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in drug discovery. Approaches based on post hoc interpretability have been205

explored recently [52, 4, 60]. This type of techniques takes a trained model

and makes an attempt to understand predictions in terms of the features used

by the model. As opposed to a low-level algorithmic comprehension of the

model, which is the most usual approach taken for interpretability analysis,

post hoc techniques aim to characterize the behavior of the predictive model210

without attempting to explain its internal representation and operations, but

providing a functional understanding of it in terms of its features. In this line of

work, Tsang et al. [75] developed a framework to discover statistical interactions

between the input features in a feed-forward multi-layer neural network, by

direct interpretation of its learned weights. Their method proved to be effective215

on both synthetic and real-world application datasets, and thus we chose it as

our reference paper for post hoc feature analysis.

2.3. Our proposal

Based on the observed limitations and the current state of the art, we pro-

pose the development of neural-based methods to model three physicochemical220

properties, namely: Cytochrome P450-drug interaction for isoforms CYP2C9

and CYP3A4, and Ready Biodegradability. We compare our approach with

the consensus models that, to the best of our knowledge, represent the top-

performing models that have been published for the prediction of these proper-

ties. We present an embedded applicability domain technique, which is derived225

from our trained models. This approach would be categorized as prediction

confidence estimation according to Klingspohn’s taxonomy [36]. We propose

the application of a post hoc interpretability technique based on an aggregative

analysis of the weight contributions of the network, which is based on Tsang

et al. [75]. To the best of our knowledge, this method has not yet been employed230

for interpretability of QSAR models. Additionally, the results of this post hoc

analysis are summarized using a novel visualization based on heat maps. Fi-

nally, our models and results are contrasted to those reported in Nembri et al.

[54] and Mansouri et al. [46]. The reason for choosing these latter articles as
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our baselines for comparison is due to the possibility of reproducing their data235

and experiments and the high performance attained in the reported results.

The entire workflow of our approach is depicted in Figure 1. First, we pre-

processed the three datasets under study (a). Second, we enriched the Original

datasets by adding new molecular descriptors (b) and we split the Enriched

and Original datasets into the partitions for training and validating our models240

(c) . Then, we developed our neural-based models by performing an iterative

process for hyperparameter tuning and we train the chosen models (d). Next,

we evaluated their performance using several metrics and we contrasted these

results with different baselines (e). Finally, we developed an AD model based

on confidence estimation and applied (f) a post hoc feature analysis method,245

which allows to determine the most influential features to our models (g).

CYP3A4 CYP2C9
Ready

Biodegradability

AD analysis

Post hoc feature analysis

Prediction results

Enriched datasetOriginal dataset

Training set

Validation set

Held-out set

(a) (b)

(c)

(d)

(e)

(f)

(g)

Figure 1: Depiction of the entire workflow of our method: (a) data preprocessing, (b) dataset

enrichment, (c) dataset partition, (d) development and training of models, (e) evaluation of

models, (f) AD analysis, (g) post hoc feature analysis.
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3. Materials and Methods

In this section, we provide an overall description of all the techniques used

in our work, as well as the preparation of the datasets and the selection of the

hyperparameters of the model.250

We say that we enrich a dataset when we extend its set of features by includ-

ing new molecular descriptors not previously considered in the Original dataset

(Figure 1–b). It is worth noting that the included descriptors are members of the

family of descriptors already included in the Original datasets. The reported

partitions of the datasets in Train, Validation and Held-out sets1 were kept255

the same during the construction of our models (Figure 1–c). For the sake of

completeness, we also trained our Best E models using 5-fold Cross Validation.

The details of this process and its results are summarized in the Supplementary

Material.

All of our models are based on feed-forward multi-layer neural networks. The260

architecture for each model varies depending on the number of input features

or molecular descriptors. As a general approach, larger inputs demand more

complex architectures, so the Enriched versions of the datasets yielded mod-

els with more nodes than those built for the Original versions of the datasets.

Our neural-based models were obtained following a two-phase process (Figure265

1–d). The first one consisted in an exploratory phase, where different architec-

tures and optimization strategies were considered. In this phase we developed

prototypes and tuned their parameters. The need for an exploratory phase

when constructing neural networks has been reported previously in the con-

text of QSAR modeling [81]. The second phase consisted in selecting the best270

prototype from the first phase. This selection was performed by assessing classi-

fication performance on the Validation set. Due to the inherent stochasticity of

neural networks, we repeated the training process using a set of fifteen random

1Note that the Original datasets refer to these partitions in their papers as Training, Test

and External Validation, respectively.
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seeds for each dataset. As a result of this two-phase process we obtained fifteen

models with the same hyperparameters but initialized differently. The average275

performance of these fifteen models is reported as the Average model, whereas

we report as the Best model the one that performs the best on the Validation

set.

After the best model for each Enriched dataset was obtained, we built a

new model for the Original version of each dataset—namely Best O—using the280

same hyperparameters as for the Enriched models but using less nodes per

layer. The construction of two models, one based on the Enriched dataset and

another based on the Original dataset, enable us to compare the performance

of our proposed strategy over one same set of compounds with and without the

application of a feature selection process, and it allows to analyze the potential285

of our approach on high-dimensional datasets.

3.1. Datasets

The three datasets used in this work, namely CYP2C9, CYP3A4 [54] and

RB [46], are publicly available and were selected taking into account their rele-

vance in QSAR modeling in the context of biomedical data analysis. We made290

datasets CYP2C9, CYP3A4 and RB in their Enriched versions publicly avail-

able2. Further information on the calculation of molecular descriptors for the

construction of the Enriched datasets can be found in the Supplementary Ma-

terial.

3.1.1. CYP2C9 and CYP3A4295

Datasets CYP2C9 and CYP3A4 have a total of 11940 and 12118 compounds,

and the proportion between active/inactive compounds on their Training and

Validation sets is 49/100 for CYP2C9 and 66/100 for CYP3A4. As for the Held-

out sets, the ratios are 56/100 in CYP2C9 and 98/100 in CYP3A4. CYP2C9

and CYP3A4 share the same compounds in their Training sets as well as in300

2https://github.com/VirginiaSabando/DNN-QSAR-2019.git
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their Validation sets. In the Original datasets, CYP2C9 includes ten molecular

descriptors, whereas CYP3A4 includes eight molecular descriptors. They also

include a 1024-bit ECFP for each compound [61]. For the Enriched versions of

both datasets we added a total of 2701 molecular descriptors to the CYP2C9

dataset and 2699 molecular descriptors to the dataset CYP3A4, leading to a305

total of 2711 and 2707 descriptors, respectively, in addition to the 1024-bit

ECFP. We performed the calculation of molecular descriptors and ECFP using

Dragon 7 [72].

There were a few compounds on the datasets provided by Nembri et al. [54]

whose SMILES codes were not properly formed, and hence we were unable to310

calculate their molecular descriptors. As a result, one molecule was removed

from both Training sets, six molecules were removed from the Held-out set of

CYP2C9, and one molecule was removed from the Held-out set of CYP3A4.

3.1.2. Ready Biodegradability (RB)

Dataset RB comprises 1725 compounds, where the ratio between active/inactive315

compounds is 51/100 for the Training set, 49/100 for the Validation set and

40/100 for the Held-out set. A total of 41 molecular descriptors were provided

for dataset RB in its Original form. We calculated additional molecular de-

scriptors to obtain its Enriched version, which gave a total of 1480 molecular

descriptors. We computed these descriptors using Dragon 7 [72].320

3.2. Model Parameterization

In this section, we describe all the model parameters used for the three

Enriched datasets. Parameters for the remaining models and their training

can be found in the Supplementary Material. The models were built using

Tensorflow 1.7 [1].325

The input features for our predictive models were molecular descriptors and

ECFP. In the cases of CYP2C9 and CYP3A4, we split the ECFP into 1024

separate bits and then considered each one of these bits as a single input feature.

All nodes in the input and hidden layers of the models use rectified linear units
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(ReLU) as activation function [53], and the output layer implements a softmax330

function, which has two nodes for each class output probability. The networks

were trained using standard backpropagation [66] and we chose a minibatch size

of 200 instances to train the networks. We use cross-entropy with logits as cost

function and Adam optimizer [35] for minimizing it.

For weight initialization we experimented with Xavier initialization [20] and335

He Normal initialization [24], which are both considered state-of-the-art initial-

ization techniques [51, 25]. We also applied Batch Normalization [29] in all

layers of our networks for faster training and to avoid exploding/vanishing gra-

dients. In order to avoid overfitting, several regularization techniques were used

in each model. We used Dropout [71] with varying dropout rates according to340

the number of nodes in each layer, and also implemented L2-regularization [27]

varying the penalization coefficient λ in each model. We applied early stopping

to avoid overtraining the models, hence helping to prevent possible overfitting.

The QSAR model obtained for Enriched dataset CYP2C9 is a feed-forward

multi-layer neural network architecture consisting of one input layer of 3735345

nodes (for 2711 molecular descriptors plus 1024 bits from ECFP) and three

hidden layers of 50, 20 and 5 nodes, respectively. Batch Normalization was

applied with a decay value of 0.9 to prevent the weights from growing too large,

and we used a learning rate value of 0.00001. We initialized the network weights

by using Xavier initialization. A penalization coefficient λ = 0.0001 was used for350

L2-regularization. In order to deal with class imbalance we optimized a weighted

cost function, which penalized mispredicted instances from the least popular

class by increasing the loss by a factor proportional to the class imbalance

observed in the Training set.

The architecture of the QSAR model that we developed for Enriched dataset355

CYP3A4 is similar to that used for CYP2C9, with the difference that the input

layer consists of 3731 nodes (for 2707 molecular descriptors plus 1024 bits from

ECFP). As in the case of dataset CYP2C9, all layers implement Batch Normal-

ization with a decay value of 0.9. For CYP3A4, we initialized network weights

by applying He Normal initialization, and the same regularization criteria than360
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for CYP2C9 was taken into account for this dataset. For class imbalance mit-

igation we applied a stratified sampling technique, where an equal number of

compounds belonging to each class was drawn to build each of the minibatches

during training. The compounds were sampled with replacement from the train-

ing set and randomly shuffled before they were fed to the network during the365

training phase.

Lastly, we developed a QSAR model for Enriched dataset RB based on a less

dense feed-forward multi-layer neural network architecture, considering that the

input features were fewer than those in the previously described models. The

input layer comprises 1480 nodes for molecular descriptors, and the network is370

also made of three hidden layers of 20, 10 and 5 nodes, respectively. All layers

implement Batch Normalization with a decay value of 0.9, as in the case of the

previous models. We initialized the network weights by using Xavier initializa-

tion, and as regularization techniques we used Dropout and L2-regularization

with a penalization coefficient λ = 0.001. The learning rate was set to 0.0001.375

We used a stratified sampling technique in order to counteract class imbalance,

with the same sampling technique as described in the case of CYP3A4.

3.3. Applicability Domain

The applicability domain (AD) of a QSAR model is the molecular subspace

in which the predictions made by the model are expected to be accurate [30, 78].380

In other words, the definition of an AD allows the expert to determine whether

a prediction on a new compound is likely to be reliable or not.

We propose using class probability provided by the output layer of our mod-

els to estimate their AD. This leads to AD models which are embedded into

the prediction models. The embedded AD models were evaluated as follows.385

First, we computed class probability values using the network softmax layer for

every compound. Then, we sorted these values in decreasing order to elabo-

rate a ranking. Finally, in order to evaluate the goodness of the ranking of

confident predictions, we computed Mean Average Precision (MAP) [45], where

several metrics (Accuracy, NER, etc) were calculated on the k-highest ranked390
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compounds, where k is varied from 1 to n, and n being the total number of

compounds. All these different metrics computed for different number of com-

pounds are averaged. This AD approach (Figure 1–f) allows to evaluate the

performance of the models at any desired threshold of membership to the AD.

3.4. Post hoc feature analysis395

As QSAR models are tools for the benefit of chemists and drug developers

alike, it remains an important asset to provide means of interpretability for

any proposed models [49, 58]. For domain specialists it is useful to know the

features that make a particular family of compounds to show some degree of

activity regarding a property of interest, since this allows to reduce the search400

space during drug discovery.

We propose a post hoc feature analysis technique as a way of providing inter-

pretability to our neural-based models, so that domain experts can determine

the most relevant molecular descriptors in the context of a prediction model

(Figure 1–g). By analyzing the network weight contributions in an aggrega-405

tive manner, it is possible to gain insight into the descriptors that are more

influential on the predicted target value.

The proposed post hoc feature analysis technique is described as follows: once

training is completed, we calculate a score for every descriptor by taking into

account the sequence of contributions from the input to the output nodes. For410

a given feature, these contributions are calculated by aggregating the weights

of the neural model that are connected to this feature. More formally, for any

layer, the score of a node j is computed using

S(nj) =
1

k

k∑
i=1

|wj,i|S(ni), (1)

which is the average of the k products between the weights connecting node

j with the k nodes in the following layer and their scores. Given that this is415

a recursive definition, by setting the score corresponding to the node of the

output layer to 1, we can compute all node scores by starting from the output

nodes and going backwards until the scores corresponding to the input nodes are
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computed. We considered the absolute values of the weights, as a way to analyze

quantitative impact of the descriptors on the output, regardless of whether they420

contribute in a positive or negative manner on the result. The rationale is that

input features exhibiting high scores are likely to be more relevant than those

showing low scores, as slight changes in their values would have greater impact

on the outcome of the network.

4. Results425

We performed an evaluation of each of our models by comparing them against

Consensus 1 and Consensus 2, which are the top-performing methods ever

reported for the three datasets under study [54, 46] (Figure 1–e). To account

for a fair comparison, we used the same metrics as reported in Nembri et al.

[54], Mansouri et al. [46], i.e., Sensitivity (Sn), Specificity (Sp) and NER, as430

well as Accuracy (Acc) and MAP, as described in Section 3.3. Sensitivity and

Specificity quantify the accuracy in predicting the active and inactive class,

respectively, while NER is the arithmetic mean of Sn and Sp. Additionally,

other performance metrics can be found in the Supplementary Material.

Since our neural-based models are inherently stochastic, fifteen different tri-435

als were run to train and test the models, each one using a different random

seed. Therefore, we report both the average performance of the developed mod-

els, i.e., taking into account all trials, and the best performance in terms of

NER, i.e., the model obtained from the best seed.

Regarding the AD analysis, we report both NER and the percentage of440

compounds that are not within the AD—which are referred to as Not Assigned

compounds (%na)—as it was also done by Nembri et al. [54] and Mansouri

et al. [46]. We report NER when %na is fixed to the value of the best reported

method in the referenced articles. Similarly, we report %na when NER is fixed

to the same values reported in the referenced papers.445
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4.1. CYP2C9

The results for the Original and Enriched versions of CYP2C9 are presented

in Table 1. We also include the results of the best model reported by Nembri

et al. [54], i.e., Consensus 1. It can be seen that for both Validation and Held-

out sets our best Enriched model, namely Best E, performs better than the best450

model on the Original dataset, namely Best O, and both of them outperform

Consensus 1. In addition, all of our models achieve equivalent or better NER

values than Consensus 1 when keeping %na at the same value.

CYP2C9
Validation set Held-out set

NER Sn Sp Acc NER Sn Sp Acc

Original

Consensus 1 0.89 0.89 0.88 - 0.83 0.85 0.82 -

Average O 0.91 0.90 0.92 0.91 0.83 0.79 0.88 0.86

Best O 0.92 0.92 0.92 0.92 0.85 0.82 0.87 0.86

Enriched
Average E 0.92 0.93 0.91 0.92 0.85 0.87 0.83 0.84

Best E 0.93 0.94 0.93 0.93 0.87 0.89 0.86 0.87

Table 1: Results on the Validation and Held-out sets of CYP2C9. Consistently with the

results reported by Nembri et al. [54] the percentage of not assigned compounds (%na) was

set to 40% for Validation set, and 45% for Held-out set.

A more comprehensive evaluation of the performance of our models on the

CYP2C9 Held-out set is presented in Figures 2 and 3. These figures show differ-455

ent performance measures when different cutoff values for the AD are considered.

In Figure 2 we present the mean of all trials—i.e., Average performance, whereas

in Figure 3 the results for the best trial are presented. Both figures correspond

to the models trained on the Enriched version of CYP2C9. The horizontal axis

represents the number of compounds sorted by class probability, so that the460

left-most compounds are the most confidently predicted ones. The vertical axis

represents different performance measures evaluated over the set.

By looking at these plots it is possible to set any cutoff point in the horizontal

axis in order to evaluate performance when the compounds with least certain
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prediction—those to the right of the cutoff point—are discarded. In particular,465

two cutoff points are marked as noteworthy; these are the cutoff values where

%na and NER match with the ones reported by Nembri et al. [54]. MAP results

for the Validation sets of the three datasets can be found in the Supplementary

Material.
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Figure 2: Average MAP performance of all trials on the Held-out set of Enriched CYP2C9.

(a) NER and Accuracy are shown. (b) Sensitivity and Specificity are shown.
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Figure 3: MAP Performance of the best trial on the Held-out set of Enriched CYP2C9. (a)

NER and Accuracy are shown. (b) Sensitivity and Specificity are shown.

4.2. CYP3A4470

We present the results for CYP3A4 in Table 2. For both Validation and

Held-out sets our best Enriched model show better performance than the best

model trained on the Original version of the dataset, which in turn overcomes

the results reported for Consensus 1. All of our models obtain higher Non-Error

Rate for the same number of discarded compounds than the reference model,475

yet ours exhibiting balanced values of Sensitivity and Specificity.
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CYP3A4
Validation set Held-out set

NER Sn Sp Acc NER Sn Sp Acc

Original

Consensus 1 0.88 0.92 0.83 - 0.80 0.89 0.70 -

Average O 0.89 0.83 0.94 0.91 0.82 0.76 0.88 0.83

Best O 0.91 0.91 0.91 0.91 0.83 0.84 0.82 0.83

Enriched
Average E 0.92 0.89 0.94 0.92 0.84 0.84 0.85 0.84

Best E 0.93 0.91 0.94 0.93 0.85 0.86 0.84 0.85

Table 2: Results on the Validation and Held-out sets of CYP3A4. Consistently with the

results reported by Nembri et al. [54] the percentage of not assigned compounds (%na) was

set to 36% for Validation set, and 42% for Held-out set.

The plots showing the comprehensive performance of the QSAR models with

regard to its AD model for CYP3A4 Held-out set are presented in Figures 4 and

5. Similarly as it was done for CYP2C9, Figure 4 shows the results for the mean

of all of our trials, while Figure 5 reports the results when our best model is480

considered.
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Figure 4: Average MAP performance of all trials on the Held-out set of Enriched CYP3A4.

(a) NER and Accuracy are shown. (b) Sensitivity and Specificity are shown.
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Figure 5: MAP Performance of the best trial on the Held-out set of Enriched CYP3A4. (a)

NER and Accuracy are shown. (b) Sensitivity and Specificity are shown.

4.3. Ready Biodegradability

Table 3 shows the results for RB. Our best Enriched model, i.e., Best E,

exhibits higher NER in both Validation and Held-out sets than Best O, our

best model trained on the Original dataset. Both of these models show higher485

NER values than for Consensus 2.

Ready Biodegradability (RB)
Validation set Held-out set

NER Sn Sp Acc NER Sn Sp Acc

Original

Consensus 2 0.91 0.88 0.94 - 0.87 0.81 0.94 -

Average O 0.92 0.94 0.90 0.91 0.88 0.85 0.91 0.90

Best O 0.91 0.91 0.91 0.91 0.88 0.85 0.92 0.90

Enriched
Average E 0.94 0.93 0.90 0.94 0.88 0.83 0.93 0.90

Best E 0.94 0.95 0.92 0.93 0.89 0.85 0.93 0.91

Table 3: Results on the Validation and Held-out sets of Ready Biodegradability (RB). Con-

sistently with the results reported by Mansouri et al. [46] the percentage of not assigned

compounds (%na) was set to 15% for Validation set, and 13% for Held-out set.
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The plots displaying the performance of the QSAR models with regard to its

AD model for the Enriched model on the RB Held-out set are presented for the

mean of all of our trials (Figure 6), and for the best trial, i.e., Best E (Figure

7).490
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Figure 6: Average MAP performance of all trials on the Held-out set of Enriched RB. (a)

NER and Accuracy are shown. (b) Sensitivity and Specificity are shown.
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Figure 7: MAP Performance of the best trial on the Held-out set of Enriched RB. (a) NER

and Accuracy are shown. (b) Sensitivity and Specificity are shown.

4.4. Post hoc Feature Analysis

We performed a post hoc feature analysis in order to gain insight on which

molecular descriptors are the most relevant to our models. We propose a novel

visualization for summarizing main patterns of features that were found to be

relevant across multiple trials by means of a heat map. The heat maps that495

encode the results corresponding to the feature analysis for datasets CYP2C9,

CYP3A4 and RB are presented in Figures 8, 9 and 10, respectively. Each row

corresponds to a different trial of our model using its own seed for initializa-

tion of weights and random variables. These trials are sorted by performance,

where the top row represents the best trial. Each column on the maps repre-500

sents molecular descriptors, where only the 20 most relevant descriptors of each

model according to our measure were considered. Descriptors marked with an

asterisk are also part of the Original version of the dataset. Descriptor names

starting with ‘ECFP’ represent Extended Connectivity Fingerprint fragments,

which are followed by a number that represents the location of the bit that was505

identified by our method as relevant. The rank that a descriptor occupies in

the relevance order of a particular trial is encoded with the number inside the
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corresponding heat map cell. Likewise, darker colors are applied to cells depict-

ing higher relevance descriptors in a specific trial, whereas lighter colors apply

to less relevant descriptors.510

5. Discussion

In this section, we review the results presented previously in Section 4. We

discuss the performance of the models, as well as the results of our embedded

AD model and post hoc feature analysis technique.

5.1. Neural-based Classifiers versus Consensus-based Classifiers515

As it is shown in Table 1, our models for prediction of CYP2C9 drug inter-

action outperform the results reported by Nembri et al. [54]. The NER values of

Average E and Average O are consistently superior to the reference results. On

the internal Validation set of CYP2C9, the average Sn and Sp values in both

the Original and the Enriched version of the dataset are higher and more bal-520

anced than those achieved by Consensus 1, which indicate that our model has

successfully overcome the class imbalance of the dataset as it was able to cor-

rectly predict both active and inactive compounds with similar accuracy. When

evaluated on the Held-out set of CYP2C9, our models also improve the perfor-

mance of the reference results, although the differences between our models and525

Consensus 1 are smaller than those obtained on the Validation set. Cohesively,

a mild imbalance between Sn and Sp is observed, which is consistent with the

results reported by Nembri et al. [54] on the Held-out set. The best trial on the

Enriched version of the CYP2C9 dataset, i.e.,Best E, attained a NER value of

0.93 for the internal validation set and a value of 0.87 when tested on the Held-530

out set, which is an improvement of 0.04 over the same results for Consensus

1.

In Table 2 the predictive performance of our models exceed the results re-

ported using Consensus 1. Similarly to what it was observed for CYP2C9, the

average NER of our models is higher than that reported for Consensus 1 in535
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the Original and Enriched versions of the dataset, while also showing balanced

results between Sn and Sp average values. On the Enriched Held-out set, while

the predictive performance slightly decreases compared to the results on the

Validation set, balanced results between Sn and Sp values are obtained. This

observation does not hold for the average results in the Original version of the540

dataset. It is worth noticing that average results were computed by taking

into consideration all trials of the model, including those undertrained due to

the model apparently getting caught on local minima. In a similar way as it

happened for CYP2C9, Best E obtained the highest NER for both the internal

validation set and Held-out set—0.93 and 0.85, respectively—, which represents545

an increase of 0.05 over the same results for Consensus 1.

From Table 3 we can see that the predictive performance of our models

improves the results using Consensus 2 [46] for the RB dataset. The average

NER of our models in the Validation set is higher than that of Consensus 2

in both the Original and Enriched versions of the dataset, and at the same550

time showing more balanced Sn and Sp average values. The performance of the

model on the Held-out set is higher in the Original dataset than in its Enriched

version. Balance between Sn and Sp values is not observed for this partition,

where Sn is consistently lower than Sp in all the experiments. It is noteworthy

that this imbalance is also present in Consensus 2, which suggests an issue555

with the Held-out set data that makes prediction of inactive compounds to be

inaccurate when compared to results for the Validation set. Nonetheless, the

best trial on the Enriched version of RB, i.e., Best E, attained the highest NER

in both Validation set and Held-out set—0.94 and 0.89, respectively.

For both datasets CYP3A4 and CYP2C9, a high consistency is observed be-560

tween the results got for both Validation and Held-out sets. These results show

that the obtained models have strong generalization capabilities. Besides, for

both Held-out sets no large disparity is observed between Sn and Sp values of

Best E, which in turn implies that the proposed models are able to classify active

and inactive compounds unbiasedly. At a high-level analysis of the results, the565

results for the three datasets show that their Enriched versions lead to models
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with higher predictive performance and more balanced Specificity and Sensitiv-

ity than just using the Original versions with the descriptors chosen by means

of a feature selection approach. Attaining balanced performance in a binary

classification problem is a desirable quality in a QSAR model [80]. The results570

of the Enriched models suggest that there is relevant data encoded on molecular

descriptors that were not present in the Original versions of the datasets. Con-

sequently, our experimental results imply that neural networks are able to learn

in large dimensionality scenarios, and that performing a feature selection step

could lead to valuable information loss, and hence to a decrease in the predictive575

performance. Furthermore, our work proves that neural-based QSAR models

are capable of surpassing the benchmarked consensus-based models. Therefore,

the use of neural networks constitutes a strong approach for QSAR modelling.

5.2. Embedded Applicability Domain Technique

We proposed using an embedded AD model based on the class probabilities580

calculated by the output layer of our prediction model. This approach was

applied on each QSAR model and evaluated on the Validation and Held-out

sets by measuring the extent by which misclassification is correlated to the

predicted class confidence.

The plots for CYP2C9, which are displayed in Figures 2 and 3, show that as585

the number of compounds in the AD increases, i.e., to the right on the horizontal

axis, the values for all metrics tend to decay continuously, which implies that

the predictive performance of the model is in fact correlated with our definition

of AD.

It is fair to say that these curves are not smooth for the left-most compounds.590

Some peaks are observed in NER and Acc plots (Figures 2–a and 3–a), while

slope fluctuations in the Sn and Sp curves are observed (Figures 2–b and 3–b).

For the best trial Best E, as it can be seen from Figure 3, a strong downward

peak is observed on the Sp curve for the left-most compounds. This was caused

by a few inactive compounds that were misclassified with a high output prob-595

ability, which is clearly an unexpected result. It is worth noticing, however,
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that the curve fluctuation stabilizes shortly after this peak is observed. Fig-

ure 2 shows that in average all trials exhibited similar behaviour to the best

trial, Best E. Moreover, irregularities on the slope of Sn and Sp for Average E

can be explained because of a few trials performing quite poorly compared to600

the majority of the trials. This issue can be examined in more detail in the

Supplementary Material.

With regard to dataset CYP3A4, and similarly to what we observed for

CYP2C9, Figures 4 and 5 show the effectiveness of our embedded AD approach.

From the analysis of the Average performance on the Held-out set on Figure605

4, Sn exhibits a fair variance for the left-most compounds, as depicted in its

uneven curve for NER, while Sp is smooth along the whole set. In contrast,

Best E exhibits a fairly smooth NER curve. The irregularities on the slope of

Sn for Average E can be explained by a few trials that performed slightly worse

than the majority of the trials.610

Regarding RB (Figures 6 and 7), Sn on both the average performance plot

and on the best trial plot are not smooth, as it presents abrupt decays for the

left-most compounds. Some peaks can be observed on NER curves as well, which

is caused by on the Sn curves (Figures 6–b and 7–b). These observations imply

that the model is not able to predict active compounds with high certainty615

correctly. Even though the curves stabilize when fewer compounds are not

assigned (%na), the behavior of the best trial appears to be unstable, even

though this same model performed outstandingly well on the Validation set.

This issue, along with the average results on the Held-out set from Figure 6,

indicates that the model was not able to generalize well, since it exhibits a poor620

performance in terms of Sn. As discussed above, imbalanced Sn and Sp results

are also observed for Consensus 2, as reported by Mansouri et al. [46].

One possible cause for this issue might be that the compounds in the Held-

out set are significantly different from those in the Train and Validation sets.

In order to test this hypothesis, we performed a similarity analysis between all625

partitions of the three datasets using two distances: standardized Euclidean and

cosine. The results from such analysis are presented in the Supplementary Ma-
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terial, and they show that there is indeed a large average difference between the

compounds in the Held-out set of the RB dataset and those in the Validation

set when measuring their respective distances to the RB Train set. These aver-630

age distances are in turn considerably larger than those observed for CYP2C9

and CYP3A4 datasets. The difference between these sets of compounds would

explain the generalization problems of Best E on RB Held-out set.

This generalization problem due to data distribution differences gets exacer-

bated as the dimensionality of the data increases, so the models built upon the635

Enriched version are disfavoured in contrast to those models for the Original

version.

From the figures discussed above it is clear that our models were able to

reach the same NER values as reported by Nembri et al. [54] and Mansouri

et al. [46] for the three datasets, yet dismissing many fewer compounds as not640

assigned (%na) than the models proposed therein. For CYP2C9, a NER value

of 0.83 with 45%na is reported for Consensus 1, while Best E attains the same

NER value dismissing only 22% of compounds on the Held-out set. In the case

of CYP3A4, a NER value of 0.8 with 42%na is reported for Consensus 1, while

Best E achieves the same NER value with only 20%na on the Held-out set.645

Finally, on the Held-out set of RB dataset, a NER value of 0.87 with 13%na is

reported for Consensus 2, while Best E attains the same NER value with only

5%na. A similar analysis could be performed by taking into consideration %na

reported by Nembri et al. [54] and Mansouri et al. [46] for the three datasets,

since our models systematically reached higher NER values for the same amount650

of discarded compounds than Consensus 1 and Consensus 2 in both Validation

and Held-out sets.

5.3. Post hoc Feature Analysis

From the heat maps in Figures 8, 9 and 10, one interesting aspect in all

three models is that we can pinpoint molecular descriptors that were highly655

influential to all trials of the same model. For instance, for CYP2C9, the ECFP

fragment ECFP 393 was the most relevant feature for eleven out of the fifteen
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trials, being nine of those trials among the best performing ones. Molecular

descriptors H-046 and nRNR2 were also frequently selected in the different

trials; the latter descriptor is also present in the Original CYP2C9 dataset. In660

the case of CYP3A4, the fragment ECFP 885 was a highly influential feature

during the training phase of the model, as it was considered among the top

three most relevant descriptors in all trials. Descriptors SdssC and H-049 were

also signaled as relevant to the majority of trials, according to our measure.

Interestingly, the molecular descriptor D/Dtr04 was identified as an important665

feature occupying the first place in five trials, although these trials were among

the worst trials. For dataset RB, the molecular descriptor NdssC is chosen

as the most relevant for most models, as it was considered the most relevant

descriptor for eleven out of the fifteen trials. Descriptors O-058 and C-040 were

also signaled as important features, occupying the top three positions for the670

majority of trials.

Another interesting aspect that can be observed from these heat maps is that

similarly performing trials tend to choose the same descriptors and in similar

order of relevance. For instance, in Figure 8 descriptors are: N-071, NsssCH, C-

034 and H-051 were spotted as relevant only by the best performing trials and675

occupied similar positions on the relevance rankings of every trial. Similarly,

SsssN, T(N..N), H-047, MLOGP2, F01[C-N] and the P VSA family of descrip-

tors were deemed as influential in low-performing trials. The ECFP fragments

were mostly included by the best-performing trials. The same phenomenon is

observed in Figure 9: ECFP 509, ECFP 599 and ECFP 862 were mostly sig-680

naled by our measure in the best trials, while descriptors D/Dtr05, D/Dtr11,

SAdon, SsOH, SsssN, nArOR and the P VSA family of descriptors were found

to be somewhat relevant in the low-performing trials.

Among the molecular descriptors identified as relevant for each model by our

technique, there are some descriptors that are also in the Original versions of685

the datasets. The largest number of descriptors shared between these two sets is

observed for dataset RB, where 10 out of 36 of the features signaled as the most

important were also present in the Original RB dataset. Out of these 10, only 4
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descriptors were highly relevant to the majority of trials, yet occupying medium-

to-low importance positions in all models. Figure 8 shows that only 3 out of the690

36 descriptors are present in both the Original and Enriched CYP2C9 dataset;

however, as mentioned before, the descriptor nRNR2 was identified as one of the

most relevant descriptors for all of the trials by our technique. Lastly, in Figure

9 it is shown that no molecular descriptors present in the Original CYP3A4

dataset were marked as relevant for the Enriched model. It is worth noticing695

that both models Consensus 1 developed for CYP2C9 and CYP3A4 datasets

by Nembri et al. [54] take into account ECFP as inputs to one of their base

models, hence all of the ECFP fragments are considered to be present in the

Original version of these two datasets.

Taking into consideration that all of our models outperformed the reference700

models reported by Nembri et al. [54] and Mansouri et al. [46], while at the

same time identifying relevant molecular descriptors not included in the Original

datasets, it is possible to conclude that meaningful information for the model

might be encoded in such molecular descriptors, and hence that relevant data

could have been lost in the Original feature selection process. Furthermore, by705

means of this technique it was possible to identify molecular descriptors that

were relevant to our models, and to find interesting relationships among them.

Therefore, the proposed technique for post hoc feature analysis represents a way

of providing interpretability to our neural-based models. One observation of the

heat map visualizations is that they are practically limited by the maximum710

number of compounds that can be visually analyzed at the same time. Yet we

note that an analysis on the top-20 or 30 features can be carried out with no

problems as it was described previously.

6. Conclusions

QSAR modeling has become a key stage in the complex drug discovery pro-715

cess throughout the years. Upon the recent increase in the volume and quality

of accessible datasets as well as computational power, more complex machine
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learning algorithms have established as current state of the art in QSAR model-

ing. Consensus approaches have consistently proven their efficacy for bioactivity

prediction, but tend to lack interpretability and suffer from the limitations of720

their base classifiers. DNNs have not been widely adopted as a standard for

QSAR modeling yet, although their effectiveness in solving high-dimensional

problems make them a suitable technique for this area.

While DNN-based models attain higher predictive performance than other

established techniques, they have their own challenges, such as low interpretabil-725

ity and proneness to overfitting. In this work we developed three neural-based

QSAR models, which outperformed the state-of-the-art results for the three

properties under study. At the same time we address the interpretability draw-

back without the need for performing feature selection. In addition, in this

work we posed a strategy for analyzing the applicability domain of a neural-730

based QSAR model based on network output probabilities, which was shown to

be correlated to the likelihood of correct classification. We also provided a tech-

nique based on an aggregation of the network weights for identifying the most

relevant molecular descriptors and fingerprint fragments in a post hoc manner,

which provides a sense of interpretability to our models. As future work we735

plan to investigate the impact of multi-task training, as a way of improving the

performance of neural-based QSAR models.
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