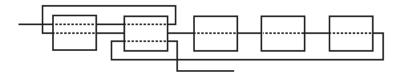


Departamento de Cs. e Ingeniería de la Computación Universidad Nacional del Sur

Arquitectura de Computadoras para Ingeniería

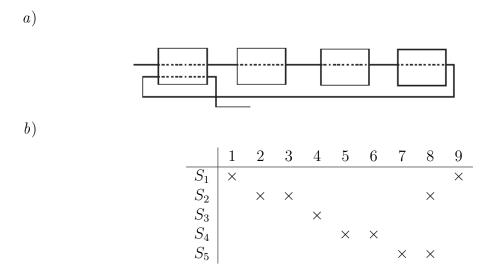
Trabajo Práctico Nº 4

Pipeline - Secuenciamiento

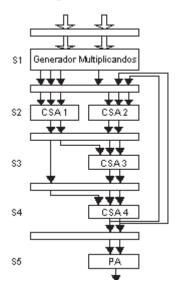

Primer Cuatrimestre de 2016

Ejercicios

1. Suponiendo que un cierto pipeline presenta la siguiente tabla de reservación:


	1	2	3	4	5	6	7	8
$\overline{S_1}$	×						×	
S_2		\times	\times	\times				
S_3					\times			
S_1 S_2 S_3 S_4 S_5						×		
S_5								×

- a) Determinar todas las latencias críticas así como el vector de colisión asociado.
- b) Encontrar todos los posibles ciclos greedy.
- c) Calcular la latencia promedio mínima.
- d) Analizar la evolución de los primeros cinco datos en el pipe al ser secuenciados según el régimen óptimo.
- e) ¿Qué sugiere la ocupación de las distintas etapas? ¿Cuál hubiese sido el límite de máximo régimen y por qué?
- 2. Asumiendo el siguiente esquema de secuenciamiento para un cierto pipeline:



- a) Construir la tabla de reservación correspondiente.
- b) Determinar todas las latencias críticas así como el vector de colisión asociado.
- c) Encontrar todos los posibles ciclos greedy.
- d) Calcular la latencia promedio mínima.

3. Encontrar la latencia promedio mínima y los ciclos asociados a la misma para los siguientes pipelines unifuncionales:

4. A partir del siguiente árbol de CSA (parcial) que permite multiplicar dos operandos de 16 bits, calcular el tiempo de ejecución, las latencias críticas y el secuenciamiento óptimo a partir de su tabla de reservación. Tener en cuenta que los distintos componentes demandan un retardo de 1T, salvo el sumador paralelo, el cual requiere 2T.

5. Sea D un stream de datos sobre cuyos elementos se desean aplicar dos funciones, f_1 y f_2 . Es decir, para cada dato d que aparezca en D, se debe computar $f_2(f_1(d))$. Esta tarea será realizada mediante múltiples unidades funcionales estructuradas en sendos pipeline, uno de los cuales computa f_1 y el otro computa f_2 , y cuyas tablas de reservación efectivas son las siguientes:

- a) ¿Cuál es el máximo throughput para f_1 y f_2 , asumiendo que trabajan de forma completamente independiente (digamos, tomando los datos de streams independientes D_1 y D_2)?
- b) Si se estructura un pipeline en cadena, de modo que el buffer de salida de f_1 sea el buffer de entrada de f_2 , ¿cuál será el máximo throughput para las tareas sobre D bajo esta nueva configuración?
- c) ¿Qué se puede concluir sobre la efectividad de encadenar pipelines que presentan feedbacks? Considerar el efecto de contención de memoria y los requerimientos en ancho de banda de memoria.
- 6. En ocasiones algunos pipelines presentan un comportamiento un tanto llamativo, puesto que puede ser posible alcanzar ritmos de iniciaciones superiores mediante la incoporación de etapas de retardo.

Por caso, considerando la siguiente tabla de reservación:

Determinar el mejor ritmo de iniciaciones incorporando retardos como se suguiere en la figura siguiente y verificar la posibilidad del ciclo (1,5), el cual es óptimo.

Notar que d_6 retarda a S_2 en la columna 2 y que d_1 y d_7 están para contemplar el hecho de que todas las etapas en una columna dada deben completarse antes de que alguna etapa de la próxima columna sea ejecutada. Para los retardos se emplean etapas sin función de cómputo, que eventualmente podrán ser compartidas por varios retardos elementales. Asumir para los retardos lo siguiente:

$$S_4$$
 para d_1 y d_2 S_7 para d_6 S_5 para d_4 S_8 para d_3 y d_7 S_6 para d_5