
PVM and MPI: a Comparison of FeaturesG. A. GeistJ. A. KohlP. M. Papadopoulos �May 30, 1996AbstractThis paper compares PVM and MPI features, pointing out the situ-ations where one may be favored over the other. Application developerscan determine where their application most likely will run and if it re-quires particular features supplied by only one or the other of the APIs.MPI is expected to be faster within a large multiprocessor. It hasmany more point-to-point and collective communication options thanPVM. This can be important if an algorithm is dependent on the ex-istence of a special communication option. MPI also has the ability tospecify a logical communication topology.PVM is better when applications will be run over heterogeneous net-works. It has good interoperability between di�erent hosts. PVM allowsthe development of fault tolerant applications that can survive host ortask failures. Because the PVM model is built around the virtual ma-chine concept (not present in the MPI model), it provides a powerful setof dynamic resource manager and process control functions.Each API has its unique strengths and this will remain so into theforeseeable future. One area of future research is to study the feasibilityof creating a programming environment that allows access to the virtualmachine features of PVM and the message passing features of MPI.1. IntroductionThe recent emergence of the MPI (Message Passing Interface) speci�cation[2] has caused many programmers to wonder whether they should write theirapplications in MPI or use PVM (Parallel Virtual Machine) [3]. PVM is theexisting de facto standard for distributed computing and MPI is being touted asthe future message passing standard. A related concern of users is whether they�This work was supported in part by the Applied Mathematical Sciences subprogramof the O�ce of Energy Research, U.S. Department of Energy, under Contract DE-AC05-96OR22464 with Lockheed Martin Energy Research Corporation1

should invest the time and e�ort to rewrite their existing PVM applications inMPI.In this paper we address these questions by comparing the features suppliedby PVM and the features supplied by MPI and showing under which situationsone API might be favored over another. Programmers can then assess theneeds of their application and decide accordingly.Computer vendors are driven by the needs of their buyers, some of whominsist on PVM and others on MPI. Therefore, all the major vendors have nowcommitted resources to provide both PVM and MPI on their systems. Thisremoves concerns of availability and support for either PVM or MPI and allowsus to concentrate on the features and capabilities that distinguish them.We have been involved in the design of both PVM and MPI. The designprocess was quite di�erent in both cases as were the focus and goals of thedesigns. Some background material will help better illustrate how PVM andMPI di�er and why each has features the other does not.2. BackgroundThe development of PVM started in the summer of 1989 when Vaidy Sun-deram, a professor at Emory University, visited Oak Ridge National Laboratoryto do research with Al Geist on heterogeneous distributed computing. Theyneeded a framework to explore this new area and so developed the concept ofa Parallel Virtual Machine (PVM) [8, 4]. In 1991, Bob Manchek (a researchassociate at the University of Tennessee) joined the research and implementeda portable, robust version of the PVM design (PVM 2.0). Jack Dongarra, whowas also involved in our heterogeneous distributed computing research, wasinstrumental in making PVM 2.0 publically available. The use of PVM grewrapidly worldwide as scientists spread the word of the utility of this softwareto do computational research.Central to the design of PVM was the notion of a \virtual machine" {a set of heterogeneous hosts connected by a network that appears logicallyto the user as a single large parallel computer. One aspect of the virtualmachine was how parallel tasks exchanged data. In PVM this was accomplishedusing simple message-passing constructs. There was a strong desire to keep thePVM interface simple to use and understand. Portability was considered muchmore important than performance for two reasons: communication across theinternet was slow; and, the research was focused on problems with scaling, faulttolerance, and heterogeneity of the virtual machine.As the PVM user base grew into the thousands, a conscious e�ort wasmade to keep the PVM API backwards compatible so that all existing PVMapplications would continue to run unchanged with newer PVM versions. AllPVM version 2 releases are backwards compatible, as are all PVM version 3releases. PVM 3.0 was released in 1993 with a completely new API. The APIchange and new design were required to enable a PVM application to run acrossa virtual machine composed of multiple large multiprocessors.2

The PVM API has continuously evolved over the years to satisfy user re-quests for additional features and to keep up with the fast-changing networkand computing technology. One example of a user-requested feature was theaddition of interfaces that allow third-party debuggers and resource managersto be seamlessly incorporated into the virtual machine [9, 6]. Examples oftechnology driven changes include the ability for PVM to transparently uti-lize shared memory and high-speed networks like ATM to move data betweenclusters of shared-memory multiprocessors.In contrast to the PVM API, which sprang from and continues to evolve in-side a research project, the MPI-1 API was speci�ed by a committee of about40 high performance computing experts from research and industry in a se-ries of meetings in 1993-1994. The impetus for developing MPI was that eachMassively Parallel Processor (MPP) vendor was creating their own proprietarymessage-passing API. In this scenario it was not possible to write a portableparallel application. MPI is intended to be a standard message-passing speci-�cation that each MPP vendor would implement on their system. The MPPvendors need to be able to deliver high performance and this became the focusof the MPI design. Given this design focus, MPI is expected to always be fasterthan PVM on MPP hosts. Even so, two recent comparison studies show thatPVM and MPI have very comparable performance on the Cray T3D and IBMSP-2 [10, 5].MPI-1 contains the following main features:� A large set of point-to-point communication routines (by far the richestset of any library to date),� A large set of collective communication routines for communication amonggroups of processes,� A communication context that provides support for the design of safeparallel software libraries,� The ability to specify communication topologies,� The ability to create derived datatypes that describe messages of non-contiguous data.MPI-1 users soon discovered that their applications were not portable acrossa network of workstations because there was no standard method to start MPItasks on separate hosts. Di�erent MPI implementations used di�erent methods.In 1995 the MPI committee began meeting to design the MPI-2 speci�cationto correct this problem and to add additional communication functions to MPIincluding:� MPI SPAWN functions to start both MPI and non-MPI processes,� One-sided communication functions such as put and get,3

� Nonblocking collective communication functions� Language bindings for C++.The MPI-2 draft speci�cation is scheduled to be �nished by January 1997.In its present form the MPI-2 draft adds an additional 120 functions to the 128functions speci�ed in the MPI-1 API. This makes MPI a much richer source ofcommunication methods than PVM.Will there be an MPI-3? It is too soon to tell but there are some usefulfeatures available in PVM that will not be available in MPI-2. MPI users mayrequest an MPI-3 speci�cation that allows them to create fault tolerant appli-cations, interoperates among di�erent MPI implementations, and dynamicallydetermines available resources.In the sections that follow, we discuss the major feature di�erences betweenMPI and PVM.3. Portability versus InteroperabilityHeterogeneity is becoming increasingly important for high performancecomputing. Massively parallel processors appear to be a dying breed, leadingscientists with serious computational needs to look towards clusters of smallermultiprocessors connected by new high-speed networks. Many organizationsalready use a variety of di�erent computing systems in the form of di�erentpersonal computers or workstations on their employees' desks. Integratingthese desktop machines and utilizing their unused cycles can be an e�ectiveway of obtaining reasonable computational power. Parallel software systemstherefore need to accommodate execution on many di�erent vendor platforms.In addition to running on MPPs, PVM and some implementations of MPIalready work on networked clusters of machines.The MPI interface was developed with the intent of encompassing all ofthe message-passing constructs and features of various MPP and networkedclusters so that programs would execute on each type of system. The portabilityachieved by MPI means that a program written for one architecture can becopied to a second architecture, compiled and executed without modi�cation.PVM also supports this level of portability, but expands the de�nition ofportable to include interoperable. PVM programs similarly can be copied todi�erent architectures, compiled and executed without modi�cation. However,the resulting PVM executables can also communicate with each other. In otherwords, an MPI application can run, as a whole, on any single architecture and isportable in that sense. But a PVM program can be ported heterogeneously torun cooperatively across any set of di�erent architectures at the same time (i.e.interoperate). While the MPI standard does not prohibit such heterogeneouscooperation, it does not require it. Nothing in the MPI standard describescooperation across heterogeneous networks and architectures. And there isno impetus for one vendor to make its MPI implementation slower in order4

to allow a user to use another vendor's machine. None of the existing MPIimplementations can interoperate.There would need to be another standard { one for interoperability. MPIwould need to check the destination of every message and determine if thedestination task is on the same host or on some other host. If it is on some otherhost, with that vendor's MPI implementation, the message must be convertedinto a format that can be understood by the other MPI version.The lack of MPI's exibility in this scenario comes from the pre-emptivepriority of performance in its design. The best way to make a message-passingprogram fast on any single architecture is to streamline the underlying library touse native hardware and eliminate any unnecessary waste for that architecture.For example, if a certain architecture provides some built-in mechanism forbroadcasting messages, the MPI implementation should use that mechanismdirectly. However, using that native mechanism makes it more di�cult andless e�cient to use broadcast functions to send messages to hosts of di�erentvendors that do not support the mechanism.The PVM solution to this problem is to sacri�ce some performance in fa-vor of the exibility to communicate across architectural boundaries. Whencommunicating locally or to another host of identical architecture, PVM usesthe native communication functions just like MPI. When communicating to adi�erent architecture, PVM uses the standard network communication func-tions. Because the PVM library must determine from the destination of eachmessage whether to use the native or network communication, there is somesmall overhead incurred.PVM and MPI also di�er in their approach to language interoperability. InPVM, a C program can send a message that is received by a Fortran programand vice-versa. In contrast, a program written in C is not required by theMPI standard to communicate with a program written in Fortran, even ifexecuting on the same architecture. This restriction occurs because C andFortran support fundamentally di�erent language interfaces, causing di�cultyin de�ning a consistent standard interface that covers both. The MPI decisionwas to not force the two languages to interoperate.4. Virtual MachinePVM is built around the concept of a virtual machine which is a dynamiccollection of (potentially heterogeneous) computational resources managed asa single parallel computer. The virtual machine concept is fundamental tothe PVM perspective and provides the basis for heterogeneity, portability, andencapsulation of functions that constitute PVM.It is the virtual machine concept that has revolutionized heterogeneous dis-tributed computing by linking together di�erent workstations, personal com-puters and massively parallel computers to form a single integrated computa-tional engine. In contrast, MPI has focused on message-passing and explicitly5

states that resource management and the concept of a virtual machine areoutside the scope of the MPI (1 and 2) standard.4.1. Process ControlProcess control refers to the ability to start and stop tasks, to �nd outwhich tasks are running, and possibly where they are running. PVM containsall of these capabilities. In contrast MPI-1 has no de�ned method to start aparallel application. MPI-2 will contain functions to start a group of tasks andto send a kill signal to a group of tasks (and possibly other signals as well).Some basic resource query capability is important in order to know howmany tasks can be started on the available (possibly dynamic) computing re-sources. In this regard, PVM has a rich set of resource control functions.4.2. Resource ControlIn terms of resource management, PVM is inherently dynamic in nature.Computing resources, or \hosts," can be added or deleted at will, either from asystem \console" or even from within the user's application. Allowing applica-tions to interact with and manipulate their computing environment provides apowerful paradigm for load balancing, task migration, and fault tolerance. Thevirtual machine provides a framework for determining which tasks are runningand supports naming services so that independently spawned tasks can �ndeach other and cooperate.Another aspect of virtual machine dynamics relates to e�ciency. User appli-cations can exhibit potentially changing computational needs over the course oftheir execution. Hence, a message-passing infrastructure should provide exiblecontrol over the amount of computational power being utilized. For example,consider a typical application which begins and ends with primarily serial com-putations, but contains several phases of heavy parallel computation. A largeMPP need not be wasted as part of the virtual machine for the serial portions,and can be added just for those portions when it is of most value. Likewise,consider a long-running application in which the user occasionally wishes toattach a graphical front-end to view the computation's progress. Without vir-tual machine dynamics, the graphical workstation would have to be allocatedduring the entire computation. MPI lacks such dynamics and is, in fact, specif-ically designed to be static in nature to improve performance. There is clearlya trade-o� in exibility and e�ciency for this extra margin of performance.Aside from more tangible e�ects, the virtual machine in PVM also serves toencapsulate and organize resources for parallel programs. Rather than leavingthe parallel programmer to manually select each individual host where tasks areto execute and then log into each machine in turn to actually spawn the tasksand monitor their execution, the virtual machine provides a simple abstractionto encompass the disparate machines. Further, this resource abstraction iscarefully layered to allow varying degrees of control. The user might create anarbitrary collection of machines and then treat them as uniform computational6

nodes, regardless of their architectural di�erences. Or the user could traversethe increasing levels of detail and request that certain tasks execute on machineswith particular data formats, architectures, or even on an explicitly namedmachine.The MPI standard does not support any abstraction for computing re-sources and leaves each MPI implementation or user to customize their ownmanagement scheme. Though such a customized scheme can ultimately bemore convenient for a particular user's needs, the overhead to construct thescheme counters the gains. With PVM, this customization is always possibleusing the existing \virtual machinery," should the user desire more control.4.3. TopologyAlthough MPI does not have a concept of a virtual machine, MPI doesprovide a higher level of abstraction on top of the computing resources in termsof the message-passing topology. In MPI a group of tasks can be arranged ina speci�c logical interconnection topology. Communication among tasks thentakes place within that topology with the hope that the underlying physicalnetwork topology will correspond and expedite the message transfers. PVMdoes not support such an abstraction, leaving the programmer to manuallyarrange tasks into groups with the desired communication organization.5. Fault ToleranceFault tolerance is a critical issue for any large scale scienti�c computer ap-plication. Long-running simulations, which can take days or even weeks toexecute, must be given some means to gracefully handle faults in the system orthe application tasks. Without fault detection and recovery it is unlikely thatsuch applications will ever complete. For example, consider a large simulationrunning on dozens of workstations. If one of those many workstations shouldcrash or be rebooted, then tasks critical to the application might disappear.Additionally, if the application hangs or fails, it may not be immediately ob-vious to the user. Many hours could be wasted before it is discovered thatsomething has gone wrong. Further, there are several types of applicationsthat explicitly require a fault-tolerant execution environment, due to safety orlevel of service requirements. In any case, it is essential that there be somewell-de�ned scheme for identifying system and application faults and automat-ically responding to them, or at least providing timely noti�cation to the userin the event of failure.PVM has supported a basic fault noti�cation scheme for some time. Underthe control of the user, tasks can register with PVM to be \noti�ed" when thestatus of the virtual machine changes or when a task fails. This noti�cationcomes in the form of special event messages that contain information about theparticular event. A task can \post" a notify for any of the tasks from whichit expects to receive a message. In this scenario, if a task dies, the receiving7

task will get a notify message in place of any expected message. The notifymessage allows the task an opportunity to respond to the fault without hangingor failing.Similarly, if a speci�c host like an I/O server is critical to the application,then the application tasks can post noti�es for that host. The tasks will thenbe informed if that server exits the virtual machine, and they can allocatea new I/O server. This type of virtual machine noti�cation is also useful incontrolling computing resources. When a host exits from the virtual machine,tasks can utilize the notify messages to recon�gure themselves to the remainingresources. When a new host computer is added to the virtual machine, taskscan be noti�ed of this as well. This information can be used to redistributeload or expand the computation to utilize the new resource. Several systemshave been designed speci�cally for this purpose, including the WoDi system [7]which uses Condor [6] on top of PVM.There are several important issues to consider when providing a fault no-ti�cation scheme. For example, a task might request noti�cation of an eventafter it has already occurred. PVM immediately generates a notify message inresponse to any such \after-the-fact" request. For example, if a \task exit" no-ti�cation request is posted for a task that has already exited, a notify messageis immediately returned. Similarly, if a \host exit" request is posted for a hostthat is no longer part of the virtual machine, a notify message is immediatelyreturned. It is possible for a \host add" noti�cation request to occur simultane-ously with the addition of a new host into the virtual machine. To alleviate thisrace condition, the user must poll the virtual machine after the notify requestto obtain the complete virtual machine con�guration. Subsequently, PVM canthen reliably deliver any new \host add" noti�es.The current MPI standard does not include any mechanisms for fault tol-erance, although the upcoming MPI-2 standard will include a notify schemesimilar to PVM's. The problem with the MPI-1 model in terms of fault tol-erance is that the tasks and hosts are considered to be static. An MPI-1application must be started en masse as a single group of executing tasks. Ifa task or computing resource should fail, the entire MPI-1 application mustfail. This is certainly e�ective in terms of preventing leftover or hung tasks.However, there is no way for an MPI program to gracefully handle a fault, letalone recover automatically.The reasons for the static nature of MPI are based on performance as wellas convenience. Because all MPI tasks are always present, there is no needfor any time-consuming lookups for group membership or name service. Eachtask already knows about every other task, and all communications can bemade without the explicit need for a special daemon. Because all potentialcommunication paths are known at startup, messages can also, where possible,be directly routed over custom task-to-task channels.MPI-2 will include a speci�cation for spawning new processes. This expandsthe capabilities of the original static MPI-1. New processes can be createddynamically, but MPI-2 still has no mechanism to recover from the spontaneous8

loss of a process. One of the fundamental problems that keeps MPI from beingfault tolerant is the synchronous way that communicators are created and freed.In the next section we compare the way MPI and PVM handle communicatorsand communication context in general.6. Context for Safe CommunicationThe most important new concept introduced by MPI is the communicator.The communicator can be thought of as a binding of a communication con-text to a group of processes. Having a communication context allows librarypackages written in message passing systems to protect or mark their messagesso that they are not received (incorrectly) by the user's code. Message tagand sender ID is not enough to safely distinguish library messages from usermessages. Figure 1 illustrates the fundamental problem. In this �gure twoidentical worker tasks are calling a library routine that also performs messagepassing. The library and user's code have both chosen the same tag to mark amessage. Without context, messages are received in the wrong order. To solvethis problem, a third tag that is assigned by the operating system is needed todistinguish user messages from library messages. Upon entrance to a libraryroutine, for example, the software would determine this third tag and use itfor all communications within the library. The remainder of this section willcompare and contrast the speci�cation of context in MPI and PVM version3.4. Context primitives are a new feature in PVM 3.4.Context is assigned by the operating environment and cannot be wild-carded by a user program. Two important issues are how this \magic" tagis derived and how the tag is distributed to all processes that need to use it forcommunication.MPI couples the concepts of context and a group of processes into a commu-nicator. When a program starts, all tasks are given a \world" communicatorand a (static) listing of all the tasks that started together. When a new group(context) is needed, the program makes a synchronizing call to derive the newcontext from an existing one (intra-communication). The derivation of contextbecomes a synchronous operation across all the processes that are forming anew communicator. This has several advantages: no servers are required todispense a context, instead processes need only decide among themselves on amutually exclusive safe context tag; all context state is dissolved (and hencere-usable) when one or more of the processes terminates; and, derivation anddistribution of context are always performed in a single call. However, in MPIit is possible (and in fact common in existing implementations) for two indepen-dent groups of processes to use the same context tag. The MPI forum decidedit was too di�cult and expensive to generate a unique context tag. This meansthat it is unsafe for two groups to send messages to each other. To solve thisproblem, MPI introduces an inter-communicator which allows two groups ofprocesses to agree upon a safe communication context. Collective operationssuch as broadcast are not supported over inter-communicators, but this is be-9

Call lib Call lib

liblib

Worker 0 Worker 1

context β

α

β

α

Setcontext()

Setcontext() Setcontext()

βSetcontext()

Send(1,tag)

Send(1,tag)

Recv(1,tag)

Recv(0,tag)

Send(0,tag)

Recv(0,tag)

context
α

No Context

Figure 1: Messages sent without context are erroneously receiveding discussed for inclusion in MPI-2. Having two types of communicators andhaving to convert between them is sometimes confusing, always messy, but nec-essary given MPI's mandate not to require a server or daemon process. Thestatic nature of communicators makes it cumbersome to spawn new tasks andenable communication between old and new tasks. Finally, when a task fails,the world communicator becomes invalid. Because all intra-communicatorsare derived from this now invalid construction, the behavior of the programbecomes unde�ned (and implementation dependent).Since PVM already has a set of daemon processes maintaining the virtualmachine, it can use these to create a system-wide unique context tag, whichleads to a simpler and more general context model. PVM 3.4 views context asmerely another tag (without wildcarding). Primitives are provided for tasks torequest a new unique context tag. The program may use and distribute thiscontext in exactly the same way that MPI does. For example, in PVM 3.4 thereis a synchronous group formation operation that allocates and distributes a newcontext to all members. This is analogous to the MPI group formation. Butin PVM the di�erent groups are each guaranteed a unique context, removingthe need for separate intra- and inter-communication constructs. As long asa process knows (or can �nd out) the context of a group, it can communicatewith that group.Other advantages to the PVM context scheme are that new processes canuse existing contexts to start communicating with an existing group. This isespecially useful for fault-tolerant programs that want to replace failed tasks.10

In contrast, if a task fails in MPI, the result is unde�ned and usually leadsto system shutdown. The generality of the PVM approach, however, resultsin some thorny issues involving when to reclaim context values for reuse. Weconsider an existing communicator to be corrupted if one or more memberprocesses fail before the communicator has been collectively freed. There isno one \correct" answer on how to deal with corrupted communicators. Auto-matic recycling may cause errors in fault-tolerant programs. No recycling mayexhaust system resources.MPI-1 side steps this issue by requiring tasks to never fail. MPI-2 willhave to address this problem since it allows tasks to spawn new tasks andprocesses may be noti�ed about other failed processes. The fundamental prob-lem is that the MPI COMM WORLD communicator, from which most intra-communicators are derived, becomes corrupted. This leads to unde�ned con-sequences.To maintain backwards compatibility with existing PVM codes, a con-text tag has not been explicitly added to the argument lists of pvm send andpvm recv. Instead, a PVM task has an operating context that can be queriedand set by the program. Sends and receives are carried out in the currentoperational context.PVM 3.4 has the concept of a base context. All tasks will know the basecontext and will be able to use it for communication even in the event of taskfailure. In PVM, a spawned task will inherit the current operational contextof its parent. If the task has no parent (i.e., the task was started from thecommand line), then it operates in the base context. Inheritance provides aneasy way for a master to encapsulate the messages of several parallel workergroups.PVM 3.4 will add some MPI-like communicator constructions, which areshown in Table 1. The collective call pvm staticgroup() takes a list of tids andreturns a group communicator id. This allows PVM programs to arbitrarilyconstruct groups of processes with context. Group send and receive functionswill be added that take a group id and a rank as arguments. These functionsare \syntactic sugars" that handle the mappings of group rank to tids and theproper management of the operating context.Not having a context argument in pvm send points out an advantage MPIhas over PVM in general. MPI was designed to be thread-safe, that is, thereis no hidden state that could complicate writing a multi-threaded application.PVM has hidden state in both the active context and the active message bu�er.This requires programmers to be very careful when writing multi-threadedPVM applications.7. Name ServiceIt is often desirable for two programs to start independently and discoverinformation about each other. A common mechanism is for each of the pro-grams to key on a \well-known name" to look up information in a database.11

function PVM MPI-1communicatorcreation pvm staticgroup MPI COMM CREATEMPI INTERCOMM CREATEcommunicatordestruction pvm lvgroup MPI COMM FREEnew context pvm newcontext MPI COMM DUPinter-communication no restrictions some restrictionssupport faulttolerance yes noTable 1: Similarities between manipulating communicators in PVM and MPIA program that returns information about a requested name is called a nameserver.PVM is completely dynamic. Hosts may be added to and deleted from thevirtual machine. Processes may start, run to completion and then exit. Thedynamic nature of PVM makes name service very useful and convenient. InPVM 3.4, the distributed set of PVM daemons have added functionality toallow them to perform name server functions.In comparison, MPI-1 supplies no functionality that requires a name server.MPI-2 proposes to add functions to allow independent groups of processes tosynchronize and create an inter-communicator between them. The functionsare being de�ned so as not to mandate the use of a name server, allowingimplementations the freedom to use existing server software.In PVM 3.4, there is a general name service. A PVM task or PVM daemoncan construct an arbitrary message and `put' this message in the name serverwith an associated key. The key is a user de�ned string. Tasks that lookup a name are sent the stored message. This sort of name service is a verygeneral mechanism. The message could, for example, contain a group of taskID's and an associated context, the location of a particular server, or simplyinitialization data.The insertion allows a task to specify the owner of the named message. Theowner may be any process, including a pvmd. A message is deleted when anowner (or the pvmd) explictly calls pvm del, when the owner exits the virtualmachine, or when the entire virtual machine is reset. Two tasks may not insertthe same name since only the �rst insertion will succeed. The second insertionreturns an error. This has the advantage that third party modules, such asvisualizers, may start up, query the name server, and insure that they areunique across the entire virtual machine.There are three basic calls for the PVM name server:
12

pvm putmsg() Insert (key,message) pair into name server and specify ownerpvm getmsg() Return inserted message (if any) from keypvm delmsg() Owner may delete a message from name serverTable 2: Routines that support name service8. Message HandlersUser-level message handlers provide an extensible mechanism for buildingevent-driven codes that easily co-exist with traditional messaging. Both PVM3.4 and MPI-2 will have user-level message handlers. A program may register ahandler function so that when a speci�ed message arrives at a task, the functionis executed. Message handlers are therefore very similar to active messages withthe caveat in PVM that they cannot interrupt a program while it is operatingoutside of the PVM library. There will be two PVM interface calls for messagehandlers:pvm addmh() Add a message handler function matching (src,tag,context)pvm delmh() Remove a previously de�ned message handlerTable 3: Routines that support message handlersPVM has always had message handlers for system use. For example, whena direct connection is requested, a message is sent from the requester to thereceiver. This request message is intercepted by the pvm library software beforeit can be received by the user's code. The handler opens a socket and repliesto the requestor.There are many possibilities for using message handlers. The followingexample code segment shows a handler that returns the contents of a localcounter:static int counter;void show_count(){ sbuf = pvm_setsbuf(0); /* remember the current send buf */mysbuf = pvm_initsend(PvmDataDefault);pvm_pkint(&counter,1,1);pvm_send(src,tag);pvm_freebuf(mysbuf);pvm_setsbuf(sbuf); /* restore the send buf */} 13

main(){ pvm_addmh(show_count);while(1) {counter ++;(do message passing)}}The message handler can be called upon entry to any PVM library call. It isclear from the above code segment that the user must be very careful to saveand restore any modi�ed PVM state.9. Future Research: PVMPIThe Universitiy of Tennessee and Oak Ridge National Laboratory haverecently begun investigating the feasibility of merging features of PVM andMPI. The project is called PVMPI [1] and involves creating a programmingenvironment that allows access to the virtual machine features of PVM andthe message passing features of MPI.PVMPI would perform three symbiotic functions: It would use vendor im-plementations of MPI when available on multiprocessors. It would allow appli-cations to access PVM's virtual machine resource control and fault tolerance.It would transparently use PVM's network communication to transfer data be-tween di�erent vendor's MPI implementations allowing them to interoperatewithin the larger virtual machine.10. ConclusionThe recent publicity surrounding MPI has caused programmers to wonderif they should use the existing de facto standard, PVM, or whether they shouldshift their codes to the MPI standard. In this paper we compared the featuresof the two APIs and pointed out situations where one is better suited than theother.If an application is going to be developed and executed on a single MPP,then MPI has the advantage of expected higher communication performance.The application would be portable to other vendor's MPP so it would not needto be tied to a particular vendor. MPI has a much richer set of communicationfunctions so MPI is favored when an application is structured to exploit specialcommunication modes not available in PVM. The most often cited example isthe non-blocking send.Some sacri�ces have been made in the MPI speci�cation in order to beable to produce high communication performance. Two of the most notableare the lack of interoperability between any of the MPI implementations, that14

is, one vendor's MPI cannot send a messages to another vendor's MPI. Thesecond is the lack of ability to write fault tolerant applications in MPI. TheMPI speci�cation states that the only thing that is guaranteed after an MPIerror is the ability to exit the program.Because PVM is built around the concept of a virtual machine, PVM has theadvantage when the application is going to run over a networked collection ofhosts, particularly if the hosts are heterogeneous. PVM contains resource man-agement and process control functions that are important for creating portableapplications that run on clusters of workstations and MPP.The larger the cluster of hosts, the more important PVM's fault tolerantfeatures become. The ability to write long running PVM applications that cancontinue even when hosts or tasks fail, or loads change dynamically due tooutside inuence, is quite important to heterogeneous distributed computing.Programmers should evaluate the functional requirements and running en-vironment of their application and choose the API that has the features theyneed.References[1] Graham E. Fagg and Jack J. Dongarra. PVMPI: An integration of thePVM and MPI systems. Calculateurs Paralleles, 2, 1996.[2] MPI Forum. MPI: A message-passing interface standard. InternationalJournal of Supercomputer Application, 8 (3/4):165 { 416, 1994.[3] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, RobertManchek, and Vaidy Sunderam. PVM: Parallel Virtual Machine. MITpress, 1994.[4] G. A. Geist and V. S. Sunderam. Network-based concurrent computing onthe PVM system. Concurrency: Practice & Experience, 4 (4):293 { 311,1992.[5] Ken Koch and Harvey Wasserman. A message passing algorithm forSn transport. In Proceedings of 1996 PVM User Group meeting, 1996.http://bay.lanl.gov/pvmug96.[6] Jim Pruyne and Miron Livny. Providing resource management ser-vices to parallel applications. In Proceedings of the Second Workshopon Environments and Tools for Parallel Scienti�c Computing, 1994.http://www.cs.wisc.edu/condor/publications.html.[7] Jim Pruyne and Miron Livny.Parallel processing on dynamic resources with CARMI. In Proceedingsof IPPS'95, 1995. http://www.cs.wisc.edu/condor/publications.html.[8] V. S. Sunderam. PVM: A framework for parallel distributed computing.Concurrency: Practice & Experience, 2 (4), 1990.15

[9] BBN ToolWorks. Totalview parallel debugger.http://www.bbn.com:80/tv.[10] S. VanderWiel, D. Nathanson, and D. Lilja. Performance and programcomplexity in contemporary network-based parallel computing systems.Technical Report HPPC-96-02, University of Minnesota, 1996.

16

