

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by: [Gomez, Sergio Alejandro]
On: 4 February 2010
Access details: Access Details: [subscription number 918984174]
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

Applied Artificial Intelligence
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713191765

REASONING WITH INCONSISTENT ONTOLOGIES THROUGH
ARGUMENTATION
Sergio Alejandro Gómez a; Carlos Iván Chesñevar ab; Guillermo Ricardo Simari a

a Artificial Intelligence Research and Development Laboratory, Department of Computer Science and
Engineering, Universidad Nacional del Sur, Bahía Blanca, Argentina b CONICET (National Council of
Scientific and Technical Research), Argentina

Online publication date: 29 January 2010

To cite this Article Alejandro Gómez, Sergio, Iván Chesñevar, Carlos and Simari, Guillermo Ricardo(2010) 'REASONING
WITH INCONSISTENT ONTOLOGIES THROUGH ARGUMENTATION', Applied Artificial Intelligence, 24: 1, 102 — 148
To link to this Article: DOI: 10.1080/08839510903448692
URL: http://dx.doi.org/10.1080/08839510903448692

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713191765
http://dx.doi.org/10.1080/08839510903448692
http://www.informaworld.com/terms-and-conditions-of-access.pdf

Applied Artificial Intelligence, 24:102–148
Copyright © 2010 Taylor & Francis Group, LLC
ISSN: 0883-9514 print/1087-6545 online
DOI: 10.1080/08839510903448692

REASONING WITH INCONSISTENT ONTOLOGIES
THROUGH ARGUMENTATION

Sergio Alejandro Gómez1, Carlos Iván Chesñevar1,2,
and Guillermo Ricardo Simari1
1Artificial Intelligence Research and Development Laboratory,
Department of Computer Science and Engineering, Universidad Nacional del Sur,
Bahía Blanca, Argentina
2CONICET (National Council of Scientific and Technical Research), Argentina

� Standard approaches to reasoning with description logics (DL) ontologies require them to be
consistent. However, as ontologies are complex entities and sometimes built upon other imported
ontologies, inconsistencies can arise. In this article, we present �-ontologies, a framework for
reasoning with inconsistent DL ontologies. Our proposal involves expressing DL ontologies
as defeasible logic programs (DeLP). Given a query posed w.r.t. an inconsistent ontology, a
dialectical analysis will be performed on a DeLP program obtained from such an ontology,
where all arguments in favor and against the final answer of the query will be taken into
account. We also present an application to ontology integration based on the global-as-view
approach.

INTRODUCTION AND MOTIVATIONS

The semantic web (Berners-Lee, Hendler, and Lassila 2001) is a
future vision of the web where stored information has exact meaning,
thus enabling computers to understand and reason on the basis of such
information. Assigning semantics to web resources is addressed by means
of ontology definitions. In the context of knowledge-sharing, the term
ontology means a specification of a conceptualization. That is, an ontology
is a description of the concepts and relationships that can exist for an
agent or a community of agents (Gruber 1993).

This research was funded by TIN2006-15662-C02-01 (MEC, Spain), PGI 24/ZN10 (SGCyT,
UNS, Argentina), by CONICET (Project PIP 112-200801-02798), and by COST Action IC0801 on
Agreement Technologies (ESF – European Union). The present article unifies and further develops
the content of Gómez et al. (2006, 2008a).

Address correspondence to Sergio Alejandro Gómez, Departamento de Ciencias e Ingenieria
de la Computacion, Universidad Nacional del Sur, Av. Alem 1253, Bahía Blanca 8000, Argentina.
E-mail: sag@cs.uns.edu.ar

D
o
w
n
l
o
a
d
e
d

B
y
:

[
G
o
m
e
z
,

S
e
r
g
i
o

A
l
e
j
a
n
d
r
o
]

A
t
:

1
8
:
1
7

4

F
e
b
r
u
a
r
y

2
0
1
0

Reasoning with Inconsistent Ontologies Through Argumentation 103

As proposed by the World Wide Web Consortium,1 ontology definitions
are meant to be written in an ontology description language such as
OWL (McGuiness and van Harmelen 2004), whose semantics are based on
Description Logics (DL) (Baader et al. 2003). Description logic ontologies
are comprised of a terminology composed of a set of axioms defining a set
of classes as well as a set of assertions about which individuals are known to
be members of those classes and establishing relations/properties between
individuals.

As pointed out by Wang et al. (2005), one of the advantages of
logic-based ontology languages, is that reasoners can be used to compute
subsumption relationships between classes and to identify unsatisfiable
(inconsistent) classes. With the maturation of the tableaux algorithm
based DL reasoners (such as Racer (Haarslev and Möller 2001), FaCT
(Horrocks 1998), Pellet (Parsia and Sirin 2004)), it is possible to perform
efficient reasoning on large ontologies formulated in expressive DL. When
checking satisfiability (consistency) most modern DL reasoners can only
provide lists of unsatisfiable classes and offer no further explanation for
their unsatisfiability. (A notable exception to is Horridge, Parsia, and
Sattler (2008) discussed later in this article).

There are two main (but not incompatible) ways to deal with
inconsistency in ontologies (Huang, van Harmelen, and ten Teije 2005):
one is to diagnose and repair it when it is encountered; another is to
avoid the inconsistency and to apply a nonstandard inference relation to
obtain meaningful answers. Although there are existing approaches for
the former (e.g., identifying the minimally unsatisfiable subontologies or
calculating the maximally satisfiable subontologies (Lam, Pan, Sleeman,
and Vasconcelos 2006)), performing it can be very difficult. That is,
the process of “debugging” an ontology (i.e., determining why classes
are unsatisfiable) is left for the user. However, when faced with several
unsatisfiable classes in a moderately large ontology, even expert ontology
engineers can find it difficult to work out the underlying error (Wang et al.
2005). In this work we will focus on the latter approach.

We propose to use defeasible argumentation (Chesñevar, Maguitman,
and Loui 2000; Prakken and Vreeswijk 2002; Bench-Capon and Dunne
2007) to reason with inconsistent ontologies. In particular, DeLP is an
argumentative framework based on logic programming which is capable of
dealing with possibly inconsistent knowledge bases (KB) codified as a set of
horn-like clauses called DeLP programs (García and Simari 2004). When
presented with a query, DeLP performs a dialectical process in which all
arguments in favor and against a conclusion are considered; arguments
regarded as ultimately undefeated will be considered warranted. In this
article, we propose a framework called �-ontologies for representing and
reasoning with possibly inconsistent DL ontologies. For this we interpret

D
o
w
n
l
o
a
d
e
d

B
y
:

[
G
o
m
e
z
,

S
e
r
g
i
o

A
l
e
j
a
n
d
r
o
]

A
t
:

1
8
:
1
7

4

F
e
b
r
u
a
r
y

2
0
1
0

104 S. A. Gómez et al.

DL ontologies as DeLP programs adapting (Grosof, Horrocks, Volz, and
Decker 2003), which shows how a subset of DL can be effectively translated
into an equivalent subset of Horn logic.

As already mentioned, traditional DL ontologies (in the sense of
Baader et al. (2003)) are comprised of a terminology composed of a
set of axioms defining a set of classes and a set of assertions about
individuals in those classes. Thus, �-ontologies are DL ontologies where the
terminology is partitioned in such a way that conflicting axioms involved
with the unsatisfiability of classes are treated specially as defeasible ones.
Reasoning with such ontologies will then be carried out by means of a
dialectical analysis. Our proposal involves interpreting DL ontologies as
DeLP programs. That is, given a DL ontology �DL , provided that it satisfies
certain restrictions, it will be translated into a DeLP program �DeLP . Given
a query � posed w.r.t. �DL about the membership of an individual a to
a concept C , a dialectical process will be performed to determine if the
literal C(a) is warranted w.r.t. �DeLP .

We also present an application of our framework to the problem of
ontology integration. Reuse of existing ontologies is often not possible
without considerable effort. When one wants to reuse different ontologies
together, those ontologies have to be combined in some way. This can be
done by integrating the ontologies, which means that they are merged
into one new ontology, or the ontologies can be kept separate. In
both cases, the ontologies have to be aligned, which means that they
have to be brought into mutual agreement (Klein 2001). A particular
source of inconsistency is related to the use of imported ontologies
when the knowledge engineer has no authority to correct them, and
as these imported ontologies are usually developed independently, their
combination could also result in inconsistencies. One kind of such
integration is known as global-as-view integration (Calvanese, Giacomo,
and Lenzerini 2001), where a global ontology is used as a view of local
ontologies that define the actual data. We apply our proposal to perform
global-as-view integration when the involved ontologies can be potentially
inconsistent.

DESCRIPTION LOGICS

Description logics are a well-known family of knowledge representation
formalisms (Baader et al. 2003). They are based on the notions of
concepts (unary predicates representing classes, noted as Bird, Fly, etc.)
and roles (binary relations noted as eats, isParentOf, etc.), and are mainly
characterized by constructors that allow complex concepts and roles to be
built from atomic ones. The expressive power of a DL system is determined
by the constructs available for building concept descriptions, and by the

D
o
w
n
l
o
a
d
e
d

B
y
:

[
G
o
m
e
z
,

S
e
r
g
i
o

A
l
e
j
a
n
d
r
o
]

A
t
:

1
8
:
1
7

4

F
e
b
r
u
a
r
y

2
0
1
0

Reasoning with Inconsistent Ontologies Through Argumentation 105

way these descriptions can be used in the terminological (Tbox) and
assertional (Abox) components of the system.

We now describe the basic language for building DL ����
expressions. Let C and D stand for concepts and R for a role name.
Concept descriptions are built from concept names using the constructors
conjunction (C � D), disjunction (C � D), negation (¬C), existencial
restriction (∃R �C), and value restriction (∀R �C). Besides, the expressions
� and ⊥ are shorthand for C � ¬C and C � ¬C , resp. Further extensions
to the basic DL are possible including inverse and transitive roles noted
as P− and P+, resp. Another extension involves the possibility of allowing
individual names (or nominals) in the description language; the most basic
is the “set” (or one-of) constructor, written �a1, � � � , an� where a1, � � � , an are
individual names.

A DL ontology � = (T ,A) consists of two finite and mutually disjoint
sets: the Tbox T which introduces the terminology and the Abox A,
which contains facts about particular objects in the application domain.
Tbox statements have the form C � D (inclusions) and C ≡ D (equalities),
where C and D are (possibly complex) concept descriptions (e.g., Bird �
Fly). Objects in the Abox are referred to by a finite number of individual
names and these names may be used in two types of assertional statements:
concept assertions of the type a : C (e.g., OPUS : Bird) and role assertions
of the type 〈a, b〉 : R , where C is a concept description, R is a role name,
and a and b are individual names (e.g., 〈ADAM,ABEL〉 : isParentOf).

To define the semantics of concept descriptions, concepts are
interpreted as subsets of a domain of interest, and roles as binary relations
over this domain. An interpretation I = 〈�I , ·I 〉 consists of a nonempty set
�I (the domain of I) and a function ·I (the interpretation function of I)
which maps every concept name A to a subset AI of �I , and every role
name R to a subset RI of �I × �I . The interpretation function is extended
to arbitrary concept descriptions as follows: (¬C)I = �I \CI ; (C � D)I =
CI ∪ DI ; (C � D)I = CI ∩ DI ; (∃R �C)I = �x | ∃y s.t. (x , y) ∈ RI and y ∈ CI �,
and (∀R �C)I = �x | ∀y, (x , y) ∈ RI implies y ∈ CI �.

The semantics of Tbox statements is as follows. An interpretation I
satisfies C � D iff CI ⊆ DI , I satisfies C ≡ D iff CI = DI . An interpretation
I satisfies the assertion a : C iff aI ∈ CI , and it satisfies 〈a, b〉 : R iff
(aI , bI) ∈ RI . An interpretation I is a model of a DL (Tbox or Abox)
statement � iff it satisfies the statement, and is a model of a DL ontology
� iff it satisfies every statement in �. A DL ontology � entails a DL
statement �, written as � |= �, iff every model of � is a model of �.

A knowledge representation system based on DL is able to perform
specific kinds of reasoning, its purpose goes beyond storing concept
definitions and assertions (the architecture of such a system is presented
in Figure 1). As a DL ontology has semantics that makes it equivalent to

D
o
w
n
l
o
a
d
e
d

B
y
:

[
G
o
m
e
z
,

S
e
r
g
i
o

A
l
e
j
a
n
d
r
o
]

A
t
:

1
8
:
1
7

4

F
e
b
r
u
a
r
y

2
0
1
0

106 S. A. Gómez et al.

FIGURE 1 Architecture of a knowledge representation system based on Description Logics (adapted
from Baader et al. (2003), Fig. 2.1).

a set of axioms of first-order logic, it contains implicit knowledge that can
be made explicit through inferences. Inferences in DL systems are usually
divided into Tbox reasoning and Abox reasoning. In this article we are
concerned only with Abox reasoning, so we refer the interested reader to
Baader et al. (2003).

• Consistency: An Abox A is consistent w.r.t. Tbox T if there exists an
interpretation which is a model of both A and T .
• Instance checking: Instance checking consists of determining if an
assertion is entailed from an Abox. For instance, T ∪ A |= a : C indicates
that the individual a is a member of the concept C w.r.t. the Abox A and
the Tbox T .
• Retrieval: If we consider a knowledge base as a means to store
information about individuals, we might want to know all the individuals
that are instances of a particular concept description. Given an ontology
(T ,A) and a concept description C , in the retrieval problem we are
interested in knowing all the individuals a such that T ∪ A |= a : C .

We now define the notion of inconsistency in DL ontologies.

Definition 2.1 (Inconsistency in DL ontologies (Baader et al. 2003)).
An ontology � = (T ,A) is inconsistent iff for every interpretation
I =〈�I , ·I 〉 of �, �I is empty.

Huang et al. (2004, 2005) survey several scenarios that may cause
inconsistency, such as mis-presentation of defaults, polysemy (i.e., the
capacity for a sign to have different meanings), ontology migration
from another formalism, and use of multiple sources. We now present

D
o
w
n
l
o
a
d
e
d

B
y
:

[
G
o
m
e
z
,

S
e
r
g
i
o

A
l
e
j
a
n
d
r
o
]

A
t
:

1
8
:
1
7

4

F
e
b
r
u
a
r
y

2
0
1
0

Reasoning with Inconsistent Ontologies Through Argumentation 107

some inconsistent ontologies that will serve as motivating examples; they
correspond to typical examples from the literature of nonmonotonic
reasoning in Artificial Intelligence, and will be analyzed from an
argumentative perspective in the next Section. Notice that following DL
usual conventions, concepts are noted beginning with capital letters (e.g.,
Bird, Fly, etc.), roles with lowercase letters (e.g., in_fusion, etc.), and
individual names with uppercase letters (e.g., OPUS, ACME, STEEL, etc.).

Example 2.1. Let �2�1 = (T ,A) be an ontology, where

T =




Penguin � Bird

Bird � Fly

Bird � Broken_Wing � ¬Fly
Super_Penguin � Penguin � Fly



,

and

A =
{
OPUS : Super_Penguin
OPUS : Broken_Wing�

}
�

The Tbox T says that penguins are birds; birds can fly unless they have a
broken wing, and superpenguins are penguins capable of flying. The Abox
A asserts that it is known that Opus is a superpenguin having a broken
wing.

Example 2.2. Let us consider the Nixon’s diamond problem, a well-
known problem in nonmonotonic reasoning (Reiter and Criscuolo 1981).
Let �2�2 = (T ,A) be a DL ontology where2

T =




Lives_In_Chicago � Has_A_Gun

Lives_In_Chicago � Pacifist � ¬Has_A_Gun

Quaker � Pacifist

Republican � ¬Pacifist



,

and

A =


NIXON : Lives_In_Chicago
NIXON : Quaker

NIXON : Republican


 �

The meaning of this ontology is as follows. If someone lives in Chicago,
then he has a gun unless he is a pacifist; Quakers are pacifists, and
Republicans are not pacifists. Nixon lives in Chicago and he is both a
Quaker and a Republican.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
G
o
m
e
z
,

S
e
r
g
i
o

A
l
e
j
a
n
d
r
o
]

A
t
:

1
8
:
1
7

4

F
e
b
r
u
a
r
y

2
0
1
0

108 S. A. Gómez et al.

Example 2.3. Let us consider the �2�3 = (T ,A) ontology about the stock
market domain:

T =




Good_Price � Buy_Stock

Good_Price � Risky_Company � ¬Buy_Stock
∃in_fusion�� � Closing � Risky_Company

∃in_fusion�Strong � ¬Risky_Company



,

and

A =


ACME : Good_Price

〈ACME,STEEL〉 : in_fusion
STEEL : Strong


 �

The meaning of this ontology is as described next. If some company’s
stock has a good price, then an investor should buy it unless that company
is risky. Risky companies are those which are in the process of fusion or
closing down, except for those that are in fusion with a strong company. It
is known that Acme’s stocks have a good price, and that Acme is in fusion
with a strong company named Steel.

Example 2.4. Let �2�4 = (T ,A) be an ontology about the Royal African
elephants (Sandewall 1986), where:

T =


Elephant � Gray

Royal_Elephant � ¬Gray

Royal_Elephant � African_Elephant � Elephant


 ,

and

A =
{
CLYDE : Royal_Elephant
CLYDE : African_Elephant

}
�

It says that elephants are gray but royal elephants are not. Royal elephants
are elephants; African elephants are elephants as well. It is known that
Clyde is both a Royal and an African elephant.

Example 2.5. Let �2�5 = (T ,A) be an ontology about the adult students
problem (Geffner and Pearl 1990), with

T =


Adult �Worker

University_Student � ¬Worker

University_Student � Adult


 ,

D
o
w
n
l
o
a
d
e
d

B
y
:

[
G
o
m
e
z
,

S
e
r
g
i
o

A
l
e
j
a
n
d
r
o
]

A
t
:

1
8
:
1
7

4

F
e
b
r
u
a
r
y

2
0
1
0

Reasoning with Inconsistent Ontologies Through Argumentation 109

and

A =
{
KEN : Adult
KEN : University_Student

}
�

It expresses that adult people are workers, and that university students do
not work and are adults. It also asserts that Ken is both an adult and a
university student.

Example 2.6 (adapted from Huang et al. (2004)). Let us consider the
ontology �2�6 = (T ,A) adapted from Huang et al. (2004, Section 2.2) as an
example of inconsistency caused by polysemy, with:

T =




Married_Woman �Woman

Married_Woman � ¬Divorcee
Divorcee � Had_Husband � ¬Has_Husband
Has_Husband �Married_Woman

Had_Husband �Married_Woman

Had_Husband � ¬Has_Husband



,

and

A =
{
FLOR :Married_Woman

LETICIA : Divorcee
}
�

This ontology expresses that a married woman is a woman, a married
woman is not a divorcee, a divorcee had a husband and has no husband.
“Has_Husband” means married, “Had_Husband” also means married,
and that somebody had a husband implies she does not have a husband.
It is also known that Flor is a married woman and Leticia is divorced.

Notice that the concept “Divorcee” is unsatisfiable, because of the
misuse of the word “Married_Woman.” Therefore, one has to carefully
check if there is some misunderstanding with respect to concepts that
have been used in the ontology; when an ontology is large, this kind of
requirement may become rather difficult (Huang et al. 2004, p. 7).

In the next section, we will see how the above-described situations can
be handled in DeLP.

DEFEASIBLE LOGIC PROGRAMMING

When a rule supporting a conclusion may be defeated by new
information, it is said that such reasoning is defeasible (Pollock 1974, 1987;
Nute 1988; Pollock 1995; Simari and Loui 1992). When defeasible reasons

D
o
w
n
l
o
a
d
e
d

B
y
:

[
G
o
m
e
z
,

S
e
r
g
i
o

A
l
e
j
a
n
d
r
o
]

A
t
:

1
8
:
1
7

4

F
e
b
r
u
a
r
y

2
0
1
0

110 S. A. Gómez et al.

or rules are chained to reach a conclusion, we have arguments instead of
proofs. Arguments may compete, rebutting each other, so that a process of
argumentation is a natural result of the search for arguments. Adjudication
of competing arguments must be performed, comparing arguments in
order to determine what beliefs are ultimately accepted as warranted or
justified. Preference among conflicting arguments is defined in terms of
a preference criterion which establishes a relation “�” among possible
arguments; thus, for two arguments � and � in conflict, it may be the
case that � is strictly preferred over � (� � �), that � and � are equally
preferable (� � � and � � �), or that � and � are not comparable with
each other. In the above setting, since we arrive at conclusions by building
defeasible arguments, and since logical argumentation is usually referred
to as argumentation, we sometimes call this kind of reasoning defeasible
argumentation.

The growing success of argumentation-based approaches has caused
a rich cross-breeding with other disciplines, providing interesting results
in different areas such as group decision-making (Zhang, Sun, and Chen
2005), knowledge engineering (Carbogim, Robertson, and Lee 2000),
legal reasoning (Prakken and Sartor 2002; Verheij 2005), and multiagent
systems (Parsons, Sierrra, and Jennings 1998; Sierra and Noriega 2002;
Rahwan et al. 2003), among others. During the last decade several
defeasible argumentation frameworks have been developed, most of them
on the basis of suitable extensions to logic programming (see Chesñevar
et al. (2000), Prakken and Vreeswijk (2002), and Kakas and Toni (1999)).
Defeasible logic programming (García and Simari 2004) is one of such
formalisms, combining results from defeasible argumentation theory
(Simari and Loui 1992) and logic programming (Lloyd 1987). DeLP is a
suitable framework for building real-world applications that have proven
to be particularly attractive in that context, such as clustering (Gómez
and Chesñevar 2004), intelligent web search (Chesñevar and Maguitman
2004b; Chesñevar, Maguitman, and Simari 2006), knowledge management
(Chesñevar et al. 2005a,b), multiagent systems (Brena, Chesñevar and
Aguirre 2006), natural language processing (Chesñevar and Maguitman
2004a), intelligent web forms (Gómez, Chesñevar, and Simari 2008b),
among others.

Defeasible logic programming (García and Simari 2004) provides a
language for knowledge representation and reasoning that uses defeasible
argumentation (Chesñevar et al. 2000; Prakken and Vreeswijk 2002; Simari
and Loui 1992) to decide between contradictory conclusions through a
dialectical analysis. The architecture of a knowledge representation system
based on defeasible argumentation is shown in Figure 2 (the analogies
of this architecture w.r.t. the architecture presented in Figure 1 will be
considered later.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
G
o
m
e
z
,

S
e
r
g
i
o

A
l
e
j
a
n
d
r
o
]

A
t
:

1
8
:
1
7

4

F
e
b
r
u
a
r
y

2
0
1
0

Reasoning with Inconsistent Ontologies Through Argumentation 111

FIGURE 2 Architecture of a knowledge representation system based on defeasible argumentation.

In a defeasible logic program � = (�,�), a set � of strict rules
P ← Q1, � � � ,Qn , and a set � of defeasible rules P −≺Q1, � � � ,Qn can be
distinguished.

Definition 3.1 (strict, defeasible, and DeLP programs). �DeLP =df

�DeLP� ∪ �DeLP� is the language of DeLP programs, where �DeLP� is the
language of DeLP programs formed by strict rules B ← A1, � � � ,An with
(n ≥ 1) and facts B (i.e., rules where n = 0), and �DeLP� is the language
of DeLP programs formed only by defeasible rules B −≺A1, � � � ,An with
(n ≥ 1).

Literals can be positive or negative. The complement of a literal L
(noted as L) is p if L = ∼p and ∼p if L = p. Notice that there is an
extension to DeLP that allows to define presumptions (or defeasible rules
without body) that model defeasible facts (see García and Simari (2004,
Sect. 6.2)); however, they are outside the scope of this work.

Deriving literals in DeLP results in the construction of arguments. An
argument � is a (possibly empty) set of ground (i.e., without variables)
defeasible rules that together with the set � provides a logical proof for a
given literal Q , satisfying the additional requirements of noncontradiction
and minimality. Formally:

Definition 3.2 (argument). Given a DeLP program �, an argument � for
a query Q , denoted 〈�,Q 〉, is a subset of ground instances of defeasible
rules in �, such that: (1) there exists a defeasible derivation for Q from
� ∪�; (2) � ∪� is noncontradictory (i.e., � ∪� does not entail two
complementary literals P and ∼P); and (3) there is no �′ ⊂ � such
that there exists a defeasible derivation for Q from � ∪�′. An argument
〈�1,Q1〉 is a subargument of another argument 〈�2,Q2〉 if �1 ⊆ �2.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
G
o
m
e
z
,

S
e
r
g
i
o

A
l
e
j
a
n
d
r
o
]

A
t
:

1
8
:
1
7

4

F
e
b
r
u
a
r
y

2
0
1
0

112 S. A. Gómez et al.

The notion of defeasible derivation corresponds to the usual query-
driven SLD derivation used in logic programming, performed by backward
chaining on both strict and defeasible rules; in this context a negated
literal ∼P is treated just as a new predicate name no_P . Minimality
imposes a kind of “Occam’s razor principle” on argument construction.
The noncontradiction requirement forbids the use of (ground instances
of) defeasible rules in an argument � whenever � ∪� entails two
complementary literals. The notion of contradiction is captured by the
notion of counterargument.

Definition 3.3 (counterargument. Defeat). An argument 〈�1,Q1〉 is a
counterargument for an argument 〈�2,Q2〉 iff there is a subargument 〈�,Q 〉
of 〈�2,Q2〉 such that the set � ∪ �Q1,Q � is contradictory. An argument
〈�1,Q1〉 is a defeater for an argument 〈�2,Q2〉 if 〈�1,Q1〉 counterargues
〈�2,Q2〉, and 〈�1,Q1〉 is preferred over 〈�2,Q2〉 w.r.t. a preference criterion �
on conflicting arguments. Such criterion is defined as a partial order �⊆
Args(�)× Args(�). The argument 〈�1,Q1〉 will be called a proper defeater
for 〈�2,Q2〉 iff 〈�1,Q1〉 is strictly preferred over 〈�,Q 〉 w.r.t. �; if 〈�1,Q1〉
and 〈�,Q 〉 are unrelated to each other will be called a blocking defeater for
〈�2,Q2〉.

Generalized specificity (Simari and Loui 1992) is typically used
as a syntax-based preference criterion among conflicting arguments,
favoring those arguments which are more informed or more direct
(Simari and Loui 1992; Stolzenburg, García, Chesñevar, and Simari
2003). For example, let us consider three arguments 〈�a −≺ b, c�, a〉,
〈�∼a −≺ b�,∼a〉, and 〈�(a −≺ b); (b −≺ c�), a〉 built on the basis of a
program � = (�,�) = (�b, c�, �b −≺ c ; a −≺ b; a −≺ b, c ;∼a −≺ b�). When
using generalized specificity as the comparison criterion between
arguments, the argument 〈�a −≺ b, c�, a〉 would be preferred over the
argument 〈�∼a −≺ b�,∼a〉 as the former is considered more informed
(i.e., it relies on more premises). However, argument 〈�∼a −≺ b�,∼a〉 is
preferred over 〈�(a −≺ b); (b −≺ c�), a〉 as the former is regarded as more
direct (i.e., it is obtained from a shorter derivation). However, it must
be remarked that besides specificity, other alternative preference criteria
could also be used; e.g., considering numerical values corresponding
to necessity measures attached to argument conclusions (Chesñevar,
Simari, Alsinet, and Godo 2004; Chesñevar, Simari, Godo, and Alsinet
2005) or defining argument comparison using rule priorities. This last
approach is used in d-Prolog (Nute 1988), defeasible logic (Nute 1992),
extensions of defeasible logic (Antoniou et al. 2000, 1998), and logic
programming without negation as failure (Kakas, Mancarella, and Dung
1994; Dimopoulos and Kakas 1995).

D
o
w
n
l
o
a
d
e
d

B
y
:

[
G
o
m
e
z
,

S
e
r
g
i
o

A
l
e
j
a
n
d
r
o
]

A
t
:

1
8
:
1
7

4

F
e
b
r
u
a
r
y

2
0
1
0

Reasoning with Inconsistent Ontologies Through Argumentation 113

In order to determine whether a given argument � is ultimately
undefeated (or warranted), a dialectical process is recursively carried out,
where defeaters for �, defeaters for these defeaters, and so on, are taken
into account. An argumentation line starting in an argument 〈�0,Q0〉 is a
sequence [〈�0,Q0〉, 〈�1,Q1〉, 〈�2,Q2〉, � � � , 〈�n ,Qn〉 � � �] that can be thought
of as an exchange of arguments between two parties, a proponent
(evenly indexed arguments) and an opponent (oddly indexed arguments).
Each 〈�i ,Qi〉 is a defeater for the previous argument 〈�i−1,Qi−1〉 in the
sequence, i > 0. In order to avoid fallacious reasoning, dialectics imposes
additional constraints on such an argument exchange to be considered
rationally acceptable. Given a DeLP program � and an initial argument
〈�0,Q0〉, the set of all acceptable argumentation lines starting in 〈�0,Q0〉
accounts for a whole dialectical analysis for 〈�0,Q0〉 (i.e., all possible
dialogues about 〈�0,Q0〉 between proponent and opponent), formalized
as a dialectical tree.

Nodes in a dialectical tree 	〈�0,Q0〉 can be marked as undefeated and
defeated nodes (U-nodes and D-nodes, resp.). A dialectical tree will be
marked as an and-or tree: all leaves in 	〈�0,Q0〉 will be marked U-nodes
(as they have no defeaters), and every inner node is to be marked as
D-node iff it has at least one U-node as a child, and as U-node otherwise.
An argument 〈�0,Q0〉 is ultimately accepted as valid (or warranted) w.r.t.
a DeLP program � iff the root of its associated dialectical tree 	〈�0,Q0〉 is
labeled as U-node.

Given a DeLP program �, solving a query Q w.r.t. � accounts for
determining whether Q is supported by (at least) one warranted argument.
Different doxastic attitudes can be distinguished as follows: Yes, accounts
for believing Q iff there is at least one warranted argument supporting Q
on the basis of �; No, accounts for believing ∼Q iff there is at least one
warranted argument supporting ∼Q on the basis of �; Undecided, neither
Q nor ∼Q are warranted w.r.t. �, and Unknown, Q does not belong to the
signature of �.

We present a property that will be useful for proving some results about
our proposal of reasoning with �-ontologies.

Proposition 3.1 (García and Simari 2004). For any program � in DeLP, it
cannot be the case that both Q and ∼Q are warranted.

In the next sections we will present a method for expressing arbitrary
DL ontologies in DeLP. For now on, based on the fact discovered by
Grosof et al. (2003) that DL inclusion axioms of the form “C � D” can
be equated to PROLOG rules of the form “D(X) :- C(X)”, we will show
how the application problems modeled by the ontologies presented in the
previous section can be expressed in DeLP in such a way that it could be
possible for an agent to automatically reason in such cases. Notice also that

D
o
w
n
l
o
a
d
e
d

B
y
:

[
G
o
m
e
z
,

S
e
r
g
i
o

A
l
e
j
a
n
d
r
o
]

A
t
:

1
8
:
1
7

4

F
e
b
r
u
a
r
y

2
0
1
0

114 S. A. Gómez et al.

following PROLOG usual conventions, predicates are noted with lowercase
letters (e.g., bird , fly, etc.), variable names with capital letters (e.g., X ,Y ,Z ,
etc.), and constant names with lowercase letters (e.g., opus, acme , steel ,
etc.).

Example 3.1. Here follows the DeLP program �3�1 = (�,�) which
models the situation presented in Example 2.1:

� =




bird(X)← penguin(X)
penguin(X)← super_penguin(X)
super_penguin(opus)
broken_wing (opus)



,

and

� =


∼fly(X)−≺ bird(X), broken_wing (X)
fly(X)−≺ bird(X)
fly(X)−≺ super_penguin(X)


 �

In DeLP, the answer for fly(opus) is Yes, while the answer for ∼fly(opus) is
No as it is shown next. It is possible to build an argument 〈�1,fly(opus)〉,
where

�1 = �fly(opus)−≺ bird(opus)��

This argument is properly defeated by another argument 〈�2,∼fly(opus)〉,
with

�2 = �∼fly(opus)−≺ bird(opus), broken_wing (opus)��

However, argument �1 is reinstated by another argument 〈�3,fly(opus)〉
which is a blocking defeater for �2, where

�3 = �fly(opus)−≺ super_penguin(opus)��

Example 3.2 (taken from García and Simari (2004)). Let us present the
DeLP program �3�2 = (�,�) which represents the ontology presented in
Example 2.2:

� =


lives_in_chicago(nixon)
quaker (nixon)
republican(nixon),


 ,

D
o
w
n
l
o
a
d
e
d

B
y
:

[
G
o
m
e
z
,

S
e
r
g
i
o

A
l
e
j
a
n
d
r
o
]

A
t
:

1
8
:
1
7

4

F
e
b
r
u
a
r
y

2
0
1
0

Reasoning with Inconsistent Ontologies Through Argumentation 115

and

� =




has_a_gun(X)−≺ lives_in_chicago(X)
∼has_a_gun(X)−≺ lives_in_chicago(X), pacifist(X)
pacifist(X)−≺ quaker (X)
∼pacifist(X)−≺ republican(X)



�

For this particular program, García and Simari (2004, Example 2.2) show
that the answer for queries pacifist(nixon) and ∼pacifist(nixon) is Undecided.

Example 3.3 (taken from García and Simari (2004)). Consider the
DeLP program �3�3 = (�,�) which represents the situation posed by
Example 2.3, where

� =


good_price(acme)
in_fusion(acme , steel)
strong (steel)


 ,

and

� =




buy_stock(X)−≺ good_price(X)
∼buy_stock(X)−≺ good_price(X), risky_company(X)
risky_company(X)−≺ in_fusion(X ,Y)
risky_company(X)−≺ closing (X)
∼risky_company(X)−≺ in_fusion(X ,Y), strong (Y)



�

In this case, it can be shown that the answer for buy_stock(acme) is Yes (see
García and Simari (2004, Example 2.4) for details).

Example 3.4 (taken from Simari and Loui (1992)). Consider the DeLP
program �3�4 = (�,�), with

� =




elephant(X)← royal_elephant(X)
elephant(X)← african_elephant(X)
royal_elephant(clyde)
african_elephant(clyde)



,

and

� =
{
gray(X)−≺ elephant(X)
∼gray(X)−≺ royal_elephant(X)

}
�

This example deals with “on-path versus off-path preemption” in the
context of inheritance reasoners. Among the arguments that can be
built from �3�4, 〈�∼gray(clyde)−≺ elephant(clyde)�,∼gray(clyde)〉 is the most

D
o
w
n
l
o
a
d
e
d

B
y
:

[
G
o
m
e
z
,

S
e
r
g
i
o

A
l
e
j
a
n
d
r
o
]

A
t
:

1
8
:
1
7

4

F
e
b
r
u
a
r
y

2
0
1
0

116 S. A. Gómez et al.

specific; therefore, the answer for the query gray(clyde) is No (Simari and
Loui 1992, p. 148).

Example 3.5 (taken from Simari and Loui (1992)). Simari and Loui
(1992, p. 149) present this example that deals with “defeasible specificity.”
Consider the DeLP program �3�5 = (�,�), where

� =
{
adult(ken)
university_student(ken)

}
,

and

� =


worker (X)−≺ adult(X)
∼worker (X)−≺university_student(X)
adult(X)−≺university_student(X)


 �

DeLP is not able to decide whether or not Ken is a worker as the answer
for the query worker (ken) is Undecided.

Example 3.6. The following DeLP program �3�6 = (�,�) codifies the
ontology considered in Example 2.6, where

� =




woman(X)← married_woman(X)
had_husband(X)← divorcee(X)
married_woman(flor)
divorcee(leticia)



,

and

� =




∼divorcee(X)−≺married_woman(X)
∼has_husband(X)−≺ had_husband(X)
married_woman(X)−≺ has_husband(X)
married_woman(X)−≺ had_husband(X)



�

From this program, the answer for query woman(flor) is Yes, while the
answer for the query divorcee(flor) is No, which are correct. However, the
answer for the query has_husband(flor) is Undecided as it is not possible to
build an argument for such literal. The answer for woman(leticia) is Yes and
the answer for has_husband(leticia) is No.

In the next section, we will see under which constraints the translation
of arbitrary DL ontologies to DeLP can be performed.

EXPRESSING DL ONTOLOGIES IN DELP

In the presence of inconsistent ontologies, traditional DL reasoners
(such as Racer (Haarslev and Möller 2001)) issue an error message

D
o
w
n
l
o
a
d
e
d

B
y
:

[
G
o
m
e
z
,

S
e
r
g
i
o

A
l
e
j
a
n
d
r
o
]

A
t
:

1
8
:
1
7

4

F
e
b
r
u
a
r
y

2
0
1
0

Reasoning with Inconsistent Ontologies Through Argumentation 117

and stop further processing. Thus the burden of repairing the ontology
(i.e., making it consistent) is on the knowledge engineer. However, the
knowledge engineer is not always available and in some cases, such as
when dealing with imported ontologies, he has neither the authority nor
the expertise to correct the source of inconsistency. Therefore, we are
interested in coping with inconsistencies such that the task of dealing with
them is automatically solved by the reasoning system.

We propose using DeLP to perform such a task by translating DL
ontologies into DeLP programs. By doing so we gain the capability
of reasoning with inconsistent ontologies. However, we also lose some
expressiveness in the involved ontologies. As we will show in Definition 4.1,
certain restrictions will have to be imposed on DL ontologies in order to
be expressed in the DeLP language.

Our proposal is based in part in the work of (Grosof et al. 2003; Volz
2004) who show that the processing of ontologies can be improved by the
use of techniques from the area of logic programming. In particular they
have identified a subset of DL languages that can be effectively mapped
into a horn-clause logics. Given a DL ontology � = (T ,A), we will consider
the Tbox T as partitioned into two disjoint sets—a strict terminology TS

and a defeasible terminology TD—such that T = TS ∪ TD and TS ∩ TD = ∅.
Considering the analogies between the reasoning systems presented in

Figures 1 and 2, we therefore propose translating the DL ontology � into a
DeLP program � = (�,�) = 	 (�) by means of a mapping 	 from the DL
language to the DeLP language. Intuitively, the set � of strict rules in � will
correspond to the Abox A joined with TS in �, and the set � of defeasible
rules will correspond to TD in �. This translation will be achieved by two
specialized functions 	� and 	�, where 	� translates from a set of DL
sentences into a set of DeLP strict rules and 	� translates from a set of DL
sentences into a set of DeLP defeasible rules, such that �= 	�(TD) ∪ 	�(A)
and � = 	�(�).

In the rest of this section, we will explain how to achieve the translation
of DL ontologies into DeLP programs. For clarity, in spite of being
incorrect according to the DeLP syntax conventions, strict rules of the
form “H ← B1, � � � ,Bn” will sometimes be written as “H ← B1 ∧ · · · ∧ Bn”
and defeasible rules “H −≺B1, � � � ,Bn” as “H −≺B1 ∧ · · · ∧ Bn .” As noted by
Grosof et al. (2003), for DL sentences to be mapped into horn-logic rules,
they must satisfy certain constraints. Conjunction and universal restrictions
appearing in the right-hand side of inclusion axioms can be mapped to
heads of rules (called �h -classes). In contrast, conjunction, disjunction,
and existential restriction can be mapped to rule bodies whenever they
occur in the left-hand side of inclusion axioms (called �b -classes). As
equality axioms “C ≡ D” are interpreted as two inclusion axioms “C � D”
and “D � C ,” they must belong to the intersection of �h and �b .

D
o
w
n
l
o
a
d
e
d

B
y
:

[
G
o
m
e
z
,

S
e
r
g
i
o

A
l
e
j
a
n
d
r
o
]

A
t
:

1
8
:
1
7

4

F
e
b
r
u
a
r
y

2
0
1
0

118 S. A. Gómez et al.

Definition 4.1 (�h ,�b , and �hb languages/classes (adapted from Grosof
et al. (2003)). Let A be an atomic class name, C and D class expressions,
and R a property. In the �h language, C � D is a class, and ∀R �C is also
a class. Class expressions in �h are called �h -classes. In the �b language,
C � D is a class, and ∃R �C is a class too. Class expressions in �b are called
�b -classes. The �hb language is defined as the intersection of �h and �b .
Class expressions in �hb are called �hb -classes.

We now define the mapping from DL to DeLP. Without losing
generality, we assume that ontology definitions are normalized w.r.t.
negation. That is, negations in class expressions are shifted inwards using
De Morgan’s rules and well-known relations between existential and value
restrictions (for details, see the definition of the NNF function in Krötzch,
Rudolph, and Hitzler (2007)). Besides, occurrences of ⊥ and � are not
considered as they can be suitably eliminated as shown in Volz (2004,
Table 4.1). These transformations of course do not change the semantics
of a terminology.

First we show how to map DL axioms into defeasible rules.
As previously mentioned, defeasible rules are meant to represent possibly
inconsistent information. Thus DL axioms in defeasible terminologies are
going to be interpreted as default class inclusions.

Definition 4.2 (� mapping from DL sentences to DeLP defeasible rules).
Let A,C ,D be concepts, X ,Y variables, P ,Q properties. The 	� :
2�DL → 2�DeLP� mapping is defined in Figure 3. Besides, intermediate
transformations that will end as rules of the form “(H1 ∧H2)−≺B”
will be rewritten as two rules “H1−≺B” and “H2−≺B” (as this is an
incorrect DeLP syntax). Similarly, transformations of the form “H1H2−≺B”
will be rewritten as “H1−≺B ∧H2,” and transformations of the form
“H −≺ (B1 ∨ B2)” will be rewritten as two rules “H −≺B1” and “H −≺B2.”

Example 4.1. Consider the DL terminology

TD =


Bird � Fly

Chicken � ¬Fly
Chicken � Scared � Fly




which expresses both that birds fly and that chickens do not fly unless
they are scared. The application of the 	� mapping to TD yields a set � of
defeasible rules, where

� =


fly(X)−≺ bird(X)
∼fly(X)−≺ chicken(X)
fly(X)−≺ chicken(X), scared(X)


 �

D
o
w
n
l
o
a
d
e
d

B
y
:

[
G
o
m
e
z
,

S
e
r
g
i
o

A
l
e
j
a
n
d
r
o
]

A
t
:

1
8
:
1
7

4

F
e
b
r
u
a
r
y

2
0
1
0

Reasoning with Inconsistent Ontologies Through Argumentation 119

FIGURE 3 Mapping from DL ontologies to DeLP defeasible rules.

Example 4.2 (adapted fromGrosof et al. (2003)). Consider the DL axiom:

A � ∃r�C � B � ∀p�D�
It would be expressed as the (mal-formed) defeasible rule:

(b(X) ∧ (d(Z)−≺ p(X ,Z)))−≺ (a(X) ∧ r (X ,Y) ∧ c(X)),

which is rewritten as the pair of defeasible rules:

b(X)−≺ a(X), r (X ,Y), c(X),

d(Z)−≺ a(X), r (X ,Y), c(X), p(X ,Z)�

Next, we present a mapping from DL axioms to strict rules. We are
going to assume that strict terminologies are consistent.

Definition 4.3 (∗� mapping from DL sentences to DeLP strict rules).
Let A,C ,D be concepts, X ,Y variables, P ,Q properties. The 	 ∗� :
2�DL → 2�DeLP� mapping is defined in Figure 4. Besides, intermediate

D
o
w
n
l
o
a
d
e
d

B
y
:

[
G
o
m
e
z
,

S
e
r
g
i
o

A
l
e
j
a
n
d
r
o
]

A
t
:

1
8
:
1
7

4

F
e
b
r
u
a
r
y

2
0
1
0

120 S. A. Gómez et al.

FIGURE 4 Mapping from DL ontologies to DeLP strict rules.

transformations of the form “(H1 ∧H2)← B” will be rewritten as two
rules “H1← B” and “H2← B.” Similarly, transformations of the form
“H1← H2← B” will be rewritten as “H1← B ∧H2,” and rules of the form
“H ← (B1 ∨ B2)” will be rewritten as two rules “H ← B1” and “H ← B2.”

As DeLP is based on SLD-derivation of literals, simple translation of DL
sentences to DeLP strict rules does not allow to infer negative information
by modus tollens. For instance, “C � D” (all C ’s are D’s) is translated
as “D(X)← C(X),” DeLP is not able to derive “∼C(a)” from “∼D(a)”.
Thus given “C1 � C2 � · · · � Cn−1 � Cn � D,” instead of only including the
strict rule “D(X)← C1(X),C2(X), � � � ,Cn−1(X),Cn(X)” in its translation, we
propose including all of its transposes.

Definition 4.4 (transposes of a strict rule). Let r = H ← B1,B2,B3, � � � ,
Bn−1,Bn be a DeLP strict rule. The set of transposes of rule r , noted as

D
o
w
n
l
o
a
d
e
d

B
y
:

[
G
o
m
e
z
,

S
e
r
g
i
o

A
l
e
j
a
n
d
r
o
]

A
t
:

1
8
:
1
7

4

F
e
b
r
u
a
r
y

2
0
1
0

Reasoning with Inconsistent Ontologies Through Argumentation 121

“Trans(r),” is defined as

Trans(r) =




H ← B1,B2, � � � ,Bn−1,Bn

B1← H ,B2,B3, � � � ,Bn−1,Bn

B2← H ,B1,B3, � � � ,Bn−1,Bn

B3← H ,B1,B2, � � � ,Bn−1,Bn

� � �

Bn−1← H ,B1,B2,B3 � � � ,Bn

Bn ← H ,B1,B2, � � � ,Bn−1




Definition 4.5 (� mapping from DL sentences to DeLP strict rules).
We define the mapping from DL ontologies into DeLP strict rules as
	�(T) = Trans(∗� (T)).

Notice that reasoning with transposed strict rules is not more
computationally expensive than reasoning without them. Observe that
even though as this seems computationally expensive, it is only as
expensive as deriving ∼b from a ← b and ∼a.

Also notice that following trends in nonmonotonic reasoning, we do
not consider transposition of defeasible rules (Brewka, Dix, and Konolige
1997; Caminada 2008). In this respect, but in the context of default logic,
Brewka et al. (1997, p. 45) say that:

Default logic expressive power is due mainly to the representation of
defaults as (nonstandard) inference rules. This representation avoids
problems with contraposition of defaults. In classical logic, an implication
A ⊃ B is equivalent to its contraposition ¬B ⊃ ¬A. For defaults,
contraposition is sometimes unwanted. For instance, one might believe
that computer scientists typically do not know much about nonmonotonic
reasoning. From this belief it certainly does not follow that those who
know much about nonmonotonic reasoning are typically not computer
scientists.

The reader should also notice that the price paid for translating DL
ontologies into DeLP programs is the loss of some expressiveness. For
instance, as noted by Grosof et al. (2003), DL axioms that generate a rule
with a disjunction in its head cannot be represented in logic programming.

DELP-BASED ONTOLOGIES

As previously mentioned, traditional DL reasoners are not capable
of inferring information in the presence of inconsistent ontologies.
In this section, we present a framework where inconsistent definitions for

D
o
w
n
l
o
a
d
e
d

B
y
:

[
G
o
m
e
z
,

S
e
r
g
i
o

A
l
e
j
a
n
d
r
o
]

A
t
:

1
8
:
1
7

4

F
e
b
r
u
a
r
y

2
0
1
0

122 S. A. Gómez et al.

concepts in an ontology are expressed as a set of defeasible inclusion and
equality axioms. These axioms are to be considered as an initial, tentative
attempt at exploring the problem. Thus, in the presence of inconsistency,
to determine the epistemic status of a sentence about some individual’s
membership in a concept description, a dialectical analysis will be carried
out considering all arguments in favor and against its membership.

Knowledge Representation: �-Ontologies

An ontology is defined as a set of classes and a set of individuals that
belong to such classes. We redefine the notion of DL ontology to make it
suitable for our approach.

Definition 5.1 (�-Ontology). Let C be an �b -class, D an �h -class, A,B
�hb -classes, P ,Q properties, a, b individuals. Let T be a set of inclusion
and equality sentences in �DL of the form C � D, A ≡ B, � � ∀P �D, � �
∀P−�D, P � Q , P ≡ Q , P ≡ Q −, or P+ � P such that T can be partitioned
into two disjoint sets TS and TD . Let A be a set of assertions disjoint with
T of the form a : D or 〈a, b〉 : P . A �-ontology � is a tuple (TS ,TD ,A). The
set TS is called the strict terminology (or Sbox), TD the defeasible terminology
(or Dbox) and A the assertional box (or Abox).

In what follows we assume that the knowledge engineer determines
how to encode ontologies in terms of defeasible and strict axioms.
Establishing such distinction automatically is a well-known open problem
and we discuss some approaches to it in a later section.

Example 5.1. Let �5�1 = (TS ,TD ,A) be a �-ontology, where

TS =
{
Chicken � Penguin � Bird

Penguin � ¬Fly
}
;

TD =




Bird � Fly

Chicken � ¬Fly
Chicken � Scared � Fly

Fly � Nest_In_Trees



,

and

A =


TINA : Chicken,
TWEETY : Penguin,
TINA : Scared


 �

The Sbox TS says both that chickens and penguins are birds, and that
penguins do not fly. The Dbox TD expresses that birds usually fly, chickens
typically do not fly unless they are scared, and that flying animals normally

D
o
w
n
l
o
a
d
e
d

B
y
:

[
G
o
m
e
z
,

S
e
r
g
i
o

A
l
e
j
a
n
d
r
o
]

A
t
:

1
8
:
1
7

4

F
e
b
r
u
a
r
y

2
0
1
0

Reasoning with Inconsistent Ontologies Through Argumentation 123

nest in trees. The Abox A establishes that Tina is a chicken, Tweety is a
penguin and Tina is scared.3

The Sbox will be interpreted as a set of strict rules, the Abox as a set
of facts, and the Dbox as a set of defeasible rules.

Semantic Interpretation of �-Ontologies as DeLP Programs

The traditional approach to reasoning in DLs is based on model-
theoretic semantics. As DLs are a subset of first-order logic (FOL),
entailment has an explosive effect in the presence of inconsistent
ontologies (i.e., inconsistency allows to derive all well-formed formulas
in the theory). In this work, we propose an argumentative approach
to reasoning with inconsistent ontologies. Thus a �-ontology will be
interpreted as a DeLP program. We are assuming that under a traditional
DL interpretation, the set TS ∪ A has a model; provided that is the case,
then, as required by the DeLP framework, the set 	�(TS) ∪ 	�(A) will have
a model under a standard logic programming interpretation as well.

Definition 5.2 (interpretation of a �-Ontology). Let � = (TS ,TD ,A) be a
�-ontology. The interpretation of � is a DeLP program � = (�(TS) ∪
	�(A), 	�(TD)).

Example 5.2 (continues Ex. 5.1). Consider again the �-ontology �5�1.
�5�1 is interpreted as the DeLP program �5�1 = (�,�), where

� =




bird(X)← chicken(X)
∼chicken(X)←∼bird(X)
bird(X)← penguin(X)
∼penguin(X)←∼bird(X)
∼fly(X)← penguin(X)
∼penguin(X)← fly(X)
chicken(tina)
penguin(tweety)
scared(tina)




,

and

� =




fly(X)−≺ bird(X)
∼fly(X)−≺ chicken(X)
fly(X)−≺ chicken(X), scared(X)
nest_in_trees(X)−≺fly(X)



�

D
o
w
n
l
o
a
d
e
d

B
y
:

[
G
o
m
e
z
,

S
e
r
g
i
o

A
l
e
j
a
n
d
r
o
]

A
t
:

1
8
:
1
7

4

F
e
b
r
u
a
r
y

2
0
1
0

124 S. A. Gómez et al.

Inference Tasks in �-Ontologies

In the DL approach to reasoning with ontologies in the semantic web,
once a knowledge engineer has designed the terminology and used the
DL reasoning service for checking that all of the terminology’s concepts
are satisfiable, the Abox can be filled with assertions about individuals. In
order to keep consistency within an argument as required by Def. 3.2, we
must enforce some internal coherence between the Abox and the Tbox.

Definition 5.3 (internal coherence in Aboxes. Consistency of Aboxes w.r.t.
Sboxes). Let � = (TS ,TD ,A) be a �-ontology. The Abox A is internally
coherent iff there are no pair of assertions a : C and a : ¬C , for any
individual a and any class C . The Abox A is consistent w.r.t. the terminology
TS iff it is not possible to derive two literals C(a) and ∼C(a) from
	�(TS) ∪ 	�(A).

Example 5.3. Let �5�3 = (TS ,∅,A) be a �-ontology such that TS =
�(C � D), (D � ¬F)� and A = �(B : C), (B : F)�. �5�3 is expressed as
�5�3 = (�,∅), where � = 	�(TS) ∪ 	�(A) = �c(b), c(b), (d(X)← c(X)),
(∼c(X)←∼d(X)), (∼f (X)← d(X)), (∼d(X)← f (X))�, from which it is
possible to strictly derive f (b) and ∼f (b). Therefore A is not consistent
w.r.t. TS .

Instance Checking
In the traditional DL setting, instance checking refers to determining

whether the assertions in the Abox entail that a particular individual is an
instance of a given concept description (Baader et al. 2003). We propose
a set of definitions to capture this notion in the context of �-ontologies.

Definition 5.4 (potential, justified, and strict membership of an individual
to a class). Let � = (TS ,TD ,A) be a �-ontology. Let C be a class name, a
an individual, let � = (�(TS) ∪ 	�(A), 	�(TD)).

1. The individual a potentially belongs to class C (noted as “Ca
p ”) iff there

exists an argument 〈�,C(a)〉 w.r.t. �.
2. The individual a justifiedly belongs to class C (noted as “Ca

w ”) iff there exists
a warranted argument 〈�,C(a)〉 w.r.t. �.

3. The individual a strictly belongs to class C (noted as “Ca
s ”) iff there exists

an argument 〈∅,C(a)〉 w.r.t. �.

We have the following straightforward result.

Property 5.1. Given a �-ontology �, a concept name C , and an individual
a, Ca

s implies Ca
w , and Ca

w implies Ca
p .

D
o
w
n
l
o
a
d
e
d

B
y
:

[
G
o
m
e
z
,

S
e
r
g
i
o

A
l
e
j
a
n
d
r
o
]

A
t
:

1
8
:
1
7

4

F
e
b
r
u
a
r
y

2
0
1
0

Reasoning with Inconsistent Ontologies Through Argumentation 125

Proof. The former holds because in DeLP empty arguments (i.e., literals
derived exclusively from strict rules) have no defeaters and they are thus
warranted. The latter trivially holds because warranted arguments are
arguments.

The next example remarks the way our proposal is capable of handling
instance checking under the Open World Assumption assumed by Semantic
Web standards.

Example 5.4. Consider the �-ontology �5�4 = (∅,∅, �TWEETY : Bird�),
that is interpreted as the DeLP program �5�4 = (�bird(tweety)�,∅). It holds
that BirdTWEETY

w as the argument 〈∅, bird(tweety)〉 is trivially warranted w.r.t.
�5�4. However it holds neither Bird

OPUS

w nor ¬BirdOPUS

w as the answer
for bird(opus) is Undecided because no argument for that literal (or its
negation) can be built from �5�4.

We now extend the notion of membership to arbitrary concept expres-
sions.

Definition 5.5 (potential, justified, and strict membership of an individual
to a class (extended version)). Let � = (TS ,TD ,A) be a �-ontology. Let
C ,D class names in �, a, b individuals in �, R an atomic property in
�, � = (�(TS) ∪ 	�(A), 	�(TD)). Let E be a class name not present in
�. The potential (resp. justified) membership of a to a complex concept is
defined as:

• ¬C : (¬C)ap (resp. (¬C)aw) iff there exists an argument (resp. warranted
argument) 〈�,∼C(a)〉 w.r.t. �.
• C � D: Let �2 = (�,� ∪ 	�(C � D � E)). (C � D)ap (resp. (C � D)aw) iff
there exists an argument (resp. warranted argument) 〈�,E(a)〉 w.r.t. �2.
• C � D: Let �2 = (�,� ∪ 	�(C � D � E)). (C � D)ap (resp. (C � D)aw) iff
there exists an argument (resp. warranted argument) 〈�,E(a)〉 w.r.t. �2.
• ∃R �C : Let �2 = (�,� ∪ 	�(∃R �C � E)). (∃R �C)ap (resp. (∃R �C)aw) iff
there exists an argument (resp. warranted argument) 〈�,E(a)〉 w.r.t. �2.

The strict membership of a to a complex concept is defined as:

• ¬C : (¬C)as iff there exists an argument 〈∅,∼C(a)〉 w.r.t. �.
• C � D: Let �2 = (� ∪ 	�(C � D � E),�). (C � D)as iff there exists an
argument 〈∅,E(a)〉 w.r.t. �2.
• C � D: Let �2 = (� ∪ 	�(C � D � E),�). (C � D)as iff there exists an
argument 〈∅,E(a)〉 w.r.t. �2.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
G
o
m
e
z
,

S
e
r
g
i
o

A
l
e
j
a
n
d
r
o
]

A
t
:

1
8
:
1
7

4

F
e
b
r
u
a
r
y

2
0
1
0

126 S. A. Gómez et al.

• ∃R �C : Let �2 = (� ∪ 	�(∃R �C � E),�). (∃R �C)as iff there exists an
argument 〈∅,E(a)〉 w.r.t. �2.

Notice that in the above definition the concept E can be actually larger
than the complex concept it represents and it is introduced solely for
expressing the initial DeLP query.

Property 5.2. Let � = (TS ,TD ,A) be a �-ontology. It cannot be the
case that an individual a belongs justifiedly to concept C and ¬C
simultaneously.

Proof. Suppose that both Ca
w and (¬C)aw . Then it must be the case

there exist two warranted arguments 〈�,C(a)〉 and 〈�,∼C(a)〉 w.r.t.
(�(TS) ∪ 	�(A), 	�(TD)). But this is impossible as DeLP cannot warrant
two complementary literals simultaneously (as shown in Property 3.1).

Property 5.3. Let � = (TS ,TD ,A) be a �-ontology. It cannot be the case
an individual a belongs strictly to concept C and ¬C simultaneously.

Proof. Suppose that Ca
s and (¬C)as , then there must exist two arguments

〈∅,C(a)〉 and 〈∅,∼C(a)〉 w.r.t. (�(TS) ∪ 	�(A), 	�(TD)). Therefore
	�(TS) ∪ 	�(A) will be inconsistent contradicting Definition 5.3.

Retrieval
When DL knowledge bases are considered, we would want to know all

individuals that are instances of a certain concept. In the traditional DL
setting, given an ontology (T ,A) and a concept C , in the retrieval problem
we are interested in knowing all the individuals a such that T ∪ A |= a : C
(Baader et al. 2003). We present naïve solutions to two related problems:

• Open retrieval: Given a �-ontology � = (TS ,TD ,A) and a class C , find all
individuals that are instances of C . We solve this problem by finding all
the individuals a such that there exists a warranted argument 〈�,C(a)〉
w.r.t. DeLP program (�(TS) ∪ 	�(A), 	�(TD)) (see Figure 5).
• Retrieval of all classes: Given a �-ontology � = (TS ,TD ,A) and an
individual a, find all named classes C such that a is an instance of
C . We solve this problem by finding all the classes C such that there
exists a warranted argument 〈�,C(a)〉 w.r.t. DeLP program (�(TS) ∪
	�(A), 	�(TD)) (see Figure 6).

Property 5.4. The running time of the processes for “open retrieval” and
“retrieval of all classes” is finite.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
G
o
m
e
z
,

S
e
r
g
i
o

A
l
e
j
a
n
d
r
o
]

A
t
:

1
8
:
1
7

4

F
e
b
r
u
a
r
y

2
0
1
0

Reasoning with Inconsistent Ontologies Through Argumentation 127

FIGURE 5 Open retrieval.

FIGURE 6 Retrieval of all classes.

Proof. As a �-ontology has a finite number of both named concepts and
individual constants, the DeLP program obtained from it is finite. Cecchi,
Fillottrani, and Simari (2006) have shown that determining if there exists
an argument for a literal is NP; besides, as the warrant procedure always
builds a finite dialectical tree (García and Simari 2004), then processes for
“open retrieval” and for “retrieval of all classes” always terminate.

DELP-BASED INTEGRATION OF DL ONTOLOGIES

In this section, we introduce an application for ontology integration
in the semantic web based on the framework presented above.
Ontology integration is the problem of combining ontologies residing
in different sources and to provide the user with a unified view of such
ontologies (Calvanese et al. 2001). The problem of designing systems for
ontology integration in the semantic web is particularly important because
ontologies are to be developed independently from each other, and for

D
o
w
n
l
o
a
d
e
d

B
y
:

[
G
o
m
e
z
,

S
e
r
g
i
o

A
l
e
j
a
n
d
r
o
]

A
t
:

1
8
:
1
7

4

F
e
b
r
u
a
r
y

2
0
1
0

128 S. A. Gómez et al.

this reason, they can be mutually inconsistent. One possible architecture
for ontology integration systems is based on a global schema and a set of
local sources. The local sources contain the actual data while the global
schema provides a reconciled, unified view of the underlying sources. A
basic service provided by ontology integration systems is that of answering
queries posed in terms of the global schema.

Definition 6.1 (ontology integration system). An ontology integration system
� is a triple (
,�,�) where

•
 is a global ontology expressed as a �-ontology over an alphabet �
.
• � is a set of n source ontologies �1, � � � ,�n expressed as �-ontologies over
alphabets ��1 , � � � ,��n , resp. Each alphabet ��i includes a symbol for
each concept or role name of the source �i , i = 1, � � � ,n.
• � is a set of n mappings �1, � � � ,�n between
 and �1, � � � ,�n , resp.
Each mapping �i is constituted by a set of assertions of the form q�i �
q
, where q
 and q�i are queries of the same arity defined over the
global ontology
 and �i , i = 1, � � � ,n, resp. Queries q
 are expressed
over alphabet �
 and queries q�i are expressed over alphabet ��i . The
sets �1, � � � ,�n are called bridge ontologies.

Next we show a case study in which several DL source ontologies and a
DL global ontology are integrated. These ontologies will be interpreted as
DeLP programs. Queries posed w.r.t. the global ontology are going to be
interpreted as queries answered on the basis of such DeLP programs.

Example 6.1. Consider the global �-ontology
 = (∅,T

D ,∅) presented in

Figure 7. The Dbox T

D expresses that computer geeks are usually not good

in sports; expert swimmers are normally good at sports, and, if somebody
is either capable of swimming both a race stroke and a rescue stroke or is
a diver, then she is typically considered an expert swimmer.

Notice that the terminology T

D expresses a conflict w.r.t. the concept

“Good”. If we find that some individual in the Abox can be proven to be
member of both concepts “Swimmer” and “Greek”, then the Abox would
be incoherent from a traditional DL point of view because that individual

FIGURE 7 Global ontology
 = (∅,T

D ,∅).

D
o
w
n
l
o
a
d
e
d

B
y
:

[
G
o
m
e
z
,

S
e
r
g
i
o

A
l
e
j
a
n
d
r
o
]

A
t
:

1
8
:
1
7

4

F
e
b
r
u
a
r
y

2
0
1
0

Reasoning with Inconsistent Ontologies Through Argumentation 129

would belong both to “Good” and to “¬Good, indicating that the concept
“Good” should be empty and having one individual at the same time. We
will show how this type of situation can be handled naturally in DeLP.

Example 6.2 (continues Ex. 6.1). In Figure 8, we present two source
ontologies: �1 about water activities, and �2 on computer programming.
In local source ontology �1 = (∅,T �1

D ,A�1), Dbox T �1
D says that both free

and scuba divers are divers, saturation divers are a particular class of scuba
divers, and somebody capable of swimming some kind of stroke is usually a
swimmer. Abox A�1 establishes that John swims both crawl and side strokes,
Paul is a saturation diver, and crawl and side are swimming strokes.

In local source ontology �2 = (T �2
S ,T �2

D ,A�2), Sbox T �2
S expresses that

among programming languages, both logic programming and object-
oriented languages can be found. Dbox T �2

D says that a programmer
is usually somebody who can program in some programming language,
and that someone who can read and write code in such a language
can program unless she has failed the elementary programming course.
Abox A�2 establishes that Prolog is a logic programming language and

FIGURE 8 Source ontologies �1 and �2.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
G
o
m
e
z
,

S
e
r
g
i
o

A
l
e
j
a
n
d
r
o
]

A
t
:

1
8
:
1
7

4

F
e
b
r
u
a
r
y

2
0
1
0

130 S. A. Gómez et al.

that John can read and write Prolog code; that Java is an object-oriented
language and that Mary can read and write Java code, and that Paul is
capable of reading and writing Java code although he failed the elementary
programming course.

Notice how, in particular, source ontology �2 is inconsistent from a
traditional point of view because the individual named Paul belongs at the
same time to concepts “Programmer” and “¬Programmer.” Therefore,
this ontology cannot be processed by traditional DL reasoners. We will
show how can this be achieved in the framework of �-ontologies.

As mentioned above, our goal is to answer queries about the
membership of individuals to a certain concept in a global ontology using
the data defined in source ontologies. The relationship of the global
ontology with the local ontologies is achieved through bridge ontologies.
A bridge ontology allows to map concepts and properties between two
ontologies. Thus a concept in one ontology corresponds to a view of one
or several concepts in some other ontology. In the examples we present,
we consider bridge ontologies as given; for techniques on semi-automatic
discovery of such mappings implemented as articulation rules see Mitra
(2004); Euzenat and Shvaiko (2007). Moreover, we are going to assume
unique name assumption w.r.t. references to individuals in Aboxes through
our presentation.

Example 6.3 (continues Ex. 6.2). Consider again global ontology
 and
source ontologies �1 and �2. Articulation of definitions in
 with those in
�1 and �2 is done by bridge ontologies �1 and �2, resp. (see Figure 9).
For clarity, in bridge ontologies we tag concept and property names with
their defining ontology name.

Bridge ontology �1 expresses that role “swims” in �1 corresponds
to role “can_swim” in
; concept “Diver” in �1 refers to “Diver” in
;
the concept (anonymously defined by the one-of construct) composed of
individual “SIDE” in �1 is mapped to the concept “rescue_stroke” in

, and, the concept composed by individual “CRAWL” in �1 is mapped

FIGURE 9 Bridge ontologies �1 and �2.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
G
o
m
e
z
,

S
e
r
g
i
o

A
l
e
j
a
n
d
r
o
]

A
t
:

1
8
:
1
7

4

F
e
b
r
u
a
r
y

2
0
1
0

Reasoning with Inconsistent Ontologies Through Argumentation 131

to “Race_Stroke” in
. Bridge ontology �2 indicates that the concept
“Programmer” in �2 corresponds to the concept “Greek” defined in
.

As discussed above, in the global-as-view approach to ontology
integration, queries are posed w.r.t. a global ontology which is used as
a way to access data found in local source ontologies. Next we show
how to extend the task of instance checking for individual membership
to concepts defined in a global ontology in the context of an ontology
integration system. We will show how an ontology integration system can
be regarded as a DeLP program and queries to the ontology integration
system can be interpreted as queries w.r.t. such a DeLP program.

Definition 6.2 (interpretation of an ontology integration system).
Let � = (
,�,�) be an ontology integration system such that � =
��1, � � � ,�n� and � = ��1, � � � ,�n�, where

•
 = (T

S ,T

D ,A

)
• �i = (T �i

S ,T �i
D ,A�i

i), with i = 1, � � � ,n,
• �i = (T�i

S ,T�i
D), with i = 1, � � � ,n.

The system � is interpreted as the DeLP program �DeLP = (�,�), with

� = (
	�(T

S)

) ∪ (�(A
)) ∪
(n⋃

i=1
	�(T

�i
S)

)
∪

(n⋃
i=1

	�(T
�i
S)

)
,

� = (
	�(T

D)
) ∪

(n⋃
i=1

	�(T
�i
D)

)
∪

(n⋃
i=1

	�(T
�i
D)

)
�

Example 6.4 (continues Ex. 6.3). The interpretation as DeLP programs
of global ontology
; sources �1 and �2, and bridges �1 and �2 are
shown in Figures 10–12, resp. Global ontology
 is interpreted as the
DeLP program �
 = (∅,�
); source ontology �1, as �1 = (�1,�1); source
ontology �2, as �2 = (�2,�2); bridge ontology �1, as the set of defeasible
rules ��1 , and bridge ontology �2, as ��2 .

FIGURE 10 DeLP program �
 = (∅,�
) obtained from global ontology
.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
G
o
m
e
z
,

S
e
r
g
i
o

A
l
e
j
a
n
d
r
o
]

A
t
:

1
8
:
1
7

4

F
e
b
r
u
a
r
y

2
0
1
0

132 S. A. Gómez et al.

FIGURE 11 DeLP programs �1 and �2 obtained from source ontologies �1 and �2, resp.

Thus, the interpretation of � is the DeLP program �� = (�,�) where
� = �1 ∪�2, and � = �
 ∪ �1 ∪ �2 ∪ ��1 ∪ ��2 .

Possible inferences in the integrated ontology �DeLP are modeled by
means of a dialectical analysis in the DeLP program that is obtained when
each DL sentence of the ontology is mapped into DeLP clauses. Thus
warranted arguments will be the valid consequences that will be obtained
from the original ontology, provided the strict information in �DeLP is
consistent.

FIGURE 12 Bridge ontologies expressed as defeasible rules.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
G
o
m
e
z
,

S
e
r
g
i
o

A
l
e
j
a
n
d
r
o
]

A
t
:

1
8
:
1
7

4

F
e
b
r
u
a
r
y

2
0
1
0

Reasoning with Inconsistent Ontologies Through Argumentation 133

Definition 6.3 (potential, justified, and strict membership of individuals
to concepts in ontology integration systems). Let � = (
,�,�) be an
ontology integration system. Let a be an individual name, and C a concept
name defined in
.

1. Individual a potentially belongs to concept C iff there exists an argument
� for the literal C(a) w.r.t. DeLP program �DeLP .

2. Individual a justifiedly belongs to concept C iff there exists a warranted
argument � for the literal C(a) w.r.t. DeLP program �DeLP .

3. Individual a strictly belongs to concept C iff there exists an empty
argument for the literal C(a) w.r.t. DeLP program �DeLP .

Next we will show some of the arguments that can be built from the
integrated ontology system. In the rest of the presentation, we are assuming
generalized specificity (Simari and Loui 1992; Stolzenburg et al. 2003) as
the criterion for argument comparison. This is just an example as other
criteria could be used (e.g., (Ferreti, Errecalde, García, and Simari 2007)).

Example 6.5 (continues Ex. 6.4). Consider again the DeLP program
�DeLP . We are interested in determining the justified membership of
individuals John, Mary, and Paul to concepts “Good” and/or “¬Good.”
According to Def. 6.3, it is necessary to determine if there exist warranting
arguments for literals good(john), good(mary), and good(paul), resp. Notice
that answers to queries cannot be ambiguous as it is not possible to warrant
complementary literals in DeLP. We will see that as John is both a geek
and a swimmer, it will not be possible to determine if he is good at sports
or not. In spite of this result, we will also see that as Mary is a Java
programmer, she will not be regarded as good at sports. In the case of Paul,
as he is a diver, and although he programs in Java but failed the elementary
programming course, he will not be considered a programmer and thus,
he will be regarded as good at sports.

First, we will consider the dialectical analysis for the query “good(john).”
There are reasons to assert that John belongs potentially to the concept
“Good.” Formally, there exists an argument 〈�1, good(john)〉 where

�1 =




(good(john)−≺ swimmer (john)),
(swimmer (john)−≺

can_swim(john, side), rescue_stroke(side),
can_swim(john, crawl), race_stroke(crawl)),

(
 : race_stroke(crawl)−≺
�1 : stroke(crawl), crawl = crawl),

(
 : can_swim(john, crawl)−≺
�1 : swims(john, crawl)),

(
 : rescue_stroke(side)−≺
�1 : stroke(side), side = side)

(
 : can_swim(john, side)−≺
�1 : swims(john, side))�




�

D
o
w
n
l
o
a
d
e
d

B
y
:

[
G
o
m
e
z
,

S
e
r
g
i
o

A
l
e
j
a
n
d
r
o
]

A
t
:

1
8
:
1
7

4

F
e
b
r
u
a
r
y

2
0
1
0

134 S. A. Gómez et al.

FIGURE 13 Dialectical trees for queries good(john), good(mary), and good(paul).

However, John belongs potentially to the concept “¬Good” because he is
a computer geek. Formally, there is an argument 〈�2,∼good(john)〉 that
defeats argument �1, where

�2 =




(∼good(john)−≺ geek(john)),
(
 : geek(john)−≺�2 : programmer (john)),
(programmer (john)−≺
programs(john, prolog), lang (prolog)),

(programs(john, prolog)−≺
reads(john, prolog),writes(john, prolog))�



�

Thus, in the dialectical tree for the query “good(john),” defeated argument
�1 appears labeled as a D -node while victorious argument �2 appears
marked as a U -node. (see Figure 13(a)). On the other hand, when we
consider the membership of John to concept “¬Good,” we discover that
argument �2 supporting this conclusion is defeated by argument �1 (see
Figure 13.(b)). Therefore, the answer to query “good(john)” is Undecided.

Second, we consider the dialectical analysis for determining if Mary
belongs to concept “good .” Mary belongs justifiedly to concept “¬Good”
as the answer to query “good(mary)” is No because there is a warranted
argument 〈�,∼good(mary)〉 (see Figure 13.(c)), where

� =




(∼good(mary)−≺ geek(mary)),
(
 : geek(mary)−≺�2 : programmer (mary)),
(programmer (mary)−≺
programs(mary, java), lang (java)),

(lang (java)−≺oop_lang (java)),
(programs(mary, java)−≺

reads(mary, java),writes(mary, java))�




�

Third, we will see why Paul belongs justifiedly to concept “Good.”
Let us consider the dialectical tree for the literal “good(paul).” There is

D
o
w
n
l
o
a
d
e
d

B
y
:

[
G
o
m
e
z
,

S
e
r
g
i
o

A
l
e
j
a
n
d
r
o
]

A
t
:

1
8
:
1
7

4

F
e
b
r
u
a
r
y

2
0
1
0

Reasoning with Inconsistent Ontologies Through Argumentation 135

an argument 〈�1, good(paul)〉, based on the defeasible information that
expresses that Paul is an expert swimmer (because he is a saturation diver),
with

�1 =




(good(paul)−≺ swimmer (paul)),
(swimmer (paul)−≺
 : diver (paul)),
(
 : diver (paul)−≺�1 : diver (paul)),
(�1 : diver (paul)−≺ scuba_diver (paul)),
(scuba_diver (paul)−≺ saturation_diver (paul))�



�

But argument �1 is attacked by an argument 〈�2,∼good(paul)〉, where

�2 =




(∼good(paul)−≺ geek(paul)),
(
 : geek(paul)−≺�2 : programmer (paul)),
(programmer (paul)−≺
programs(paul , java), lang (java)),

(programs(paul , java)−≺
reads(paul , java),writes(paul , java))�



�

Nevertheless, Paul also belongs potentially to concept “�2 :
¬Programmer” (because he failed the elementary programming course),
as an argument 〈�3,�2 : ∼programmer (paul)〉 can be found, where

�3 =




(∼programmer (paul)−≺
programs(paul , java), lang (java),
failed_prog_101(paul)),

(programs(paul , java)−≺
reads(paul , java),writes(paul , java))�



�

Thus, the dialectical tree for the query “good(paul)” has three nodes (see
Figure 13.(d)). With respect to the query “∼good(paul)” for determining if
Paul belongs justifiedly to the concept “¬Good,” argument �2 is defeated
by argument �1 (see Figure 13.(e)). Therefore, the answer to the query
“good(paul)” is Yes, and we conclude that Paul belongs justifiedly to the
concept “Good.”

EVALUATION OF THE PROPOSAL

In order to evaluate our approach, we propose using the framework
presented by Huang et al. (2005) for reasoning with inconsistent
ontologies with a nonstandard inference relation. With classical reasoning,
a query � given an ontology � can be expressed as an evaluation of the
consequence relation � |= �; there are two answers to a query: either “yes”
(� |= �) or “no” (� �|= �). For reasoning with inconsistent ontologies with

D
o
w
n
l
o
a
d
e
d

B
y
:

[
G
o
m
e
z
,

S
e
r
g
i
o

A
l
e
j
a
n
d
r
o
]

A
t
:

1
8
:
1
7

4

F
e
b
r
u
a
r
y

2
0
1
0

136 S. A. Gómez et al.

a nonstandard inference relation, Huang et al. (2005) propose using an
alternative classification to distinguish answers to queries.

Definition 7.1 (epistemic status of an answer (Huang et al. 2005)).
Given an ontology � and a query �, the answer to � will have one of the
four epistemic states:

1. Overdetermined: �|≈� and �|≈¬�;
2. Accepted: �|≈� and � � |≈¬�;
3. Rejected: � � |≈� and �|≈¬�;
4. Undetermined: � � |≈� and � � |≈¬�.

If we regard the relation |≈ as “justified membership” of instances to
concepts (see Def. 5.4), �|≈� corresponds to a Yes answer to query � w.r.t.
program 	 (�).

Property 7.1. Let |≈ be the “justified membership” of instances to
concepts relationship. Let � be a �-ontology. The answer to a query � is
never overdetermined.

Proof. Suppose, on the contrary that the answer to � is overdetermined.
Then it must be the case that there exist two warranted arguments 〈�,�〉
and 〈�,∼�〉 w.r.t. 	 (�). This cannot be the case as it would contradict
Property 3.1.

Notice that as required by traditional DL reasoning, DeLP does not
adopt the closed-world assumption. That is, not being able to prove Q
in DeLP does not imply that ∼Q will be assumed. On the contrary, such
an answer will be the result of a dialectical analysis that will take into
account all of the reasons for Q and ∼Q . Notice also that according to
Volz (2004), the transformation from DL to logic programming is sound
but not complete.

Definition 7.2 (soundness Huang et al. 2005). An inconsistency
reasoner |≈ is sound if the formulas that follow from an inconsistent theory
� follow from a consistent subtheory of � using classical reasoning.

Property 7.2. |≈ is a sound inconsistency reasoner.

Proof. Let � = (TS ,TD ,A) be a �-ontology. If �|≈� then there exists
a warranted argument 〈�,�〉 w.r.t. 	 (�) = (�S ∪�A,�), where �S =
	�(TS), �A = 	�(A), and � = 	�(TD). The set �S ∪�A ∪� (see Def. 3.2)
is consistent and as 	 is a transformation that preserves semantics Grosof
et al. (2003), there must exist a subset �′ ⊆ � such that 	 (�′) = �S ∪
�A ∪�.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
G
o
m
e
z
,

S
e
r
g
i
o

A
l
e
j
a
n
d
r
o
]

A
t
:

1
8
:
1
7

4

F
e
b
r
u
a
r
y

2
0
1
0

Reasoning with Inconsistent Ontologies Through Argumentation 137

Definition 7.3 (consistency (Huang et al. 2005)). An inconsistency
reasoner |≈ is consistent iff �|≈�⇒ � � |≈¬�.
Property 7.3. |≈ is a consistent inconsistency reasoner.

Proof. Corollary of Prop. 7.1.

Definition 7.4 (meaningfulness (Huang et al. 2005)). An answer given
by an inconsistency reasoner is meaningful iff it is consistent and sound.
An inconsistency reasoner is said to be meaningful iff all of its answers are
meaningful.

Property 7.4. |≈ is a meaningful inconsistency reasoner.

Proof. Trivial from Props. 7.2 and 7.3.

Implementation Issues

We base our translation function from DL to DeLP on the work
reported by Grosof et al. (2003). In this respect, Volz (2004) shows that
the fragment of DL expressible in logic programming (referred to as DLP)
is sufficient to express most available web ontologies. Volz has analyzed
the largest currently available collection of web ontologies and checked
which fragment of those ontologies can be expressed in DLP; he claims
that DLP languages suffice to express 77–87% of the analyzed ontologies
and that they can express 93–99% of the individual axioms in the analyzed
ontologies.

As performing defeasible argumentation is a computationally complex
task, an abstract machine called justification abstract machine (JAM) has
been specially developed for an efficient implementation of DeLP (García
and Simari 2004). The JAM provides an argument-based extension of
the traditional Warren’s abstract machine (WAM) for PROLOG. A full-
fledged implementation of DeLP is available online,4 including facilities
for visualizing arguments and dialectical trees.

When we map DL equality axioms into DeLP rules, a DL axiom
of the form “C ≡ D” generates two rules of the form “C(X)−≺D(X)”
and “D(X)−≺C(X).” This situation can clearly produce loops during
argument construction when solving queries in actual DeLP programs.
Nevertheless, the examples considered in this work model an important
part of ontologies where this situation does not happen, notice this is an
intrinsic problem of DeLP implementations based on a PROLOG meta
interpreter. A possible solution involves modifying the DeLP interpreter
such that it keeps track of the search space of rule instantiations into
ground rules. To avoid such looping situations, every time a new rule is

D
o
w
n
l
o
a
d
e
d

B
y
:

[
G
o
m
e
z
,

S
e
r
g
i
o

A
l
e
j
a
n
d
r
o
]

A
t
:

1
8
:
1
7

4

F
e
b
r
u
a
r
y

2
0
1
0

138 S. A. Gómez et al.

about to be instantiated, the modified DeLP interpreter needs to check if
the rule instance was already computed.

COMPUTING THE PARTITION OF TBOXES
IN SBOXES AND DBOXES

One of the advantages of ontology representation languages based on
DL is that existing reasoners can be used to compute implicit subsumption
relations between classes. As a byproduct, this process is useful to identify
unsatisfiable (inconsistent) classes. However, standard DL reasoners based
on the tableaux algorithm (such as Racer (Haarslev and Möller 2001),
FaCT (Horrocks 1998), Pellet (Parsia and Sirin 2004)), only provide a
list of unsatisfiable classes. The process of “debugging” the ontology (i.e.,
to determine why a reasoner has inferred that a class is unsatisfiable is
left to the user). When the knowledge engineer is faced with several
unsatisfiable classes on moderately large ontology, this process can become
rather difficult (Wang et al. 2005). As it was mentioned in the first section,
a notable exception is a recent work of Horridge et al. (2008) that is
capable of providing justifications (explanations) of how an entailment
holds.

In the approach proposed in this work, problematic axioms in the
terminology of an ontology are separated in a distinguished set called
Dbox while nonproblematic axioms are conserved in a set called Sbox.
In the previous sections, such sets have been considered as given—that is,
given a certain terminology T , the knowledge engineer decides somehow
how to partition it in order to populate the Sbox TS and the Dbox TD . In
this section, we discuss how to perform such partition automatically.

Two Naïve Approaches

We now present two simple approaches to the problem of partitioning
a Tbox in an Sbox and a Dbox: the first consists of considering all the
axioms in the Tbox as defeasible (i.e., all the Tbox axioms are regarded as
Dbox axioms); the second consists of grouping all the logic programming
rules obtained from the Tbox that have heads with complementary literals.

Definition 8.1 (associate �-ontology). Let � = (T ,A) be a DL ontology,
we define �’s associate �-ontology, noted Asoc(�), as the �-ontology obtained
from � by applying some partition strategy to T .

Definition 8.2 (associate DeLP program). Given a DL ontology � =
(T ,A), we define �’s associate DeLP program, noted Prog (�), as the DeLP
program obtained when translating � to DeLP.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
G
o
m
e
z
,

S
e
r
g
i
o

A
l
e
j
a
n
d
r
o
]

A
t
:

1
8
:
1
7

4

F
e
b
r
u
a
r
y

2
0
1
0

Reasoning with Inconsistent Ontologies Through Argumentation 139

Strategy 8.1. Given a DL ontology � = (T ,A), �’s associate �-ontology
is Asoc(�) = (∅,T ,A); and �’s associate DeLP program is Prog (�) =
(�(A), 	�(T)).

Example 8.1. Consider the DL ontology �8�1 = (T ,A), where: T =
�(C � D), (E � ¬D)� and A = �(a : C), (a : E)�. In this case, �’s associate
�-ontology is Asoc(�8�1) = (∅,T ,A) and �’s associate DeLP program is
Prog (�8�1) = (�(d(X)−≺ c(X)), (∼d(X)−≺ e(X))�, �c(a), e(a)�).

Property 8.5. Given a DL ontology � = (T ,A), if the Abox A is coherent,
then the set of facts 	�(A) is consistent.

Strategy 8.2. Let Convert be the function that converts a set of strict rules
into a set of defeasible rules.5 Given a DL ontology � = (T ,A), let � an
extended logic program where its set of facts is defined as 	�(A) and its
set of strict rules as 	 ∗� (T). Let Part : �ELP → (�DeLP� ,�DeLP�) be a function
that partitions such a set of rules into a subset of strict rules and another
subset of defeasible rules. Formally, Part(R) = (R�,R�), where

R� =df Convert(r ∈ R | there exists r ′ ∈ R such that Head(r) = Head(r ′)),

R� =df R − R��

Example 8.2. Consider the Tbox T8�2 with

T =
{
(A � B) � C � D � E
¬A � F � ¬E

}
�

From this Tbox, the following set R of rules is generated:

R =




d(X)← a(X), b(X)
e(X)← a(X), b(X)
d(X)← c(X)
e(X)← c(X)
∼e(X)←∼a(X)
∼e(X)← f (X)



�

By the application of Strategy 8.2, we obtain the following sets R� of strict
rules and R� of defeasible rules, where

R� =
{
d(X)← a(X), b(X)
d(X)← c(X)

}
,

D
o
w
n
l
o
a
d
e
d

B
y
:

[
G
o
m
e
z
,

S
e
r
g
i
o

A
l
e
j
a
n
d
r
o
]

A
t
:

1
8
:
1
7

4

F
e
b
r
u
a
r
y

2
0
1
0

140 S. A. Gómez et al.

and

R� =




e(X)−≺ a(X), b(X)
e(X)−≺ c(X)
∼e(X)−≺∼a(X)
∼e(X)−≺ f (X)



�

Approach Based on Converting Problematic DL Axioms
into Dbox Axioms

We now consider another approach to the problem of partitioning a
Tbox in an Sbox and a Dbox automatically. In the previous section, given
an inconsistent DL ontology, we worked with the DeLP rules generated by
the translation function from DL to DeLP, turning some strict rules into
defeasible ones. We propose instead to work directly with DL axioms by
separating them into strict and defeasible axioms in order to see how to
obtain a �-ontology to reason with the framework previously presented.

Lam et al. (2006) propose an algorithm that extends Meyer, Lee,
Booth, and Pan’s (2006) tableaux algorithm. The algorithm not only
pinpoints the problematic axioms, but also traces which parts of the axioms
are responsible for the unsatisfiability of a target concept C. We present
next an example of Lam et al. (2006) that explains how this process can
be performed.

Example 8.3 (Lam et al. 2006). Assume that a DL ontology � contains
the following axioms:

r1 : A ≡ C � D �G
r2 : C ≡ E � F
r3 : E ≡ ¬D � (∃r�D)
r4 : H ≡ ∀r�C

It can be shown that the concept A is unsatisfiable, by using standard
DL TBox reasoning. Existing approaches either identify the minimally
unsatisfiable sub-ontology �min = �r1, r2, r3� or calculate the maximally
satisfiable sub-ontologies �max1 = �r2, r3, r4�, �max2 = �r1, r3, r4� and �max3 =
�r1, r2, r4�. In short, one of the axioms r1, r2 or r3 should be removed from �.
However, it can be shown that we do not need to remove any of the above
‘whole’ axioms. In fact, we can simply remove any one of the following
parts of axioms: (i) A � C, (ii) A � D, (iii) C � E, or (iv) E � ¬D, and �

becomes satisfiable.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
G
o
m
e
z
,

S
e
r
g
i
o

A
l
e
j
a
n
d
r
o
]

A
t
:

1
8
:
1
7

4

F
e
b
r
u
a
r
y

2
0
1
0

Reasoning with Inconsistent Ontologies Through Argumentation 141

Thus, using Lam et al.’s (2006) algorithm as a “black box,” we propose
the following strategy to partition a DL Tbox into a �-ontology Sbox and a
Dbox.

Definition 8.3 (set of concepts associated to an axiom/terminology).
Let r1, � � � , rn a set of DL inclusion axioms such that form a terminology
T = �r1, � � � , rn�. We define Concepts(ri) as the set of named concepts of
axiom ri . We extend the definition to the set of named concepts in a
terminology T as:

Concepts(T) =
⋃

i=1,���,n
Concepts(ri)�

Definition 8.4 (Lam et al.’s algorithm). Let T be a DL terminology and
C a named concept in T . We define the function LamC(T) as Lam’s
algorithm that takes as input T and C , and returns as output the set of
named concepts in T relevant to the unsatisfiability of C .

Strategy 8.3. Let � = (T ,A) be a DL ontology and C a concept name
such that C ∈ Concepts(�). The separation function Sep of a DL Tbox in a
�-ontology Sbox and Dbox, is defined as Sep(T) = (TS ,TD) where:

TD = r ∈ T | (Concepts(r) ∩ LamC(T)) �= ∅,
and

TS = T − TD �

Example 8.4. Consider the following DL terminology T8�1 (taken from
Lam et al. (2006)):

T8�4 =


r1 : Bird∗ � Flies∗ � Animal

r2 : Eagle � Bird

r3 : Penguin∗ � Bird∗ � (¬Fly)∗


 �

Following Lam et al.’s (2006) notation, the concepts labeled with a star are
relevant to the unsatisfiability of the concept “Penguin”; therefore,

LamPenguin(T8�4) = Bird,Flies,Penguin, (¬Flies)�
Thus, instead of just eliminating all the axioms containing at least a
concept labeled with an star (i.e., r1 and r3), which would cause the loss of
some inferences, we propose converting them into Dbox axioms. Hence,
the T8�4 is partitioned as an Sbox TS = �r2� and a Dbox TD = �r1, r3�.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
G
o
m
e
z
,

S
e
r
g
i
o

A
l
e
j
a
n
d
r
o
]

A
t
:

1
8
:
1
7

4

F
e
b
r
u
a
r
y

2
0
1
0

142 S. A. Gómez et al.

RELATED WORK

Grosof et al. (2003) show how to interoperate, semantically and
inferentially, between the leading semantic web approaches to rules
(RuleML Logic Programs) and ontologies (OWL DL) by analyzing
their expressive intersection. They define a new intermediate knowledge
representation called Description Logic Programs (DLPs), and the closely
related Description Horn Logic (DHL) which is an expressive fragment
of FOL. They show how to perform the translation of premises and
inferences from the DLP fragment of DL to logic programming. Part of
our approach is based on Grosof’s work as the algorithm for translating
DL ontologies into DeLP is based on it. However, as Grosof et al. (2003)
use standard Prolog rules, they are not able to deal with inconsistent DL
knowledge bases as our proposal does.

Heymans and Vermeir (2002) extend the DL ��
�(D) with a
preference order on the axioms. With this strict partial order, certain
axioms can be overruled if defeated with more preferred ones. They
also impose a preferred model semantics, introducing nonmonotonicity
into ��
�(D). Similarly to Heymans and Vermeir (2002), we allow to
perform inferences from inconsistent ontologies by considering subsets
(arguments) of the original ontology. Heymans and Vermeir (2002) also
impose a hard-coded comparison criterion on DL axioms. In our work,
the system, and not the programmer, decides which DL axioms are to be
preferred as we use specificity as argument comparison criterion. We think
that our approach can be considered more declarative in this respect.
In particular, the comparison criterion in DeLP is modular, so that rule
comparison could also be adopted (García and Simari 2004).

Eiter, Lukasiewicz, Schindlauer, and Tompits (2004) propose a
combination of logic programming under the answer set semantics with
the DLs ���� (D) and ��
�� (D). This combination allows for building
rules on top of ontologies. In contrast to our approach, they keep
separated rules and ontologies and handle exceptions by codifying them
explicitly in programs under answer set semantics.

Huang et al. (2005) use paraconsistent logics to reason with
inconsistent ontologies. They use a selection function to determine which
consistent subsets of an inconsistent ontology should be considered in
the reasoning process. In our approach given an inconsistent ontology �,
we consider the set of warranted arguments from 	 (�) as the valid
consequences.

Williams and Hunter (2007) use argumentation to reason with possibly
inconsistent rules on top of DL ontologies. In contrast, we translate
possible inconsistent DL ontologies to DeLP to reason with them within
DeLP. Laera et al. (2006) propose an approach for supporting the creation
and exchange of different arguments, which support or reject possible

D
o
w
n
l
o
a
d
e
d

B
y
:

[
G
o
m
e
z
,

S
e
r
g
i
o

A
l
e
j
a
n
d
r
o
]

A
t
:

1
8
:
1
7

4

F
e
b
r
u
a
r
y

2
0
1
0

Reasoning with Inconsistent Ontologies Through Argumentation 143

correspondences between ontologies in the context of a multi-agent
system. In our work, we assume correspondences between ontologies as
given.

Antoniou and Bikakis (2007) propose a rule-based approach to
defeasible reasoning based on a translation to logic programming with
declarative semantics that can reason with rules, Resource Description
Framework Schema (RDF(S)) and parts of OWL ontologies. RDF data of
the form rdf (Subject ,Predicate ,Object) is translated as Prolog facts of the
form Predicate(Subject ,Object). They also define Prolog rules for processing
RDF Schema information (e.g., C(X):-rdf:type(X,C)) for modeling the
type construct). All of the rules are created at compile time before
actual querying takes place. To the best of our knowledge, Antoniou
and Bikakis’s (2007) approach distinguishes between strict and defeasible
and possess flexibility for defining different priority relations between
arguments. As our approach is based on DeLP, it also distinguishes
between strict and defeasible rules, and it also allows to replace the
comparison criterion between arguments in a modular way. Antoniou
and Bikakis translate the semantics of their argumentation system into
Prolog, the semantics of OWL sentences into Prolog, the semantics of
RuleML sentences into Prolog and then they perform query processing.
We translate OWL into DL and the into DeLP, thus keeping the knowledge
representation (in DeLP) separated from the query processing (performed
into the JAM).

Horridge et al. (2008) present a justification-based approach to
reasoning with ontologies. In that context, a justification for an entailment
in an OWL ontology is a minimal subset of the ontology that is sufficient
for that entailment to hold. Besides they are able to find laconic
justifications that provide minimal axioms supporting an entailment, which
can also be used to pinpoint the cause of inconsistencies. The notion
of justification for an entailment in Horridge et al. (2008) is similar
to the notion of argument for a literal in our work as an argument is
made up of a minimal subset of the defeasible information in a DeLP
program along with the strict information that allows to derive a defeasible
conclusion (see Def. 3.2), thus providing a sort of justification for an
entailment to hold. However, in the case of inconsistencies, DeLP is not
only able to consider all the arguments for a literal, but also the defeat
relation holding among those arguments in order to determine what the
valid consequences of a �-ontology are (characterized as the warranted
arguments). Similarly, to axiom minimization in laconic justifications,
the DeLP rules interpreting a �-ontology can be considered as minimal
versions of DL axioms (see Definitions 4.2 and 4.3) as they are horn-
rules where disjunctions in the body and conjunctions in the head
trigger the proliferation of rules. For example, in Horridge et al. (2008),
the inclusion axiom A � B � C � D is expressed as two (smaller) axioms

D
o
w
n
l
o
a
d
e
d

B
y
:

[
G
o
m
e
z
,

S
e
r
g
i
o

A
l
e
j
a
n
d
r
o
]

A
t
:

1
8
:
1
7

4

F
e
b
r
u
a
r
y

2
0
1
0

144 S. A. Gómez et al.

A � B � C and A � B � D; DeLP represents the former axiom as two
rules c(X)−≺a(X), b(X) and d(X)−≺a(X), b(X), thus providing a de facto
minimization.

Horridge et al. (2008, Sect. 3) consider two cases for motivating
fine-grained justifications: internal and external masking. When internal
masking occurs, Horridge et al. (2008) present the ontology � = �B �
¬C � D,B � ¬C�, where the concept B is unsatisfiable for two distinct
reasons. We show next how our approach can detect the pairs of
conflicting arguments depicting that situation. In our framework, �
along with an Abox assertion a : B is interpreted as the DeLP program
�(∼c(X)−≺ b(X)), (d(X)−≺ b(X)), (c(X)−≺ b(X)),(∼d(X)−≺ b(X)), b(a)�
from where the following arguments can be found:
〈�c(a)−≺b(a)�, c(a)〉, 〈�∼c(a)−≺b(a)�,∼c(a)〉, 〈�d(a)−≺b(a)�, d(a)〉, and
〈�∼d(a)−≺b(a)�,∼d(a)〉, indicating the presence of inconsistency and
showing that C

a

p and ¬Ca

p along with D
a

p and ¬Da

p . In spite of this,
our framework will not be able to determine the justified membership
of a to neither C nor D as the DeLP answers for the queries c(a) is
d(a) undecided. Likewise, in the case of external masking, Horridge
et al. (2008) present the ontology �′ = �B � D � ¬D � C,B � ¬C�,
where the concept B is unsatisfiable but there is no justification
for that fact. Our framework interprets �′ as the DeLP program
�(d(X)−≺ b(X)), (∼d(X)−≺ b(X)), (c(X)−≺ b(X)),(∼c(X)−≺ b(X)), b(a)�
from where, as in the former case, there are arguments for the literals
c(a), ∼c(a), d(a) and ∼d(a) indicating the source of inconsistency, yet the
answer for the justified membership of individual a to the concepts C or D
is undecided.

CONCLUSIONS

We have presented a framework for reasoning with inconsistent DL
ontologies. Our proposal involves expressing a DL ontology in terms of
a DeLP program by means of a translation function 	 . This resulted in
the characterization of �-ontologies, encoded using strict and defeasible
axioms. We also provided a semantic interpretation of �-ontologies as
DeLP programs, formalizing two major inference tasks associated with
a traditional DL setting, namely, instance checking and retrieval. Given a
query � and an inconsistent ontology �, these inference tasks rely on a
dialectical analysis to be performed on the DeLP program 	 (�), where
all arguments in favor and against �’s acceptance are taken into account.
In this setting, the notion of class membership was suitably extended
to distinguish among potential, justified, and strict membership of an
individual to a class.

We have also presented an application to ontology integration based
on the global-as-view approach to ontology integration where queries

D
o
w
n
l
o
a
d
e
d

B
y
:

[
G
o
m
e
z
,

S
e
r
g
i
o

A
l
e
j
a
n
d
r
o
]

A
t
:

1
8
:
1
7

4

F
e
b
r
u
a
r
y

2
0
1
0

Reasoning with Inconsistent Ontologies Through Argumentation 145

respect a global ontology are posed while data is extracted from local
ontologies that could be inconsistent. Several issues need to be solved and
part of our efforts are focused on that matter. For instance, as DeLP does
not support disjunctions in the head of rules, our approach is not able to
deal with DL axioms that require the construction of such rules. A possible
solution to this problem could be taken in that direction using some
suitable extension of disjunctive logic programming (Terracina, Francesco,
Panetta, and Leone 2008; Ricca and Leone 2007). Part of our current
research work is oriented in this direction.

REFERENCES

Antoniou, G., and A. Bikakis. 2007. DR-Prolog: A system for defeasible reasoning with rules and
ontologies on the semantic web. IEEE Trans. on Knowledge and Data Eng. 19(2):233–245.

Antoniou, G., D. Billington, and M. Maher. 1998. Normal forms for defeasible logic. In: Proceedings
of International Joint Conference and Symposium on Logic Programming, 160–174. Boston: MIT Press.

Antoniou, G., M. J. Maher, and D. Billington. 2000. Defeasible logic versus logic programming
without negation as failure. Journal of Logic Programming 42:47–57.

Baader, F., D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider. eds. 2003. The Description
Logic Handbook – Theory, Implementation and Applications, Cambridge: Cambridge University Press.

Bench-Capon, T. J. M., and P. E. Dunne. 2007. Argumentation in artificial intelligence. Artif. Intell.
171(10–15):619–641.

Berners-Lee, T., J. Hendler, and O. Lassila. 2001. The semantic web. Scientific American 284(5):34–43.
Brena, R., C. Chesñevar, and J. Aguirre. 2006. Argumentation-supported information distribution

in a multiagent system for knowledge management. In: Proc. ArgMAS 2005 (Utrecht, The
Netherlands, July 2005). LNCS 4049, 279–296, Springer-Verlag.

Brewka, G., J. Dix, and K. Konolige. 1997. Non monotonic reasoning. An overview, CSLI Publications,
Stanford, USA.

Calvanese, D., G. D. Giacomo, and M. Lenzerini. 2001. A framework for ontology integration. In:
Proc. 1st Semantic Web Working Symposium (SWWS 2001), 303–316.

Caminada, M. 2008. On the issue of contraposition of defeasible rules. In: Frontiers in Artificial
Intelligence and Applications, eds. P. Besnard, S. Doutre, and A. Hunter, Vol. 172, 109–115.
‘COMMA’, IOS Press.

Carbogim, D., D. Robertson, and J. Lee. 2000. Argument-based applications to knowledge
engineering. The Knowledge Engineering Review 15(2):119–149.

Cecchi, L. A., P. R. Fillottrani, and G. R. Simari. 2006. On complexity of DeLP through game
semantics. In: 11th. Intl. Workshop on Nonmonotonic Reasoning, eds. J. Dix and A. Hunter, 386–
394.

Chesñevar, C., R. Brena, and J. Aguirre. 2005a. Knowledge distribution in large organizations using
defeasible logic programming. In: Proc. 18th Canadian Conference on AI LNCS, Vol. 3501, 244–
256. Springer-Verlag.

Chesñevar, C., R. Brena, and J. Aguirre. 2005b. Modelling power and trust for knowledge
distribution: an argumentative approach. LNAI Springer Series (Proc. 3rd Mexican International
Conference on Artificial Intelligence – MICAI 2005) 3789:98–108.

Chesñevar, C. I., A. G. Maguitman, and G. R. Simari. 2006. Argument-based critics and
recommenders: A qualitative perspective on user support systems. Data Knowl. Eng. 59(2):
293–319.

Chesñevar, C. I., A. Maguitman, and R. Loui. 2000. Logical models of argument. ACM Computing
Surveys 32(4):337–383.

Chesñevar, C., and A. Maguitman. 2004a. An argumentative approach to assessing natural language
usage based on the web corpus. In: Proc. 16th ECAI Conf., 581–585. Valencia, Spain.

Chesñevar, C., and A. Maguitman. 2004b. ArgueNet: An argument-based recommender system for
solving web search queries. In: Proc. 2nd IEEE Intl. IS-2004 Conference, 282–287. Varna, Bulgaria.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
G
o
m
e
z
,

S
e
r
g
i
o

A
l
e
j
a
n
d
r
o
]

A
t
:

1
8
:
1
7

4

F
e
b
r
u
a
r
y

2
0
1
0

146 S. A. Gómez et al.

Chesñevar, C., G. Simari, T. Alsinet, and L. Godo. 2004. A logic programming framework for
possibilistic argumentation with vague knowledge. In: Proc. Intl. Conference in Uncertainty in
Artificial Intelligence (UAI 2004), 76–84. Banff, Canada.

Chesñevar, C., G. Simari, L. Godo, and T. Alsinet. 2005. Argument-based expansion operators in
possibilistic defeasible logic programming: Characterization and logical properties. LNAI/LNCS
Springer Series, Vol. 3571 (Proc. 8th ECSQARU Intl. Conference, 353–365. Barcelona, Spain).

Dimopoulos, Y., and A. Kakas. 1995. Logic programming without negation as failure. In: Logic
Programming, ed. J. Lloyd, 369–383. Cambridge, MA: MIT Press.

Eiter, T., T. Lukasiewicz, R. Schindlauer, and H. Tompits. 2004. Combining answer set programming
with description logics for the semantic web. KR 2004, 141–151.

Euzenat, J., and P. Shvaiko. 2007. Ontology Matching. Berlin/Heidelberg: Springer-Verlag.
Ferreti, E., M. Errecalde, A. J. García, and G. R. Simari. 2007. An application of defeasible logic

programming to decision making in a robotic environment. In: Ninth International Conference
on Logic Programming and Nonmonotonic Reasoning, LPNMR’07.

García, A. J., and G. R. Simari. 2004. Defeasible logic programming: An argumentative approach.
Theory and Practice of Logic Programming 4(1):95–138.

Geffner, H., and J. Pearl. 1990. A framework for reasoning with defaults. In: Knowledge Representation
and Defeasible Reasoning, eds. R. L. H. E. Kyburg, and G. Carlson, 245–265. London: Kluwer
Academic Publishers.

Gómez, S. A., C. I. Chesñevar, and G. R. Simari. 2006. An approach to handling inconsistent
ontology definitions based on the translation of description logics into defeasible logic
programming. In: Procs. XII Argentinian Conference in Computer Science (CACIC’06), 1185–1196.

Gómez, S. A., C. I. Chesñevar, and G. R. Simari. 2008a. An argumentative approach to reasoning
with inconsistent ontologies. In: Proc. Knowledge Representation in Ontologies Workshop (KROW
2008), eds. T. Meyer and M. A. Orgun, Vol. CPRIT 90, 11–20. Sydney, Australia.

Gómez, S. A., C. I. Chesñevar, and G. R. Simari. 2008b. Defeasible reasoning in web forms through
argumentation. International Journal of Information Technology & Decision Making 7:71–101.

Gómez, S., and C. Chesñevar. 2004. A hybrid approach to pattern classification using neural
networks and defeasible argumentation. In: Proc. 17th Intl. FLAIRS Conference, 393–398. Miami,
FL, American Assoc. for Artificial Intelligence.

Grosof, B. N., I. Horrocks, R. Volz, and S. Decker. 2003. Description logic programs: combining
logic programs with description logics. WWW2003, Budapest, Hungary.

Gruber, T. R. 1993. A translation approach to portable ontologies. Knowledge Acquisition
5(2):199–220.

Haarslev, V., and R. Möller. 2001. RACER System Description. Technical Report, University of
Hamburg, Computer Science Department.

Heymans, S., and D. Vermeir, 2002. A defeasible ontology language. In: CoopIS/DOA/ODBASE, 1033–
1046.

Horridge, M., B. Parsia, and U. Sattler. 2008. Laconic and precise justifications in OWL. In: Procs.
of the VII International Semantic Web Conference (ISWC 2008), 323–338. Karlsruhe, Germany.

Horrocks, I. 1998. The FaCT System. In: TABLEAUX ’98: Proceedings of the International Conference on
Automated Reasoning with Analytic Tableaux and Related Methods, 307–312. London, UK: Springer-
Verlag.

Huang, Z., F. van Harmelen, and A. ten Teije. 2005. Reasoning with inconsistent ontologies. In:
Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence (IJCAI’05), eds.
L. P. Kaelbling and A. Saffiotti, 454–459. Scotland: Edinburgh.

Huang, Z., F. van Harmelen, A. ten Teije, P. Groot, and C. Visser. 2004. Reasoning with inconsistent
ontologies: A general framework, Technical report, Department of Artificial Intelligence, Vrije
Universiteit Amsterdam.

Kakas, A. C., P. Mancarella, and P. M. Dung. 1994. The acceptability semantics for logic programs.
In: Proceedings 11th. International Conference on Logic Programming, 504–519. Santa Margherita,
Italy: MIT Press.

Kakas, A. C., and F. Toni. 1999. Computing argumentation in logic programming. Journal of Logic
and Computation 9(4):515–562.

Klein, M. 2001. Combining and relating ontologies: an analysis of problems and solutions. In:
Workshop on Ontologies and Information Sharing, IJCAI’01, eds. A. Gomez-Perez, M. Gruninger,
H. Stuckenschmidt, and M. Uschold. Seattle, USA.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
G
o
m
e
z
,

S
e
r
g
i
o

A
l
e
j
a
n
d
r
o
]

A
t
:

1
8
:
1
7

4

F
e
b
r
u
a
r
y

2
0
1
0

Reasoning with Inconsistent Ontologies Through Argumentation 147

Krötzch, M., S. Rudolph, and P. Hitzler. 2007. Complexity of horn description logics. Technical
Report, Institute AIFB, Universität Karlsruhe, Germany.

Laera, L., V. Tamma, J. Euzenat, T. Bench-Capon, and T. Payne. 2006. Reaching agreement over
ontology alignments. In: Proc. 5th International Semantic Web Conference (ISWC 2006), Athens, GA.

Lam, S. C., J. Z. Pan, D. Sleeman, and W. Vasconcelos. 2006. A fine-grained approach to resolving
unsatisfiable ontologies. In: Proc. 2006 IEEE/WIC/ACM International Conference on Web Intelligence,
428–434.

Lloyd, J. 1987. Foundations of Logic Programming. Berlin, Germany: Springer-Verlag.
McGuiness, D. L., and F. van Harmelen. 2004. OWL Web Ontology Language Overview.
Meyer, T., K. Lee, R. Booth, and J. Z. Pan. 2006. Finding maximally satisfiable terminologies for

the description logic ���. In: Proceedings of AAAI-06. Boston, MA.
Mitra, P. 2004. An algebraic framework for the interoperation of ontologies. PhD thesis, Dept. of

Electrical Engineering Stanford University.
Nute, D. 1988. Defeasible reasoning. In: Aspects of Artificial Intelligence, ed. J. H. Fetzer, 251–288.

Norwell, MA: Kluwer Academic Publishers.
Nute, D. 1992. Basic defeasible logic. In: Intensional Logics for Programming, ed. L. Fariñas del Cerro.

Oxford: Claredon Press.
Parsia, B., and E. Sirin. 2004. Pellet: An OWL DL Reasoner. In: 3rd International Semantic Web

Conference (ISWC2004). Hiroshima, Japan.
Parsons, S., C. Sierrra, and N. Jennings. 1998. Agents that reason and negotiate by arguing. Journal

of Logic and Computation 8:261–292.
Pollock, J. L. 1974. Knowledge and Justification. Princeton, NJ: Princeton University Press.
Pollock, J. L. 1987. Defeasible reasoning. Cognitive Science 11:481–518.
Pollock, J. L. 1995. Cognitive Carpentry: A Blueprint for How to Build a Person. Boston: Bradford/MIT

Press.
Prakken, H., and G. Sartor. 2002. The role of logic in computational models of legal argument

– A critical survey. In: Computational Logic: Logic Programming and Beyond, eds. A. Kakas and
F. Sadri, 342–380. Springer.

Prakken, H., and G. Vreeswijk. 2002. Logics for defeasible argumentation. In: Handbook of
Philosophical Logic, eds. D. Gabbay and F. Guenthner, 219–318. London: Kluwer Academic
Publisher.

Rahwan, I., S. D. Ramchurn, N. R. Jennings, P. Mcburney, S. Parsons, and L. Sonenberg. 2003.
Argumentation-based negotiation. Knowl. Eng. Rev. 18(4):343–375.

Reiter, R., and G. Criscuolo. 1981. On interacting defaults. In: Proceedings of the Seventh International
Joint Conference on Artificial Intelligence (IJCAI’81), 94–100.

Ricca, F., and N. Leone. 2007. Disjunctive logic programming with types and objects: The DLV+

system. J. Applied Logic 5(3):545–573.
Sandewall, E. 1986. Non-monotonic inference rules for multiple inheritance with exceptions. In:

Proceedings IEEE 74, 1345–1353.
Sierra, C., and P. Noriega. 2002. Agent-mediated interaction. from auctions to negotiation and

argumentation. In: Foundations and Applications of Multi-Agent Systems – In LNCS Series, Vol. 2403,
27–48. Springer.

Simari, G. R., and R. P. Loui. 1992. A mathematical treatment of defeasible reasoning and its
implementation. Artificial Intelligence 53:125–157.

Stolzenburg, F., A. García, C. Chesñevar, and G. Simari. 2003. Computing generalized specificity.
J. N. Classical Logics 13(1):87–113.

Terracina, G., E. D. Francesco, C. Panetta, and N. Leone. 2008. Enhancing a DLP system for
advanced database applications. In: LNCS, eds. D. Calvanese and G. Lausen, RR, Vol. 5341,
119–134. Springer.

Verheij, B. 2005. Virtual Arguments, On the Design of Argument Assistants for Lawyers and Other Arguers.
The Hague: Asser Press.

Volz, R. 2004. Web ontology reasoning with logic databases. PhD thesis, Universität Fridericiana zu
Karlsruhe. Karlsruhe, Germany.

Wang, H., M. Horridge, A. Rector, N. Drummond, and J. Seidenberg. 2005. Debugging owl-dl
ontologies: A heuristic approach. In: ISWC 2005, LNCS 3729, 745–757. Springer.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
G
o
m
e
z
,

S
e
r
g
i
o

A
l
e
j
a
n
d
r
o
]

A
t
:

1
8
:
1
7

4

F
e
b
r
u
a
r
y

2
0
1
0

148 S. A. Gómez et al.

Williams, M., and A. Hunter. 2007. Harnessing ontologies for argument-based decision-making in
breast cancer. Proc. of the Intl. Conf. on Tools with AI (ICTAI’07), 254–261.

Zhang, P., J. Sun, and H. Chen. 2005. Frame-based argumentation for group decision task
generation and identification. Decision Support Systems 39:643–659.

NOTES

1� http://www.w3c.org/
2� This example, as well as Example 2.3, are based on García and Simari (2004).
3� This example appears in García and Simari (2004) in a different context.
4� See http://lidia.cs.uns.edu.ar/DeLP
5� For example, Convert(�a(X)← b(X)�) = �a(X)−≺b(X)�.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
G
o
m
e
z
,

S
e
r
g
i
o

A
l
e
j
a
n
d
r
o
]

A
t
:

1
8
:
1
7

4

F
e
b
r
u
a
r
y

2
0
1
0

