
An Argumentative Approach to Reasoning
with Inconsistent Ontologies

Sergio Alejandro Gómez1 Carlos Iván Chesñevar1,2

Guillermo Ricardo Simari1

1 Artificial Intelligence Research and Development Laboratory,
Department of Computer Science and Engineering,

Universidad Nacional del Sur,
Av. Alem 1253 - (8000) Bah́ıa Blanca, Argentina,

Email: {sag,cic,grs}@cs.uns.edu.ar
2CONICET (National Council of Scientific and Technical Research), Argentina

Abstract

Standard approaches to reasoning with Description
Logics (DL) ontologies require them to be consistent.
However, as ontologies are complex entities and some-
times built upon other imported ontologies, inconsis-
tencies can arise. In this paper, we present a frame-
work for reasoning with inconsistent DL ontologies.
Our proposal involves expressing DL ontologies as De-
feasible Logic Programs (DeLP). Given a query posed
w.r.t. an inconsistent ontology, a dialectical analy-
sis will be performed on a DeLP program obtained
from such ontology where all arguments in favor and
against the final answer of the query will be taken into
account. We also present an application to ontology
integration based on the global-as-view approach.

Keywords: Semantic Web, Description Logics, defea-
sible argumentation, Defeasible Logic Programming,
inconsistent ontology handling, ontology integration

1 Introduction and Motivations

The Semantic Web (Berners-Lee et al. 2001) is a fu-
ture vision of the web where stored information has
exact meaning, thus enabling computers to under-
stand and reason on the basis of such information.
Assigning semantics to web resources is addressed by
means of ontology definitions (Gruber 1993).

As proposed by the World Wide Web Consor-
tium1, ontology definitions are meant to be written
in an ontology description language such as OWL
(McGuiness & van Harmelen 2004), whose subset
known as OWL-DL is based on Description Logics
(DL) (Baader et al. 2003). Although ontology defini-
tions expressed in DL can be processed with existing
DL reasoners (e.g. Racer (Haarslev & Möller 2001)),
such DL reasoners are incapable of dealing with in-
consistent ontology definitions.

This situation is particularly important in the Se-
mantic Web setting, where ontologies are complex
entities prone to suffer inconsistencies (Huang et al.

This research was funded by Agencia Nacional de Promoción
Cient́ıfica y Tecnológica (PICT 2002 No. 13.096, PICT 2003
No. 15.043, PAV 2004 076), by CONICET (Argentina),
by Project TIN2006-15662-C02-01 (MEC, Spain), Project
24/ZN10 (SGCyT, UNS).

Copyright c©2008, Australian Computer Society, Inc. This
paper appeared at the Knowledge Representation Ontology
Workshop (KROW 2008), Sydney, Australia. Conferences in
Research and Practice in Information Technology, Vol. 90.
Thomas Meyer and Mehmet A. Orgun, Eds. Reproduction
for academic, not-for profit purposes permitted provided this
text is included.

1www.w3c.org

2005). A particular source of inconsistency is related
to the use of imported ontologies when the knowl-
edge engineer has no authority to correct them. As
these imported ontologies are usually developed in-
dependently, their combination could also result in
inconsistencies. The problem of combining two or
more different ontologies in order to obtain a uni-
fied, consistent ontology is known as ontology inte-
gration (Klein 2001). One kind of such integration is
known as global-as-view integration (Calvanese et al.
2001), where a global ontology is used as a view of
local ontologies that define the actual data.

There are two main ways to deal with inconsis-
tency in ontologies (Huang et al. 2005): one is to
diagnose and repair it when it is encountered; an-
other is to avoid the inconsistency and to apply a
non-standard inference relation to obtain meaning-
ful answers. Although there are existing approaches
for the former (e.g. identifying the minimally unsat-
isfiable sub-ontologies or calculating the maximally
satisfiable sub-ontologies), in this work we propose to
use defeasible argumentation (Chesñevar et al. 2000,
Prakken & Vreeswijk 2002) to focus on the latter.
Grosof et al. (2003) have determined that a subset
of DL can be effectively translated into an equiv-
alent subset of Horn logic. In particular, DeLP is
an argumentative framework based on logic program-
ming that is capable of dealing with possibly inconsis-
tent knowledge bases (KB) codified as a set of Horn-
like clauses called DeLP programs (Garćıa & Simari
2004). When presented with a query, DeLP performs
a dialectical process in which all arguments in favor
and against a conclusion are considered; arguments
regarded as ultimately undefeated will be considered
warranted.

In this article we propose a framework for repre-
senting possibly inconsistent DL ontologies. Reason-
ing in such ontologies will be carried out by means of
a dialectical analysis. Our proposal involves mapping
DL ontologies into a DeLP program. That is, given a
DL ontology ΣDL, provided ΣDL satisfies certain re-
strictions, it will be translated into a DeLP program
ΣDeLP . Given a query φ, a dialectical process will
be performed to determine if φ is warranted w.r.t.
ΣDeLP . Besides, we apply our proposal to perform
global-as-view integration when the involved ontolo-
gies can be potentially inconsistent.

The rest of the article is structured as follows.
Section 2 introduces the fundamentals of Descrip-
tion Logics. Section 3 briefly explains the Defeasible
Logic Programming formalism. Section 4 explains
how DL ontologies are going to be translated into
DeLP. Section 5 introduces δ-ontologies, a particu-
lar kind of DL ontologies amenable for its treatment
within DeLP. Section 6 presents an application to on-

Proc, of the Knowledge Representation Ontology Workshop (KROW-2008), Sydney, Australia

Page 11

tology integration based on defeasible argumentation.
Section 7 enumerates some properties of the proposed
approach. Section 8 discusses related work. Finally
Section 9 concludes.

2 Description Logics

Description Logics (DL) are a well-known family of
knowledge representation formalisms (Baader et al.
2003). They are based on the notions of concepts
(unary predicates, classes) and roles (binary rela-
tions), and are mainly characterized by constructors
that allow complex concepts and roles to be built from
atomic ones. The expressive power of a DL system is
determined by the constructs available for building
concept descriptions, and by the way these descrip-
tions can be used in the terminological (Tbox) and
assertional (Abox) components of the system.

We now describe the basic language for building
DL expressions. Let C and D stand for concepts and
R for a role name. Concept descriptions are built
from concept names using the constructors conjunc-
tion (C � D), disjunction (C � D), negation (¬C),
existencial restriction (∃R.C), and value restriction
(∀R.C). To define the semantics of concept descrip-
tions, concepts are interpreted as subsets of a domain
of interest, and roles as binary relations over this do-
main. An interpretation I consists of a non-empty set
ΔI (the domain of I) and a function ·I (the interpre-
tation function of I) which maps every concept name
A to a subset AI of ΔI , and every role name to R to a
subset RI of ΔI ×ΔI . The interpretation function is
extended to arbitrary concept descriptions as follows:
(¬C)I = ΔI\CI ; (C�D)I = CI∪DI ; (C�D)I = CI∩
DI ; (∃R.C)I = {x|∃y s.t. (x, y) ∈ RI and y ∈ CI},
and (∀R.C)I = {x|∀y, (x, y) ∈ RI implies y ∈ CI}.
Besides, the expressions 	 and ⊥ are shorthands for
C � ¬C and C � ¬C, resp. Further extensions to the
basic DL are possible including inverse and transitive
roles noted as P− and P+, resp.

A DL ontology Σ = (T, A) consists of two finite
and mutually disjoint sets: the Tbox T which intro-
duces the terminology and the Abox A which con-
tains facts about particular objects in the application
domain. Tbox statements have the form C � D (in-
clusions) and C ≡ D (equalities), where C and D are
(possibly complex) concept descriptions.

The semantics of Tbox statements is as follows.
An interpretation I satisfies C � D iff CI ⊆ DI , I
satisfies C ≡ D iff CI = DI . Objects in the Abox are
referred to by a finite number of individual names and
these names may be used in two types of assertional
statements: concept assertions of the type a : C and
role assertions of the type 〈a, b〉 : R, where C is a
concept description, R is a role name, and a and b
are individual names. An interpretation I satisfies
the assertion a : C iff aI ∈ CI , and it satisfies 〈a, b〉 :
R iff (aI , bI) ∈ RI . An interpretation I is a model
of a DL (Tbox or Abox) statement φ iff it satisfies
the statement, and is a model of a DL ontology Σ iff
it satisfies every statement in Σ. A DL ontology Σ
entails a DL statement φ, written as Σ |= φ, iff every
model of Σ is a model of φ.

3 Defeasible Logic Programming

Defeasible Logic Programming (DeLP) (Garćıa &
Simari 2004) provides a language for knowledge repre-
sentation and reasoning that uses defeasible argumen-
tation (Chesñevar et al. 2000, Prakken & Vreeswijk
2002, Simari & Loui 1992) to decide between con-
tradictory conclusions through a dialectical analysis.

Recent research has shown that DeLP provides a suit-
able framework for building real-world applications
that deal with incomplete and potentially contradic-
tory information.

In a defeasible logic program P = (Π, Δ), a set Δ
of defeasible rules P −≺ Q1, . . . , Qn, and a set Π of
strict rules P ← Q1, . . . , Qn can be distinguished.

Definition 1 (Strict, defeasible and DeLP pro-
grams) LDeLP =df LDeLPΠ ∪ LDeLPΔ is the lan-
guage of DeLP programs, where LDeLPΠ is the
language of DeLP programs formed by strict rules
B ← A1, . . . , An with (n ≥ 1) and facts B (i.e.,
rules where n = 0), and LDeLPΔ is the language
of DeLP programs formed only by defeasible rules
B −≺ A1, . . . , An with (n ≥ 1).

Literals can be positive or negative. The comple-
ment of a literal L (noted as L) is p if L =∼p and
∼ p if L = p. Deriving literals in DeLP results in
the construction of arguments. An argument A is a
(possibly empty) set of ground defeasible rules that
together with the set Π provides a logical proof for a
given literal Q, satisfying the additional requirements
of non-contradiction and minimality. Formally:

Definition 2 (Argument) Given a DeLP program
P, an argument A for a query Q, denoted 〈A, Q〉, is
a subset of ground instances of defeasible rules in P,
such that: (1) there exists a defeasible derivation for
Q from Π ∪ A; (2) Π ∪ A is non-contradictory (i.e.,
Π ∪ A does not entail two complementary literals P
and ∼ P), and, (3) there is no A′ ⊆ A such that
there exists a defeasible derivation for Q from Π∪A′.
An argument 〈A1, Q1〉 is a sub-argument of another
argument 〈A2, Q2〉 if A1 ⊆ A2.

The notion of defeasible derivation corresponds to
the usual query-driven SLD derivation used in logic
programming, performed by backward chaining on
both strict and defeasible rules; in this context a
negated literal ∼P is treated just as a new predicate
name no P . Minimality imposes a kind of ‘Occam’s
razor principle’ (Simari & Loui 1992) on argument
construction. The non-contradiction requirement for-
bids the use of (ground instances of) defeasible rules
in an argument A whenever Π ∪ A entails two com-
plementary literals. The notion of contradiction is
captured by the notion of counterargument.

Definition 3 (Counterargument. Defeat) An
argument 〈A1, Q1〉 is a counterargument for an
argument 〈A2, Q2〉 iff there is a subargument 〈A, Q〉
of 〈A2, Q2〉 such that the set Π ∪ {Q1, Q} is con-
tradictory. An argument 〈A1, Q1〉 is a defeater
for an argument 〈A2, Q2〉 if 〈A1, Q1〉 counterargues
〈A2, Q2〉, and 〈A1, Q1〉 is preferred over 〈A2, Q2〉
w.r.t. a preference criterion � on conflicting argu-
ments. Such criterion is defined as a partial order
�⊆ Args(P)×Args(P). The argument 〈A1, Q1〉 will
be called a proper defeater for 〈A2, Q2〉 iff 〈A1, Q1〉
is strictly preferred over 〈A, Q〉 w.r.t. �; if 〈A1, Q1〉
and 〈A, Q〉 are unrelated to each other will be called
a blocking defeater for 〈A2, Q2〉.

Generalized specificity (Simari & Loui 1992) is
typically used as a syntax-based criterion among con-
flicting arguments. However, other alternative partial
orders could also be valid.

In order to determine whether a given argument A
is ultimately undefeated (or warranted), a dialectical
process is recursively carried out, where defeaters for
A, defeaters for these defeaters, and so on, are taken
into account. An argumentation line starting in an
argument 〈A0, Q0〉 is a sequence [〈A0, Q0〉, 〈A1, Q1〉,

CRPIT Vol 90 --- KROW 2008

Page 12

〈A2, Q2〉, . . . , 〈An, Qn〉 . . .] that can be thought of
as an exchange of arguments between two parties, a
proponent (evenly-indexed arguments) and an oppo-
nent (oddly-indexed arguments). Each 〈Ai, Qi〉 is a
defeater for the previous argument 〈Ai−1, Qi−1〉 in
the sequence, i > 0. In order to avoid fallacious rea-
soning, dialectics imposes additional constraints on
such an argument exchange to be considered ratio-
nally acceptable. Given a DeLP program P and an
initial argument 〈A0, Q0〉, the set of all acceptable ar-
gumentation lines starting in 〈A0, Q0〉 accounts for a
whole dialectical analysis for 〈A0, Q0〉 (i.e., all possi-
ble dialogues about 〈A0, Q0〉 between proponent and
opponent), formalized as a dialectical tree.

Nodes in a dialectical tree T〈A0,Q0〉 can be marked
as undefeated and defeated nodes (U-nodes and D-
nodes, resp.). A dialectical tree will be marked as an
and-or tree: all leaves in T〈A0,Q0〉 will be marked
U-nodes (as they have no defeaters), and every inner
node is to be marked as D-node iff it has at least
one U-node as a child, and as U-node otherwise. An
argument 〈A0, Q0〉 is ultimately accepted as valid (or
warranted) w.r.t. a DeLP program P iff the root of
its associated dialectical tree T〈A0,Q0〉 is labeled as
U-node.

Given a DeLP program P, solving a query Q w.r.t.
P accounts for determining whether Q is supported
by (at least) one warranted argument. Different dox-
astic attitudes can be distinguished as follows: Yes,
accounts for believing Q iff there is at least one war-
ranted argument supporting Q on the basis of P; No,
accounts for believing ∼Q iff there is at least one war-
ranted argument supporting ∼Q on the basis of P;
Undecided, neither Q nor ∼Q are warranted w.r.t. P,
and Unknown, Q does not belong to the signature of
P.

4 Expressing DL Ontologies in DeLP

In the presence of inconsistent ontologies, traditional
DL reasoners (such as RACER (Haarslev & Möller
2001)) issue an error message and stop further pro-
cessing. Thus the burden of repairing the ontology
(i.e., making it consistent) is on the knowledge engi-
neer. We are interested in coping with inconsistencies
such that the task of dealing with them is automat-
ically solved by the reasoning system. We propose
using DeLP to perform such a task.

Grosof et al. (2003) show that the processing of
ontologies can be improved by the use of techniques
from the area of logic programming; they have iden-
tified a subset of DL languages that can be effectively
mapped into a Horn-clause logics. Our proposal is
in part based on such research by adapting it to the
DeLP framework. We therefore propose translating a
DL ontology Σ = (TS∪TD, A), with TS∩TD = ∅, into
a DeLP program P = (Π, Δ) by means of a mapping
T such that P = T (Σ), where Π = TΠ(TS) ∪ TΠ(A)
and Δ = TΔ(TD). We will consider the Tbox as parti-
tioned into two disjoint sets—a strict terminology TS
and a defeasible terminology TD. Intuitively the set
Π of strict rules in P will correspond to the Abox A
joined with TS in Σ, and the set Δ of defeasible rules
will correspond to TD in Σ.

In the rest of this section, we will explain how to
achieve the translation of DL ontologies into DeLP
programs. For clarity, strict rules of the form “H ←
B1, . . . , Bn” will be sometimes written as “H ←
B1∧ . . .∧Bn” and defeasible rules “H −≺ B1, . . . , Bn”
as “H −≺ B1 ∧ . . . ∧ Bn”. As noted by Grosof et al.
(2003), for DL sentences to be mapped into Horn-logic
rules, they must satisfy certain constraints. Conjunc-
tion and universal restrictions appearing in the right-
hand side of inclusion axioms can be mapped to heads

of rules (called Lh-classes). In contrast, conjunction,
disjunction and existential restriction can be mapped
to rule bodies whenever they occur in the left-hand
side of inclusion axioms (called Lb-classes). As equal-
ity axioms “C ≡ D” are interpreted as two inclusion
axioms “C � D” and “D � C”, they must belong to
the intersection of Lh and Lb.

Definition 4 (Lh language. Lh-classes. Lb lan-
guage. Lb-classes. Lhb language. Lhb-classes
(adapted from (Grosof et al. 2003))) Let A be
an atomic class name, C and D class expressions,
and R a property. In the Lh language, C � D is a
class, and ∀R.C is also a class. Class expressions in
Lh are called Lh-classes. In the Lb language, C�D is
a class, and ∃R.C is a class too. Class expressions in
Lb are called Lb-classes. The Lhb language is defined
as the intersection of Lh and Lb. Class expressions
in Lhb are called Lhb-classes.

We now define the mapping from DL to DeLP.
Without losing generality, we assume that ontology
definitions are normalized w.r.t. negation. That is,
negations in class expressions are shifted inwards us-
ing De Morgan’s rules and well-known relations be-
tween existential and value restrictions (Baader et al.
2003).

First we show how to map DL axioms into defeasi-
ble rules. As mentioned in Section 3, defeasible rules
are meant to represent possibly inconsistent informa-
tion. Thus DL axioms in defeasible terminologies are
going to be interpreted as default class inclusions.

Definition 5 (TΔ mapping from DL sentences
to DeLP defeasible rules) Let A, C,D be concepts,
X, Y variables, P,Q properties. The TΔ : 2LDL →
2LDeLPΔ mapping is defined in Fig. 1. Besides, rules
of the form “(H1 ∧ H ′) −≺ B” are rewritten as two
rules “H1 −≺ B” and “H2 −≺ B”, rules of the form
“H1 −≺ H2 −≺ B” are rewritten as “H1 −≺ B ∧H2”,
and rules of the form “H −≺ (B1∨B2)” are rewritten
as two rules “H −≺ B1” and “H1 −≺ B2”.

TΔ({C � D}) =df

{
Th(D, X) −≺ Tb(C, X)

}
,

if C is an Lb-class and D an Lh-class
TΔ({C ≡ D}) =df TΔ({C � D}) ∪ TΔ({D � C}),

if C and D are Lhb-classes

TΔ({	 � ∀P.D}) =df

{
Th(D, Y) −≺ P (X, Y)

}
,

if D is an Lh-class

TΔ({	 � ∀P−.D}) =df

{
Th(D, X) −≺ P (X, Y)

}
,

if D is an Lh-class

TΔ({P � Q}) =df

{
Q(X, Y) −≺ P (X, Y)

}
TΔ({P ≡ Q}) =df

{
Q(X, Y) −≺ P (X, Y)
P (X, Y) −≺ Q(X, Y)

}

TΔ({P ≡ Q−}) =df

{
Q(X, Y) −≺ P (Y, X)
P (Y, X) −≺ Q(X, Y)

}

TΔ({P+ � P}) =df

{
P (X, Z) −≺ P (X, Y) ∧ P (Y, Z)

}
TΔ({s1, . . . , sn}) =df

⋃n

i=1
{TΔ({si})}, if n > 1

where:
Th(A, X) =df A(X)

Th((C � D), X) =df Th(C, X) ∧ Th(D, X)
Th((∀R.C), X) =df Th(C, Y) −≺ R(X, Y)

Tb(A, X) =df A(X)
Tb((C � D), X) =df Tb(C, X) ∧ Tb(D, X)
Tb((C D), X) =df Tb(C, X) ∨ Tb(D, X)
Tb((∃R.C), X) =df R(X, Y) ∧ Tb(C, Y)

Figure 1: Mapping from DL ontologies to DeLP de-
feasible rules

Example 1 Consider the DL terminology TD =
{(b � f), (c � ¬f), (c � s � f)} that expresses both
that birds fly and that chickens do not fly unless they

Proc, of the Knowledge Representation Ontology Workshop (KROW-2008), Sydney, Australia

Page 13

are scared. The application of the TΔ mapping to
TD yields a set Δ of defeasible rules, where Δ =
{(f (X) −≺ b(X)), (∼ f (X) −≺ c(X)), (f (X) −≺ c(X),
s(X))}.

Next we present a mapping from DL axioms to
strict rules. We are going to assume that strict ter-
minologies are consistent (see Section 5.3).
Definition 6 (T ∗

Π mapping from DL sentences
to DeLP strict rules) Let A, C,D be concepts, X, Y
variables, P,Q properties. The T ∗

Π : 2LDL → 2LDeLPΠ

mapping is defined in Fig. 2. Besides, rules of the
form “(H1 ∧ H2) ← B” are rewritten as two rules
“H1 ← B” and “H2 ← B”, rules of the form “H1 ←
H2 ← B” are rewritten as “H1 ← B∧H2”, and rules
of the form “H ← (B1 ∨ B2)” are rewritten as two
rules “H ← B1” and “H ← B2”.

T ∗
Π ({C � D}) =df

{
Th(D, X) ← Tb(C, X)

}
,

if C is an Lb-class and D an Lh-class
T ∗
Π ({C ≡ D}) =df T ∗

Π ({C � D}) ∪ T ∗
Π ({D � C}),

if C and D are Lhb-classes

T ∗
Π ({	 � ∀P.D}) =df

{
Th(D, Y) ← P (X, Y)

}
,

if D is an Lh-class

T ∗
Π ({	 � ∀P−.D}) =df

{
Th(D, X) ← P (X, Y)

}
,

if D is an Lh-class

T ∗
Π ({a : D}) =df

{
Th(D, a)

}
,

if D is an Lh-class

T ∗
Π ({〈a, b〉 : P}) =df

{
P (a, b)

}
T ∗
Π ({P � Q}) =df

{
Q(X, Y) ← P (X, Y)

}
T ∗
Π ({P ≡ Q}) =df

{
Q(X, Y) ← P (X, Y)
P (X, Y) ← Q(X, Y)

}

T ∗
Π ({P ≡ Q−}) =df

{
Q(X, Y) ← P (Y, X)
P (Y, X) ← Q(X, Y)

}

T ∗
Π ({P+ � P}) =df

{
P (X, Z) ← P (X, Y) ∧ P (Y, Z)

}
T ∗
Π ({s1, . . . , sn}) =df

⋃n

i=1
T ∗
Π ({si}), if n > 1

where:
Th(A, X) =df A(X)

Th((C � D), X) =df Th(C, X) ∧ Th(D, X)
Th((∀R.C), X) =df Th(C, Y) ← R(X, Y)

Tb(A, X) =df A(X)
Tb((C � D), X) =df Tb(C, X) ∧ Tb(D, X)
Tb((C D), X) =df Tb(C, X) ∨ Tb(D, X)
Tb((∃R.C), X) =df R(X, Y) ∧ Tb(C, Y)

Figure 2: Mapping from DL ontologies to DeLP strict
rules

As DeLP is based on SLD-derivation of literals,
simple translation of DL sentences to DeLP strict
rules does not allow to infer negative information
by modus tollens. For instance, “C � D” (all
C’s are D’s) is translated as “D(X) ← C(X)”,
DeLP is not able to derive “∼D(a)” from “∼C(a)”.
Thus given “C1 � C2 � . . . � Cn−1 � Cn � D”, in-
stead of only including the strict rule “D(X) ←
C1(X), C2(X), . . . , Cn−1(X), Cn(X)” in its transla-
tion, we propose including all of its transposes.
Definition 7 (Transposes of a strict rule) Let
r = H ← B1, B2, B3, . . . , Bn−1, Bn be a DeLP strict
rule. The set of transposes of rule r, noted as
“Trans(r)”, is defined as:

Trans(r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

H ← B1, B2, . . . , Bn−1, Bn

B1 ← H, B2, B3, . . . , Bn−1, Bn

B2 ← H, B1, B3, . . . , Bn−1, Bn

B3 ← H, B1, B2, . . . , Bn−1, Bn

. . .

Bn−1 ← H, B1, B2, B3 . . . , Bn

Bn ← H, B1, B2, . . . , Bn−1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

We define the mapping from DL ontologies into
DeLP strict rules as TΠ(T) = Trans(T ∗

Π (T)). Notice
that we do not consider transposition of defeasible
rules as this issue is controversial (Brewka et al. 1997,
Caminada 2008).

5 DeLP-based Ontologies

As mentioned previously, traditional DL reasoners are
not capable of inferring information in the presence
of inconsistent ontologies. In this section, we present
a framework where inconsistent definitions for con-
cepts in an ontology are expressed are as a set of de-
feasible inclusion and equality axioms. These axioms
are to be considered to be tentative. Thus, in the
presence of inconsistency, to determine the epistemic
status of a sentence about some individual’s member-
ship to a concept description, a dialectical analysis
will be carried out considering all arguments in favor
and against its membership.

5.1 Knowledge representation: δ-ontologies

An ontology is defined as a set of classes and a set
of individuals belonging to such classes. We redefine
the notion of DL ontology for making it suitable for
our approach.

Definition 8 (δ-Ontology) Let C be an Lb-class,
D an Lh-class, A, B Lhb-classes, P,Q properties, a, b
individuals. Let T be a set of inclusion and equal-
ity sentences in LDL of the form C � D, A ≡ B,
	 � ∀P.D, 	 � ∀P−.D, P � Q, P ≡ Q, P ≡ Q−,
o P+ � P such that T can be partitioned into two
disjoint sets TS and TD. Let A be a set of assertions
disjoint with T of the form a : D or 〈a, b〉 : P . A
δ-ontology Σ is a tuple (TS , TD, A). The set TS is
called the strict terminology (or Sbox), TD the de-
feasible terminology (or Dbox) and A the assertional
box (or Abox).

Example 2 Let Σ2 = (TS , TD, A) be a δ-ontology,
where:2 TS = {(c � p � b), (p � ¬f)}; TD = {(b �
f), (c � ¬f), (c � s � f), (f � nit)}, and A = {(ti :
c), (tw : p), (ti : s)}. The Sbox TS says both that
chickens and penguins are birds, and that penguins do
not fly. The Dbox TD expresses that birds usually fly,
chickens typically do not fly unless they are scared,
and that flying animals normally nest in trees. The
Abox A establishes that Tina is a chicken, Tweety is
a penguin and Tina is scared.

We will see how to assign semantics to δ-ontologies
as DeLP programs. The Sbox will be interpreted as
a set of strict rules, the Abox as set of facts and the
Dbox as a set of defeasible rules.

5.2 Semantic interpretation of δ-ontologies as
DeLP programs

The traditional approach to reasoning in DLs is based
on a model-theoretic semantics. As DLs are a subset
of first-order logic (FOL), entailment has an explo-
sive effect in the presence of inconsistent ontologies.
In this work, we propose an argumentative approach
to reasoning with inconsistent ontologies. Thus a δ-
ontology will be interpreted as a DeLP program. As
required by the DeLP framework, we are assuming
that under a traditional interpretation the set TS ∪A
has a model (see Section 5.3).

Definition 9 (Interpretation of a δ-ontology)
Let Σ = (TS , TD, A) be a δ-ontology. The
interpretation of Σ is a DeLP program
P = (TΠ(TS) ∪ TΠ(A), TΔ(TD)).

Example 3 (Continues Ex. 2) Consider again
the δ-ontology Σ2. Σ2 is interpreted as the DeLP

2This example appears in (Garćıa & Simari 2004) in a different
context.

CRPIT Vol 90 --- KROW 2008

Page 14

program P2 = (Π, Δ), where: Π = {(b(X) ← c(X)),
(∼ c(X) ←∼ b(X)), (b(X) ← p(X)),
(∼ p(X) ←∼ b(X)), (∼ f (X) ← p(X)),
(∼ p(X) ← f (X)), c(ti), p(tw), s(ti)}, and
Δ = { (f (X) −≺ b(X)), (∼ f (X) −≺ c(X)),
(f (X) −≺ c(X), s(X)), (nit(X) −≺ f (X))}.

5.3 Inference tasks in δ-ontologies

In the DL approach to reasoning with ontologies in
the Semantic Web, once a knowledge engineer has
designed the terminology and used the DL reason-
ing service for checking that all of the terminology’s
concepts are satisfiable, the Abox can be filled with
assertions about individuals. In order to keep con-
sistency within an argument as required by Def. 2,
we must enforce some internal coherence between the
Abox and the Tbox. Formally:

Definition 10 (Internal coherence in Aboxes.
Consistency of Aboxes w.r.t. Sboxes) Let Σ =
(TS , TD, A) be a δ-ontology. Let C be a class name,
a, b individuals. The Abox A is internally coherent iff
there are no pair of assertions a : C and a : ¬C. The
Abox A is consistent w.r.t. the terminology TS iff it
is not possible to derive two literals C(a) and ∼C(a)
from TΠ(TS) ∪ TΠ(A).

Example 4 Let Σ4 = (TS , ∅, A) be a δ-ontology such
that TS = {(C � D), (D � ¬F)} and A = {(a :
C), (a : F)}. Σ4 is expressed as P4 = (Π, ∅),
where Π = TΠ(TS) ∪ TΠ(A) = {C(a), F (a), (D(X)←
C(X)), (∼C(X) ←∼D(X)), (∼F (X) ← D(X)), (∼
D(X) ← F (X))}, from which is possible to strictly
derive F (a) and ∼F (a). Therefore A is not coherent
w.r.t. TS.

5.3.1 Instance checking

In the traditional DL setting, instance checking refers
to determining whether the assertions in the Abox
entail that a particular individual is an instance of a
given concept description (Baader et al. 2003). We
propose a set of definitions to capture this notion in
the context of δ-ontologies.

Definition 11 (Potential, justified and strict
membership of an individual to a class) Let Σ =
(TS , TD, A) be a δ-ontology. Let C be a class name, a
an individual, let P = (TΠ(TS)∪TΠ(A), TΔ(TD)). (a)
The individual a potentially belongs to class C (noted
as “Ca

p”) iff there exists an argument 〈A, C(a)〉 w.r.t.
P; (b) the individual a justifiedly belongs to class C
(noted as “Ca

j ”) iff there exists a warranted argument
〈A, C(a)〉 w.r.t. P, and, (c) the individual a strictly
belongs to class C (noted as “Ca

s ”) iff there exists an
argument 〈∅, C(a)〉 w.r.t. P.

Property 1 Ca
s implies Ca

j , and Ca
j implies Ca

p .

Proof: The former holds because in DeLP empty arguments

(i.e., literals derived exclusively from strict rules) have no de-
featers and they are thus warranted. The latter trivially holds

because warranted arguments are arguments.

We now extend the notion of membership to arbi-
trary concept expressions.

Definition 12 (Potential, justified and strict
membership of an individual to a class (ex-
tended version)) Let Σ = (TS , TD, A) be a δ-
ontology. Let C, D class names in Σ, a, b individu-
als in Σ, R an atomic property in Σ, P = (TΠ(TS) ∪
TΠ(A), TΔ(TD)). Let E be a class name not present
in Σ. The potential (justified resp.) membership of
a to a complex concept is defined as:

• ¬C: (¬C)a
p ((¬C)a

j , resp.) iff there exists an argument

(warranted argument, resp.) 〈A,∼C(a)〉 w.r.t. P.

• C � D: Let P2 = (Π, Δ ∪ TΔ(C � D � E)). (C � D)a
p

((C � D)a
j , resp.) iff there exists an argument (warranted

argument, resp.) 〈A, E(a)〉 w.r.t. P2.

• C 	 D: Let P2 = (Π, Δ ∪ TΔ(C 	 D � E)). (C 	 D)a
p

((C 	 D)a
j , resp.) iff there exists an argument (warranted

argument, resp.) 〈A, E(a)〉 w.r.t. P2.

• ∃R.C: Let P2 = (Π, Δ ∪ TΔ(∃R.C � E)). (∃R.C)a
p

((∃R.C)a
j , resp.) iff there exists an argument (warranted

argument, resp.) 〈A, E(a)〉 w.r.t. P2.

The strict membership of a to a complex concept is
defined as:

• ¬C: (¬C)a
s iff there exists an argument 〈∅,∼C(a)〉 w.r.t.

P.

• C � D: Let P2 = (Π ∪ TΠ(C � D � E), Δ). (C � D)a
s iff

there exists an argument 〈∅, E(a)〉 w.r.t. P2.

• C 	 D: Let P2 = (Π ∪ TΠ(C 	 D � E), Δ). (C 	 D)a
s iff

there exists an argument 〈∅, E(a)〉 w.r.t. P2.

• ∃R.C: Let P2 = (Π ∪ TΠ(∃R.C � E), Δ). (∃R.C)a
s iff

there exists an argument 〈∅, E(a)〉 w.r.t. P2.

Property 2 Let Σ = (TS , TD, A) be a δ-ontology. It
cannot be the case that individual a belongs justifiedly
to concept C and ¬C simultaneously.

Proof: Suppose that both Ca
j and (¬C)a

j . Then it must be

the case there exist two warranted arguments 〈A, C(a)〉 and
〈B,∼C(a)〉 w.r.t. (TΠ(TS) ∪ TΠ(A), TΔ(TD)). But this im-

possible as DeLP cannot warrant two complementary literals

simultaneously (as proven by Garćıa & Simari (2004)).

Property 3 Let Σ = (TS , TD, A) be a δ-ontology. It
cannot be the case that individual a belongs strictly to
concept C and ¬C simultaneously.

Proof: If Ca
s and (¬C)a

s , then there must exist two arguments

〈∅, C(a)〉 and 〈∅,∼ C(a)〉 w.r.t. (TΠ(TS) ∪ TΠ(A), TΔ(TD)).

Then TΠ(TS) ∪ TΠ(A) is inconsistent (contradicting Def. 10).

5.3.2 Retrieval

When DL knowledge bases are considered, we would
want to know all individuals that are instances of a
certain concept. In the traditional DL setting, given
an ontology (T, A) and a concept C, in the retrieval
problem we are interested to know all of the individ-
uals a such that T ∪ A |= a : C (Baader et al. 2003).
We present näıve solutions to two related problems:

• Open retrieval: Given a δ-ontology Σ =
(TS , TD, A) and a class C, find all individuals
which are instances of C. We solve this problem
by finding all the individuals a such that there ex-
ists a warranted argument 〈A, C(a)〉 w.r.t. DeLP
program (TΠ(TS) ∪ TΠ(A), TΔ(TD)).

• Retrieval of all classes: Given a δ-ontology
Σ = (TS , TD, A) and an individual a, find all
named classes C such that a is an instance of
C. We solve this problem by finding all the
classes C such that there exists a warranted argu-
ment 〈A, C(a)〉 w.r.t. DeLP program (TΠ(TS) ∪
TΠ(A), TΔ(TD)).

Property 4 The running time of processes for “open
retrieval” and for “retrieval of all classes” is finite.

Proof: As a δ-ontology has a finite number of both named

concepts and individual constants, the DeLP program obtained
from it is finite. Cecchi et al. (2006) have shown that deter-

mining if there exists an argument for a literal is NP; besides,
as the warrant procedure always builds a finite dialectical tree

(Garćıa & Simari 2004), then proceses for “open retrieval” and

for “retrieval of all classes” always terminate.

Proc, of the Knowledge Representation Ontology Workshop (KROW-2008), Sydney, Australia

Page 15

6 DeLP-based Integration of DL Ontologies

In this section, we introduce an application for on-
tology integration in the Semantic Web based on the
framework presented above. Ontology integration is
the problem of combining ontologies residing in dif-
ferent sources and to provide the user with an uni-
fied view of such ontologies (Calvanese et al. 2001).
The problem of designing systems for ontology inte-
gration in the Semantic Web is particularly important
because ontologies are to be developed independently
from each other and, for this reason, they can be mu-
tually inconsistent. One possible architecture for on-
tology integration systems is based on a global schema
and a set of local sources. The local sources con-
tain the actual data while the global schema provides
a reconciled, unified view of the underlying sources.
A basic service provided by ontology integration sys-
tems is that of answering queries posed in terms of
the global schema.

Definition 13 (Ontology integration system)
An ontology integration system I is a triple
(G,S,M) where:

• G is a global ontology expressed as a δ-ontology over an
alphabet AG .

• S is a set of n source ontologies S1, . . . ,Sn expressed
as δ-ontologies over alphabets AS1 , . . . ,ASn , resp. Each
alphabet ASi

includes a symbol for each element of the
source Si, i = 1, . . . , n.

• M is a set of n mappings M1, . . . ,Mn between G and
S1, . . . ,Sn, resp. Each mapping Mi is constituted by a
set of assertions of the form qSi

� qG , where qG y qSi
are

queries of the same arity defined over global ontology G
and Si, i = 1, . . . , n, resp. Queries qG are expressed over
alphabet AG and queries qSi

are expressed over alphabet
ASi

. The sets M1, . . . ,Mn are called bridge ontologies.

Next we show a case study in which several DL
local ontologies and a DL global ontology are inte-
grated. These ontologies will be interpreted as DeLP
programs. Queries posed w.r.t. the global ontology
are going to be interpreted as queries answered on
the basis of such DeLP programs.

Example 5 Consider the global δ-ontology G =
(∅, TG

D, ∅) presented in Fig. 3. The Dbox TG
D expresses

that computer geeks are usually not good in sports;
expert swimmers are normally good at sports, and, if
somebody is either capable of swimming both a race
stroke and a rescue stroke or is a diver, then she is
typically considered an expert swimmer.

Defeasible terminology TG
D:

geek � ¬good
swimmer � good
(∃can swim.rescue stroke � ∃can swim.race stroke)

 diver � swimmer

Figure 3: Global ontology G = (∅, TG
D, ∅)

Notice that the terminology TG
D expresses a conflict

w.r.t. concept “good”. If we find that some individual
in the Abox can be proven to be member of both con-
cepts “swimmer” and “geek”, then the Abox would
be incoherent from a traditional DL point of view
because that individual would belong both to “good”
and to “¬good , indicating that concept “good” should
be empty and having one individual at the same time.
We will show how this situation can be handled nat-
urally in DeLP.

Example 6 (Continues Ex. 5) In Fig. 4, we
present two source ontologies: S1 about water activ-
ities, and S2 on computer programming. In source
local ontology S1 = (∅, TS1

D , AS1), Dbox TS1
D says

that both free and scuba divers are divers, saturation
divers are a particular class of scuba divers, and
somebody capable of swimming some kind of stroke
is usually a swimmer. Abox AS1 establishes that
John swims both crawl and side strokes, Paul is a
saturation diver, and crawl and side are swimming
strokes.

In source local ontology S2 = (TS2
S , TS2

D , AS2), Sbox
TS2

S expresses that among programming languages,
both logic programming and object-oriented languages
can be found. Dbox TS2

D says that a programmer is
usually somebody who can program in some program-
ming language, and that someone who can read and
write code in such a language can program unless she
has failed the elementary programming course. Abox
AS2 establishes that Prolog is a logic programming
language and that John can read and write Prolog
code; that Java is an object-oriented language and that
Mary can read and write Java code, and that Paul is
capable of reading and writing Java code although he
failed the elementary programming course.

Source ontology S1 = (∅, T
S1
D

, AS1):

Defeasible terminology T
S1
D

:

free diver scuba diver � diver
saturation diver � scuba diver
∃swims.stroke � swimmer

Assertional box AS1 :
crawl : stroke; side : stroke
〈john, crawl〉 : swims; 〈john, side〉 : swims
paul : saturation diver

Source ontology S2 = (T
S2
S

, T
S2
D

, AS2):

Strict terminology T
S2
S

:

lp lang oop lang � lang

Defeasible terminology T
S2
D

:

∃programs.lang � programmer
∃programs.lang � failed prog 101 � ¬programmer
reads � writes � programs

Assertional box AS2 :
prolog : lp lang; java : oop lang
〈john, prolog〉 : reads; 〈john, prolog〉 : writes
〈mary, java〉 : reads; 〈mary, java〉 : writes
〈paul, java〉 : reads; 〈paul, java〉 : writes
paul : failed prog 101

Figure 4: Source ontologies S1 and S2

Notice how, in particular, source ontology S2 is in-
consistent from a traditional point of view because the
individual named Paul belongs at the same time to
concepts “programmer” and “¬programmer”. There-
fore, this ontology cannot be processed by traditional
DL reasoners. We will show how can this be achieved
in the framework of δ-ontologies.

As mentioned above, our goal is to answer queries
about the membership of individuals to a certain
concept of a global ontology using the data de-
fined in source ontologies. The relationship of the
global ontology with the local ontologies is achieved
through bridge ontologies. A bridge ontology allows
to map concepts and properties between two ontolo-
gies. Thus a concept in one ontology corresponds to
a view of one or several concepts in some other ontol-
ogy. In the examples we present, we consider bridge
ontologies as given; for techniques on semi-automatic
discovery of such mappings implemented as articula-
tion rules, see (Mitra 2004). Moreover, we are going

CRPIT Vol 90 --- KROW 2008

Page 16

to assume unique name assumption w.r.t. references
to individuals in Aboxes through our presentation.

Example 7 (Continues Ex. 6) Consider again
global ontology G and source ontologies S1 and S2.
Definitions in G with those in S1 and S2 are artic-
ulated by bridge ontologies M1 and M2, resp. (see
Fig. 5). For clarity, in bridge ontologies we qualify
concept and property names with their defining
ontology name.

Bridge ontology M1 expresses that concept
“swims” in S1 corresponds to concept “can swim” in
G; concept “diver” in S1 refers to “diver” in G; con-
cept (anonimously defined by the one-of construct)
composed of individual “side” in S1 is mapped to
the concept “rescue stroke” in G, and, the concept
composed by individual “crawl” in S1 is mapped to
“race stroke” in G. Bridge ontology M2 indicates
that concept “programmer” in S2 corresponds to con-
cept “geek” defined in G.

Bridge ontology M1 between G and S1:

S1 : swims � G : can swim
S1 : diver � G : diver
S1 : {side} � G : rescue stroke
S1 : {crawl} � G : race stroke

Bridge ontology M2 between G and S2:

S2 : programmer � G : geek

Figure 5: Bridge ontologiesM1 andM2

As discussed above, in the global-as-view approach
to ontology integration, queries are posed w.r.t. a
global ontology which is used as a means to access
data found in local source ontologies. Next we show
how to extend the task of instance checking for in-
dividual membership to concepts defined in a global
ontology in the context of an ontology integration sys-
tem. We will show how an ontology integration sys-
tem can be regarded as a DeLP program and queries
to the ontology integration system can be interpreted
as queries w.r.t. such DeLP program.

Definition 14 (Interpretation of an ontology
integration system) Let I = (G,S,M) be an on-
tology integration system such that S = {S1, . . . ,Sn}
y M = {M1, . . . ,Mn}, where:

• G = (TG
S , TG

D, AG);

• Si = (T
Si
S , T

Si
D , A

Si
i), with i = 1, . . . , n, and,

• Mi = (T
Mi
S , T

Mi
D), with i = 1, . . . , n.

The system I is interpreted as the DeLP program
IDeLP = (Π, Δ):

Π =
(

TΠ(TG
S)

)
∪

(
TΠ(AG)

)
∪

(⋃n

i=1
TΠ(T

Si
S)

)
∪(⋃n

i=1
TΠ(T

Mi
S)

)
;

Δ =
(

TΔ(TG
D)

)
∪

(⋃n

i=1
TΔ(T

Si
D)

)
∪(⋃n

i=1
TΔ(T

Mi
D)

)
.

Example 8 (Continues Ex. 7) The interpretation
as DeLP programs of global ontology G; sources S1
and S2, and bridges M1 and M2 are shown in
Figs. 6, 7 and 8, resp. Global ontology G is inter-
preted as the DeLP program PG = (∅, ΔG); source
ontology S1, as P1 = (Π1, Δ1); source ontology S2,
as P2 = (Π2, Δ2); bridge ontology M1, as the set of
defeasible rules ΔM1 , and, bridge ontology M2, as
ΔM2 .

Thus, the interpretation of I is the DeLP program
PI = (Π, Δ) where Π = Π1∪Π2, and Δ = ΔG ∪Δ1∪
Δ2 ∪ΔM1 ∪ΔM2 .

DeLP program PG = (∅, ΔG) obtained from G:

Defeasible rules ΔG :
∼good(X) −≺ geek(X)
good(X) −≺ swimmer(X)
swimmer(X) −≺

can swim(X, Y), rescue stroke(Y),
can swim(X, Z), race stroke(Z)

swimmer(X) −≺ diver(X)

Figure 6: DeLP program PG = (∅, ΔG) obtained from
global ontology G

DeLP program P1 = (Π1, Δ1) obtained from S1:

Facts Π1:
stroke(crawl); stroke(side)
swims(john, crawl); swims(john, side)
saturation diver(paul)

Defeasible rules Δ1:
diver(X) −≺ free diver(X)
diver(X) −≺ scuba diver(X)
scuba diver(X) −≺ saturation diver(X)
swimmer(X) −≺ swims(X, Y), stroke(Y)

DeLP program P2 = (Π2, Δ2) obtained from S2:

Facts and strict rules Π2:
lp lang(prolog); oop lang(java)
reads(john, prolog); writes(john, prolog)
reads(mary, java); writes(mary, java)
reads(paul, java); writes(paul, java)
failed prog 101(paul)
lang(X) ← lp lang(X)
∼lp lang(X) ←∼lang(X)
lang(X) ← oop lang(X)
∼oop lang(X) ←∼lang(X)

Defeasible rules Δ2:
programmer(X) −≺ programs(X, Y), lang(Y)
∼programmer(X) −≺

programs(X, Y), lang(Y), failed prog 101(X)
programs(X, Y) −≺ reads(X, Y), writes(X, Y)

Figure 7: DeLP programs P1 and P2 obtained from
source ontologies S1 and S2, resp.

Possible inferences in the integrated ontology
IDeLP are modeled by means of a dialectical anal-
ysis in the DeLP program that is obtained when each
DL sentence of the ontology is mapped into DeLP
clauses. Thus warranted arguments will be the valid
consequences that will be obtained from the original
ontology, provided the strict information in IDeLP is
consistent. Formally:

Definition 15 (Potential, justified and strict
membership of individuals to concepts in on-
tology integration systems) Let I = (G,S,M) be
an ontology integration system. Let a be an individual
name, and c a concept name defined in G. Individual
a belongs potentially to concept C iff there exists an
argument A for the literal C(a) w.r.t. DeLP program
IDeLP . Individual a belongs justifiedly to concept C
iff there exists a warranted argument A for the literal

Bridge rules ΔM1 between ontologies G and S1:

G : can swim(X, Y) −≺ S1 : swims(X, Y)
G : diver(X) −≺ S1 : diver(X)
G : rescue stroke(X) −≺ S1 : stroke(X), X = side
G : race stroke(X) −≺ S1 : stroke(X), X = crawl

Bridge rules ΔM2 between ontologies G and S2:

G : geek(X) −≺ S2 : programmer(X)

Figure 8: Bridge ontologies expressed as defeasible
rules

Proc, of the Knowledge Representation Ontology Workshop (KROW-2008), Sydney, Australia

Page 17

C(a) w.r.t. DeLP program IDeLP . Individual a be-
longs strictly to concept C iff there exists an empty
argument for the literal C(a) w.r.t. DeLP program
IDeLP .

Next we will show some of the arguments that can
be built from the integrated ontology system. In the
rest of the presentation, we are assuming generalized
specificity (Simari & Loui 1992) as the criterion for
argument comparison.
Example 9 (Continues Ex. 8) Consider again
DeLP program IDeLP , we are interested in de-
termining the justified membership of individuals
John, Mary and Paul to concepts “good” and/or
“¬good”. According to Def. 15, it is necessary to
determine if there exist warranted arguments for
literals good(john), good(mary) and good(paul), resp.
Notice that answers to queries cannot be ambiguous
as it is not possible to warrant complementary literals
in DeLP at the same time (see Section 7). We will
see that as John is both a geek and a swimmer, it
will not be possible to determine if he is or not good
at sports. In spite of this result, we will also see
that as Mary is a Java programmer, she will not be
regarded as good at sports. In the case of Paul, as
he is a diver and, although he programs in Java but
failed the elementary programming course, he will
not be considered a programmer and thus, he will be
regarded as good at sports.

First, we will consider the dialectical analysis for
the query “good(john)”. There are reasons to as-
sert that John belongs potentially to concept “good”.
Formally, there exists an argument 〈A1, good(john)〉
where:

A1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(good(john) −≺ swimmer(john)),
(swimmer(john) −≺

can swim(john, side), rescue stroke(side),
can swim(john, crawl), race stroke(crawl)),

(G : race stroke(crawl) −≺
S1 : stroke(crawl), crawl = crawl),

(G : can swim(john, crawl) −≺
S1 : swims(john, crawl)),

(G : rescue stroke(side) −≺
S1 : stroke(side), side = side)

(G : can swim(john, side) −≺
S1 : swims(john, side))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

However, John belongs potentially to concept
“¬good” because he is a computer geek. Formally,
there is an argument 〈A2,∼good(john)〉 that defeats
argument A1, where:

A2 =

⎧⎪⎪⎨
⎪⎪⎩

(∼good(john) −≺ geek(john)),
(G : geek(john) −≺ S2 : programmer(john)),
(programmer(john) −≺

programs(john, prolog), lang(prolog)),
(programs(john, prolog) −≺

reads(john, prolog), writes(john, prolog))

⎫⎪⎪⎬
⎪⎪⎭

.

Thus, in the dialectical tree for the query
“good(john)”, defeated argument A1 appears labeled
as a D-node while victorious argument A2 appears
marked as a U -node. (see Fig. 9.(a)). On the other
hand, when we consider the membership of John to
concept “¬good”, we discover that argument A2 sup-
porting this conclusion is defeated by argument A1
(see Fig. 9.(b)). Therefore, the answer to query
“good(john)” is Undecided.

Second, we consider the dialectical analysis for de-
termining if Mary belongs to concept “good”. Mary
belongs justifiedly to concept “¬good” as the answer
to query “good(mary)” is No because there is a war-
ranted argument 〈B,∼good(mary)〉 (see Fig. 9.(c)),
where:

B =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(∼good(mary) −≺ geek(mary)),
(G : geek(mary) −≺ S2 : programmer(mary)),
(programmer(mary) −≺

programs(mary, java), lang(java)),
(lang(java) −≺ oop lang(java)),
(programs(mary, java) −≺

reads(mary, java), writes(mary, java))

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Third, we will see why Paul belongs justifiedly to
concept “good”. Let us consider the dialectical tree
for the literal “good(paul)”. There is an argument
〈C1, good(paul)〉, based on the defeasible information
that expresses that Paul is an expert swimmer (be-
cause he is a saturation diver):

C1 =

⎧⎪⎨
⎪⎩

(good(paul) −≺ swimmer(paul)),
(swimmer(paul) −≺ G : diver(paul)),
(G : diver(paul) −≺ S1 : diver(paul)),
(S1 : diver(paul) −≺ scuba diver(paul)),
(scuba diver(paul) −≺ saturation diver(paul))

⎫⎪⎬
⎪⎭

But argument C1 is attacked by an argument 〈C2,∼
good(paul)〉, where:

C2 =

⎧⎪⎪⎨
⎪⎪⎩

(∼good(paul) −≺ geek(paul)),
(G : geek(paul) −≺ S2 : programmer(paul)),
(programmer(paul) −≺

programs(paul, java), lang(java)),
(programs(paul, java) −≺

reads(paul, java), writes(paul, java))

⎫⎪⎪⎬
⎪⎪⎭

Nevertheless, Paul also belongs potentially to concept
“S2 : ¬programmer” (because he failed the elemen-
tary programming course), as an argument 〈C3,S2 :∼
programmer(paul)〉 can be found, where:

C3 =

⎧⎪⎨
⎪⎩

(∼programmer(paul) −≺
programs(paul, java), lang(java),
failed prog 101(paul)),

(programs(paul, java) −≺
reads(paul, java), writes(paul, java))

⎫⎪⎬
⎪⎭

Thus, the dialectical tree for the query “good(paul)”
has three nodes (see Fig. 9.(d)). Respect the query
“∼good(paul)” for determining if Paul belongs justi-
fiedly to concept “¬good”, argument C2 is defeated by
argument C1 (see Fig. 9.(e)). Therefore, the answer
to the query “good(paul)” is Yes, and we conclude
that Paul belongs justifiedly to concept “good”.

AD
1

AU
2

AD
2

AU
1 B

CU
1

CD
2

CU
3

CD
2

CU
1

(a) (b) (c) (d) (e)

Figure 9: Dialectical trees for queries good(john),
good(mary) and good(paul)

7 Evaluation of the Proposal

In order to evaluate our approach, we propose us-
ing the framework presented by Huang et al. (2005)
for reasoning with inconsistent ontologies with a non-
standard inference relation. With classical reasoning,
a query φ given an ontology Σ can be expressed as an
evaluation of the consequence relation Σ |= φ; there
are two answers to a query: either “yes” (Σ |= φ) or
“no” (Σ �|= φ). For reasoning with inconsistent ontolo-
gies with a non-standard inference relation, Huang
et al. (2005) propose using an alternative classifica-
tion to distinguish answers to queries:

Definition 16 (Epistemic status of an answer
(Huang et al. 2005)) Given an ontology Σ and a
query φ, the answer to φ will have one of the four
epistemic states:

CRPIT Vol 90 --- KROW 2008

Page 18

1. Over-determined: Σ|≈φ and Σ|≈¬φ;

2. Accepted: Σ|≈φ and Σ |≈¬φ;

3. Rejected: Σ |≈φ and Σ|≈¬φ;

4. Undetermined: Σ |≈φ and Σ |≈¬φ.

If we regard the relation |≈ as “justified member-
ship” of instances to concepts (see Def. 11), Σ|≈φ cor-
responds to a Yes answer to query φ w.r.t. program
T (Σ).

Property 5 Let |≈ be the “justified membership” of
instances to concepts relationship. Let Σ be a δ-
ontology. The answer to a query φ is never over-
determined.

Proof: Suppose by the contrary that the answer to φ is over-

determined. Then it must be the case that there exist two war-

ranted arguments 〈A, φ〉 and 〈A,∼φ〉 w.r.t. T (Σ). This cannot
be the case in DeLP as shown by Garćıa & Simari (2004).

Notice that, as required by traditional DL reason-
ing, DeLP does not adopt the closed-world assump-
tion. That is, not being able to prove Q in DeLP does
not imply that ∼Q will be assumed. On the contrary,
such an answer will be the result of a dialectical anal-
ysis that will take into account all of the reasons for
Q and ∼Q.

Definition 17 (Soundness (Huang et al. 2005))
An inconsistency reasoner |≈ is sound if the formulas
that follow from an inconsistent theory Σ follow from
a consistent subtheory of Σ using classical reasoning.

Property 6 |≈ is a sound inconsistency reasoner.

Proof: Let Σ = (TS , TD, A) be a δ-ontology. If Σ|≈φ then

there exists a warranted argument 〈A, φ〉 w.r.t. T (Σ) = (ΠS ∪
ΠA, Δ), where ΠS = TΠ(TS), ΠA = TΠ(A) and Δ = TΔ(TD).

The set ΠS ∪ ΠA ∪ A (see Def. 2) is consistent and as T is a

transformation that preserves semantics (Grosof et al. 2003),
there must exists a subset Σ′ ⊆ Σ such that T (Σ′) = ΠS ∪
ΠA ∪ A.

Definition 18 (Consistency (Huang et al.
2005)) An inconsistency reasoner |≈ is consistent iff
Σ|≈φ⇒ Σ � |≈¬φ.

Property 7 |≈ is a consistent inconsistency rea-
soner.

Proof: Corollary of Prop. 5.

Definition 19 (Meaningfulness (Huang et al.
2005)) An answer given by an inconsistency reasoner
is meaningful iff it is consistent and sound. An in-
consistency reasoner is said to be meaningful iff all of
its answers are meaningful.

Property 8 |≈ is a meaningful inconsistency rea-
soner.

Proof: Trivial from Props. 6 and 7.

Implementation issues

As mentioned in Section 4, we base our translation
function from DL to DeLP on the work reported by
Grosof et al. (2003). In this respect, Volz (2004)
shows that the fragment of DL expressible in logic
programming (referred to as DLP) is sufficient to ex-
press most available Web ontologies. Volz has ana-
lyzed the largest currently available collection of Web
ontologies and checked which fragment of those on-
tologies can be expressed in DLP; he claims both that

DLP languages suffice to express 77%–87% of the an-
alyzed ontologies and can express 93%–99% of the
individual axioms in the analyzed ontologies.

As performing defeasible argumentation is a com-
putationally complex task, an abstract machine called
JAM (Justification Abstract Machine) has been spe-
cially developed for an efficient implementation of
DeLP (Garćıa & Simari 2004). JAM provides an
argument-based extension of the traditional WAM
(Warren’s Abstract Machine) for Prolog. A full-
fledged implementation of DeLP is available online3,
including facilities for visualizing arguments and di-
alectical trees.

8 Related Work

Grosof et al. (2003) show how to interoperate, se-
mantically and inferentially, between the leading Se-
mantic Web approaches to rules (RuleML Logic Pro-
grams) and ontologies (OWL DL) by analyzing their
expressive intersection. They define a new intermedi-
ate knowledge representation called Description Logic
Programs (DLP), and the closely related Description
Horn Logic (DHL) which is an expressive fragment
of FOL. They show how to perform the translation
of premises and inferences from the DLP fragment of
DL to logic programming. Part of our approach is
based on Grosof’s work as the algorithm for translat-
ing DL ontologies into DeLP is based on it. However,
as Grosof et al. (2003) use standard Prolog rules, they
are not able to deal with inconsistent DL knowledge
bases as our proposal does.

Heymans & Vermeir (2002) extend the DL
SHOQ(D) with a preference order on the axioms.
With this strict partial order certain axioms can be
overruled, if defeated with more preferred ones. They
also impose a preferred model semantics, introducing
nonmonotonicity into SHOQ(D). Similarly to Hey-
mans & Vermeir (2002) we allow to perform infer-
ences inferences from inconsistent ontologies by con-
sidering subsets (arguments) of the original ontology.
Heymans & Vermeir (2002) also impose a hard-coded
comparison criterion on DL axioms. In our work, the
system, and not the programmer, decides which DL
axioms are to be preferred as we use specificity as
argument comparison criterion. We think that our
approach can be considered more declarative in this
respect. In particular the comparison criterion in
DeLP is modular, so that rule comparison could also
be adopted (Garćıa & Simari 2004).

Eiter et al. (2004) propose a combination of logic
programming under the answer set semantics with the
DLs SHIF(D) and SHOIN (D). This combination
allows for building rules on top of ontologies. In con-
trast to our approach, they keep separated rules and
ontologies and handle exceptions by codifying them
explicitly in programs under answer set semantics.

Huang et al. (2005) use paraconsistent logics to
reason with inconsistent ontologies. They use a selec-
tion function to determine which consistent subsets of
an inconsistent ontology should be considered in the
reasoning process. In our approach given an incon-
sistent ontology Σ, we consider the set of warranted
arguments from T (Σ) as the valid consequences.

Williams & Hunter (2007) use argumentation to
reason with possibly inconsistent rules on top of DL
ontologies. In contrast, we translate possible incon-
sistent DL ontologies to DeLP to reason with them
within DeLP. Laera et al. (2006) propose an approach
for supporting the creation and exchange of differ-
ent arguments, that support or reject possible cor-
respondences between ontologies in the context of a

3See http://lidia.cs.uns.edu.ar/DeLP

Proc, of the Knowledge Representation Ontology Workshop (KROW-2008), Sydney, Australia

Page 19

multi-agent system. In our work we assume corre-
spondences between ontologies as given.

Antoniou & Bikakis (2007) propose a rule-based
approach to defeasible reasoning based on a transla-
tion to logic programming with declarative semantics
that can reason with rules, RDF(S) and parts of OWL
ontologies. In contrast with our approach, argumen-
tation is not used explicitly for detecting inconsistent
ontologies. Instead, they translate OWL statements
to Prolog to reason with Defeasible Logic.

9 Conclusions and Future Work

We have presented a framework for reasoning with
inconsistent Description Logics (DL) ontologies. Our
proposal involves expressing DL ontologies as a Defea-
sible Logic Program (DeLP) by means of a translation
function T . Given a query φ posed w.r.t. an inconsis-
tent ontology Σ, a dialectical analysis is performed on
a DeLP program T (Σ) where all arguments in favor
and against φ’s acceptance are taken into account.
We have also presented an application to ontology
integration based on the global-as-view approach to
ontology integration where queries respect a global
ontology are posed while data is extracted from local
ontologies that could be inconsistent.

Several issues need to be solved and part of our
efforts are focused on that matter. For instance, as
DeLP does not support disjunctions in the head of
rules, our approach is not able to deal with DL ax-
ioms that require the construction of such rules, a
possible extension to this work could be in that direc-
tion. Other issue that needs to be addressed is given
by the mapping of DL equality axioms into DeLP
rules. Currently a DL axiom of the form “C ≡ D”
generates two rules of the form “C(X) −≺ D(X)” and
“D(X) −≺ C(X)”. This situation could clearly pro-
duce loops during argument construction when solv-
ing queries in actual DeLP programs. Nevertheless
the examples considered in this work model an impor-
tant part of ontologies where this situation does not
happen, a possible solution involves separating equal-
ity axioms from simple inclusion axioms and keeping
track of their instantiations into ground rules to avoid
such looping situations.

References

Antoniou, G. & Bikakis, A. (2007), ‘DR-Prolog: A
System for Defeasible Reasoning with Rules and
Ontologies on the Semantic Web’, IEEE Trans. on
Knowledge and Data Eng. 19(2), 233–245.

Baader, F., Calvanese, D., McGuinness, D., Nardi,
D. & Patel-Schneider, P., eds (2003), The Descrip-
tion Logic Handbook – Theory, Implementation and
Applications, Cambridge University Press.

Berners-Lee, T., Hendler, J. & Lassila, O.
(2001), ‘The Semantic Web’, Scientific American
284(5), 34–43.

Brewka, G., Dix, J. & Konolige, K. (1997), Non
monotonic reasoning. An overview, CSLI Publica-
tions, Stanford, USA.

Calvanese, D., Giacomo, G. D. & Lenzerini, M.
(2001), A Framework for Ontology Integration, in
‘Proceedings of the 1st Semantic Web Working
Symposium (SWWS 2001)’, pp. 303–316.

Caminada, M. (2008), ‘On the Issue of Contraposition
of Defeasible Rules’, COMMA 2008 (to appear) .

Cecchi, L. A., Fillottrani, P. R. & Simari, G. R.
(2006), On Complexity of DeLP through Game Se-
mantics, in J. Dix & A. Hunter, eds, ‘11th. Intl.
Workshop on Nonmonotonic Reasoning’, pp. 386–
394.

Chesñevar, C. I., Maguitman, A. & Loui, R. (2000),
‘Logical Models of Argument’, ACM Computing
Surveys 32(4), 337–383.

Eiter, T., Lukasiewicz, T., Schindlauer, R. & Tom-
pits, H. (2004), ‘Combining Answer Set Program-
ming with Description Logics for the Semantic
Web’, KR 2004 pp. 141–151.

Garćıa, A. J. & Simari, G. R. (2004), ‘Defeasi-
ble Logic Programming: An Argumentative Ap-
proach’, Theory and Practice of Logic Programming
4(1), 95–138.

Grosof, B. N., Horrocks, I., Volz, R. & Decker,
S. (2003), ‘Description Logic Programs: Com-
bining Logic Programs with Description Logics’,
WWW2003, Budapest, Hungary .

Gruber, T. R. (1993), ‘A translation approach
to portable ontologies’, Knowledge Acquisition
5(2), 199–220.

Haarslev, V. & Möller, R. (2001), RACER System
Description, Technical report, University of Ham-
burg, Computer Science Department.

Heymans, S. & Vermeir, D. (2002), A Defeasible
Ontology Language, in ‘CoopIS/DOA/ODBASE’,
pp. 1033–1046.

Huang, Z., van Harmelen, F. & ten Teije, A. (2005),
Reasoning with inconsistent ontologies, in ‘Proc. of
the Nineteenth Intl. Joint Conference on Artificial
Intelligence (IJCAI’05)’, pp. 454–459.

Klein, M. (2001), Combining and relating ontolo-
gies: an analysis of problems and solutions, in
A. Gomez-Perez, M. Gruninger, H. Stuckenschmidt
& M. Uschold, eds, ‘Workshop on Ontologies and
Information Sharing, IJCAI’01’, Seattle, USA.

Laera, L., Tamma, V., Euzenat, J., Bench-Capon, T.
& Payne, T. (2006), Reaching agreement over on-
tology alignments, in ‘Proceedings of the 5th Inter-
national Semantic Web Conference (ISWC 2006),
Athens, GA’.

McGuiness, D. L. & van Harmelen, F. (2004), ‘OWL
Web Ontology Language Overview’.

Mitra, P. (2004), An Algebraic Framework for the
Interoperation of Ontologies, PhD thesis, Dept. of
Electrical Eng., Stanford Univ.

Prakken, H. & Vreeswijk, G. (2002), Logics for De-
feasible Argumentation, in D. Gabbay & F. Guen-
thner, eds, ‘Handbook of Philosophical Logic’,
Kluwer Academic Publisher, pp. 219–318.

Simari, G. R. & Loui, R. P. (1992), ‘A Mathematical
Treatment of Defeasible Reasoning and its Imple-
mentation’, Artificial Intelligence 53, 125–157.

Volz, R. (2004), Web Ontology Reasoning with Logic
Databases, PhD thesis, Universität Fridericiana zu
Karlsruhe.

Williams, M. & Hunter, A. (2007), ‘Harnessing
ontologies for argument-based decision-making in
breast cancer’, Proc. of the Intl. Conf. on Tools
with AI (ICTAI’07) pp. 254–261.

CRPIT Vol 90 --- KROW 2008

Page 20

