
COCOMO II

1. Introduction

COCOMO 2 is tuned to modern software life cycles. The original COCOMO model
has been very successful, but it doesn't apply to newer software development practices
as well as it does to traditional practices. COCOMO II targets the software projects of
the 1990s and 2000s, and will continue to evolve over the next few years.

The primary objectives of the COCOMO 2 effort are:
• To develop a software cost and schedule estimation model tuned to the life

cycle practices of the 1990's and 2000's.
• To develop software cost database and tool support capabilities for continuous

model improvement.
• To provide a quantitative analytic framework, and set of tools and techniques

for evaluating the effects of software technology improvements on software
life cycle costs and schedules.

COCOMO 2 is really three different models:

• The Application Composition Model

Suitable for projects built with modern GUI-builder tools. Based on new
Object Points.

• The Early Design Model

You can use this model to get rough estimates of a project's cost and duration
before you've determined it's entire architecture. It uses a small set of new
Cost Drivers, and new estimating equations. Based on Unadjusted Function
Points or KSLOC.

• The Post-Architecture Model

This is the most detailed COCOMO 2 model. You'll use it after you've
developed your project's overall architecture. It has new cost drivers, new line
counting rules, and new equations.

2. Application Composition : Object points

Object Point estimation is a relatively new software sizing approach, but it is well-
matched to the practices in the Applications Composition sector. It is also a good
match to associated prototyping efforts, based on the use of a rapid-composition
Integrated Computer Aided Software Environment (ICASE) providing graphic user
interface builders, software development tools, and large, composable infrastructure
and applications components. In these areas, it has compared well to Function Point
estimation on a nontrivial (but still limited) set of applications.

Baseline Object Point Estimation Procedure

Definitions of terms in Figure are as follows:
• NOP: New Object Points (Object Point count adjusted for reuse)
• srvr: number of server (mainframe or equivalent) data tables used in conjunction
with the SCREEN or REPORT.
• clnt: number of client (personal workstation) data tables used in conjunction with the
SCREEN or REPORT.
• %reuse: the percentage of screens, reports, and 3GL modules reused from previous
applications, pro-rated by degree of reuse.

3. Function Count Procedure

4. Converting Function Points to Lines of Code
To determine the nominal person months for the Early Design model, the unadjusted
function points have to be converted to source lines of code in the implementation
language (assembly, higher order language, fourth-generation language, etc.) in order
to assess the relative conciseness of implementation per function point.

5. Development Effort Estimates

In COCOMO II effort is expressed as Person Months (PM). person month is the
amount of time one person spends working on the software development project for
one month.

The inputs are the Size of software development, a constant, A, and a scale factor, B.
The size is in units of thousands of source lines of code (KSLOC).
The constant, A, is used to capture the multiplicative effects on effort with projects of
increasing size.

The scale (or exponential) factor, B, accounts for the relative economies or
diseconomies of scale encountered for software projects of different sizes.
If B < 1.0, the project exhibits economies of scale. If the product's size is doubled, the
project effort is less than doubled. The project's productivity increases as the product
size is increased. Some project economies of scale can be achieved via project-
specific tools (e.g., simulations, testbeds) but in general these are difficult to achieve.
For small projects, fixed start-up costs such as tool tailoring and setup of standards
and administrative reports are often a source of economies of scale.
If B = 1.0, the economies and diseconomies of scale are in balance. This linear model
is often used for cost estimation of small projects. It is used for the COCOMO 2
Applications Composition model.
If B > 1.0, the project exhibits diseconomies of scale. This is generally due to two
main factors: growth of interpersonal communications overhead and growth of large-
system integration overhead. Larger projects will have more personnel, and thus more
interpersonal communications paths consuming overhead. Integrating a small product
as part of a larger product requires not only the effort to develop the small product,
but also the additional overhead effort to design, maintain, integrate, and test its
interfaces with the remainder of the product.

A project's numerical ratings W are summed across all of the factors, and used to
determine a scale exponent B via the following formula:

Rating Scheme for the COCOMO 2.0 Scale Factors

The form of the Process Maturity scale is being resolved in coordination with the SEI.
The intent is to produce a process maturity rating as a weighted average of the
project's percentage compliance levels to the 18 Key Process Areas in Version 1.1 of
the Capability Maturity Model-based [Paulk et al. 1993] rather than to use the
previous 1-to-5 maturity levels. The weights to be applied to the Key Process Areas
are still being determined.

6. Cost Factors: Effort-Multiplier Cost Drivers

COCOMO 2.0 uses a set of effort multipliers to adjust the nominal person-month
estimate obtained from the project’s size and exponent drivers:

Early Design and Post-Architecture Cost Drivers

ACAP Analyst Capability
AEXP Applications Experience
CPLX Product Complexity
DATA Database Size
DOCU Documentation to match lifecycle needs
FCIL Facilities
LTEX Language and Tool Experience
PCAP Programmer Capability
PCON Personnel Continuity
PDIF Platform Difficulty
PERS Personnel Capability
PEXP Platform Experience
PREX Personnel Experience
PVOL Platform Volatility
RCPX Product Reliability and Complexity
RELY Required Software Reliability
RUSE Required Reusability
SCED Required Development Schedule
STOR Main Storage Constraint
TIME Execution Time Constraint
TOOL Use of Software Tools

7. Development Schedule Estimates

The initial baseline schedule equation for all three COCOMO 2.0 models is:

where TDEV is the calendar time in months from the determination of its
requirements baseline to the completion of an acceptance activity certifying that the
product satisfies its requirements. PM is the estimated person-months excluding the
SCED effort multiplier, and SCEDPercentage is the schedule compression /
expansion percentage in the SCED cost driver rating. Future versions of COCOMO
2.0 will have a more extensive schedule estimation model, reflecting the different
classes of process model a project can use; the effects of reusable and COTS software;
and the effects of applications composition capabilities.

