
A Theoretical Model to Handle Ontology
Debugging & Change Through Argumentation

Mart́ın O. Moguillansky, Nicolás D. Rotstein, and Marcelo A. Falappa

Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET)
Department of Computer Science and Engineering (DCIC)

Artificial Intelligence Research and Development Laboratory (LIDIA)
Universidad Nacional del Sur (UNS), Bah́ıa Blanca, ARGENTINA

{mom,ndr,maf}@cs.uns.edu.ar

Abstract. A dynamic argumentation framework based on ALC descrip-
tion logics is presented by extending notions from argumentation. Since
argumentation frameworks reason over graphs that relate arguments
through attack, a methodology is proposed to bridge ontology-specific
concepts to argumentation notions. In this way, inconsistency in the for-
mer will be represented as an attack in the latter. This approach benefits
from (argumentation) acceptability semantics to restore consistency to
ontologies. Finally, a model of ontology change is presented along with
a rational characterization.

1 Introduction

In this article we adapt the abstract version of the dynamic argumentation frame-
work (DAF) originally presented in [18] and [17] to deal with a specific logic for
arguments:ALC description logics (DLs). Some classical argumentation elements
[4] are extended to be properly applied on such a specialized DAF. For instance,
attack and support in argumentation are here related to identify different lev-
els of inconsistency in ontologies [6]. Therefore, an acceptability semantics [3]
applied to the DAF, determines a methodology for ontology debugging.

Afterwards, a model of change for ontologies is presented. Such model prior-
itizes the new knowledge to be incorporated, in a way that the evolved ontology
will fully accept the new information, while ending up consistent at all levels.
That is, (ontology) consistency as well as (terminology) coherency will be as-
sured. Rationality of change in ontologies is stated in an abstract manner by the
proposal of a set of postulates adapted from [6] and [1]. Afterwards, the model
of change proposed in this article is studied under the light of the presented
postulates, and an axiomatization is finally determined.

It is important to note that the argumentation machinery here proposed is
semantically determined –by effect of the semantic entailment– and prepared
to deal with ALC fragments of knowledge. This means that tableaux technics
may be easily reused towards further implementations. Consequently, the actual
model could recognize the sources of inconsistency directly, with no need to any
translation to a DAF. In this sense, this methodology could be implemented on
top of the DL reasoner. A different practical approach will be analyzed in Sect. 5.

...
...

...
...

⊑C D

⊑C D

sem(daf(O ⋃X))

O

X
daf(O ⋃X)

B
B

C (x)

D (x)

C(x)

D(x)

X

X

{D(x), D (x)} ont(sem(daf(O ⋃X)))

CO(X)

⊑C D
C (x)

D (x)

C(x)

D(x)R

´ ´

´ ´

´

´

´

´

´

Fig. 1. Schema of the theoretical model of ontology change.

In Fig. 1 a schema of the presented theoretical model of change is shown
(arguments are depicted as triangles). Its full understanding will be made clear
throughout this paper but, on the other hand, the understanding of this paper
will be made clearer by referring to the figure from time to time. In general,
we define a DAF interpreting ontology concept descriptions as arguments. The
reader should be aware that the actual translation from concepts to arguments
has some subtleties that are not depicted in the figure. An ALC ontology O will
be required to accept in a consistent and coherent manner a second ALC ontol-
ogy X by means of the change operation CO(X). A DAF determined by a function
“daf” will return the DAF associated to the union of both ontologies. Afterwards,
the argumentation machinery manages to recognize argument defeaters, that is
arguments that are contradictory in some way. Consequently, the set of attack
relations R is identified, leading to a graph of arguments. An acceptability se-
mantics “sem” determines a consistent set of accepted arguments, thus yielding
a disconnected graph. Finally, the translation back “ont” is done obtaining the
new evolved consistent-coherent ontology CO(X).

2 Description Logics Brief Overview

The following constitutes a very brief overview of the description logics (DLs)
used in this paper, for more detailed information refer to [2]. An interpretation
I = (∆I, ·I) consists of a nonempty domain ∆I, and an interpretation function
·I that maps every concept to a subset of ∆I, every role to a subset of ∆I×∆I,
and every individual to an element of ∆I.

The description language ALC is formed by concept definitions according to
the syntax C,D ::= A|⊥|>|¬C|C uD|C tD|∀R.C|∃R.C where A is an atomic
concept, R is an atomic role; and the interpretation function ·I is extended to the
universal concept as >I = ∆I; the bottom concept as ⊥I = ∅; the full negation
or complement as (¬C)I = ∆I\CI; the intersection as (C uD)I = CI ∩ DI;
the union as (C tD)I = CI ∪ DI; the universal quantification as (∀R.C)I =
{a ∈ ∆I|∀b.(a, b) ∈ RI → b ∈ CI}; and the full existential quantification as
(∃R.C)I = {a ∈ ∆I|∃b.(a, b) ∈ RI ∧ b ∈ CI}.

An ontology is a pair O = 〈T ,A〉, where T represents the TBox, containing
the terminologies (or axioms) of the application domain, and A, the ABox, which
contains assertions about named individuals in terms of these terminologies.
Regarding the TBox T , axioms are sketched as C v D and C ≡ D, therefore,
an interpretation I satisfies them whenever CI ⊆ DI and CI = DI respectively.
An interpretation I is a model for the TBox T if I satisfies all the axioms in T .
Thus, the TBox T is said to be satisfiable if it admits a model. Besides, in the
ABox A, I satisfies C(a) if a ∈ CI, and R(a, b) if (a, b) ∈ RI. An interpretation
I is said to be a model of the ABox A if every assertion of A is satisfied by
I. Hence, the ABox A is said to be satisfiable if it admits a model. Finally,
regarding the entire ontology, an interpretation I is said to be a model of O if
every statement in O is satisfied by I, and O is said to be satisfiable if it admits
a model. An ontology contains implicit knowledge that is made explicit through
inferences. The notion of semantic entailment is given by O |= α, meaning that
every model of the ontology O is also a model of the statement α. Formally,
(semantic entailment) O |= α iff M(O) ⊆ M({α}). Just for simplicity, we
shall abuse notation writing O = T ∪ A (eg., O = {C v D, A(a)}) to identify
an ontology O = 〈T ,A〉 (eg., O = 〈{C v D}, {A(a)}〉). Throughout this paper,
inferences will be obtained following the notion of semantic entailment.

3 ALC-Based Dynamic Argumentation Framework

In the rest of this article we will use symbols A,A1, A2, . . . and B,B1, B2, . . .
to denote atomic DL concepts, C, C1, C2, . . . and D, D1, D2, . . . to denote gen-
eral DL concepts, R, R1, R2, . . . to denote atomic DL roles, x, y to denote free
variables, and a, b to denote individual names. The following grammars are nec-
essary to specify the language used to represent ALC-based ontologies into a
dynamic argumentation framework (DAF) for description logics. It is important
to mention that the DAF is an extension of the abstract argumentation framework
proposed by Dung [4]. In this work, the original DAF formalism [17,18] requires to
be extended in order to handle knowledge represented by ALC DL statements.

φ ::= >|A|¬A|∀R.Ldisj |∃R.Lconj

Lconj ::= φ|Lconj u Lconj Ldisj ::= φ|Ldisj t Ldisj

LT ::= Lconj v Ldisj LA ::= A(Lvar)|¬A(Lvar)|R(Lvar,Lvar)
Lpr ::= φ(Lvar) Lcl ::= Ldisj(Lvar)|R(Lvar,Lvar)

Lvar ::= a|b|x|y Args ::= 2Lpr × Lcl

An argument is interpreted as an atomic (indivisible) piece of knowledge. To
the argumentation machinery, an argument is a primitive element of reasoning
supporting a claim from its set of premises. Usually, argumentation frameworks
consider ground arguments, that is, a claim is directly inferred if the set of
premises are conformed. In our framework, we will consider two different kinds of
arguments: ground and schematic. In this sense, a set of premises might consider
free variables, meaning that the claim, and therefore the inference, will depend
on them. When an argument has its premises supported, its variables may be
instantiated as a result of that. These notions are carefully detailed throughout
this section. Next we formalize the notions of argument and DAF for DLs.

Definition 1 (Argument). An argument B ∈ Args is a pair 〈P, c〉, where
P ∈ 2Lpr is the finite set of premises from Lpr, and c ∈ Lcl, the claim. An
argument B guarantees P ∪ {c} 6|= ⊥ (consistency). Both premises and claims
are represented as finite formulae from their respective language.

Definition 2 (Dynamic Argumentation Framework for DLs).
Let T ⊆ Args× Args be a Dynamic Argumentation Framework for DLs (DAF),
specified by a pair 〈U,A〉, where U ⊆ Args is the universal set of arguments,
and A ⊆ U is the framework’s active set containing the unique set of arguments
considered by the argumentation reasoning process.

As usual in argumentation, pairs of conflictive arguments may appear. Such
pairs will be contained in an attack relation set R, dynamically recognized from
the current DAF specification. This notion will be made clear later. Besides,
inactive arguments –ignored by the reasoning process– might be identified by
means of a set I = U \A. Some arguments may count with no premises to be
satisfied. Such arguments, referred as evidence, will be individually considered a
self-conclusive piece of knowledge, and will be enclosed by a set E ⊆ A. However,
there could be inactive arguments with an empty set of premises which will be
recognized as non-evidential facts, enclosed in a set F ⊆ I.

Definition 3 (Evidence & Non-Evidential Fact). Given a DAF 〈U,A〉 ⊆
Args×Args. An argument B ∈ U such that B = 〈{}, c〉 and c ∈ LA, is referred
either as: Evidence iff B ∈ A, or Non-Evidential Fact iff B 6∈ A.

Given an argument B ∈ Args, its claim and set of premises are identified by
the functions cl : Args½Lcl, and pr : Args½2Lpr , respectively. For instance,
given B = 〈{p1, p2}, c〉, its premises are pr(B) = {p1, p2}, and its claim, cl(B) = c.

In order to obtain a DAF from an ALC ontology O, it is needed to translate
each axiom in O to negation normal form, so that negation appears only in front
of atomic concepts. Afterwards, each axiom should turn to disjunctive normal
form for the left-hand-side (lhs) part of the description, and to conjunctive nor-
mal form for its right-hand-side (rhs), conforming axioms lhs v rhs or lhs ≡ rhs,
where lhs ::= ⊥|Lconj t . . . t Lconj and rhs ::= ⊥|Ldisj u . . . u Ldisj , referred as
pre-argumental normal form (pANF). An ontology in pANF could trigger multiple
arguments from each axiom, as states the following intuition: each lhs disjunction
(in Lconj) is interpreted as a set of premises Lpr–one for each conjunction– and
each rhs conjunction (in Ldisj), as a claim in Lcl (c.f. Ex. 1). Concept equiv-
alences as C1 ≡ C2, are assumed as pairs C1 v C2 and C2 v C1. Inclusions
⊥ v C and C v ⊥, are assumed as ¬C v > and > v ¬C, respectively, given
that arguments cannot accept ⊥ in any of their components (c.f. consistency in
Def. 1). Finally, assertions as A(a), trigger evidential arguments as 〈{}, A(a)〉. A
formal specification of a systematic translation was left out due to space reasons.

Example 1. Let (A1 u A2) t (∀R1.A3 u ∃R2.∀R3.¬A4) v (A1 t A2) u A5 be
an axiom conforming the pANF. Four arguments appear in the related DAF:
〈{A1(x), A2(x)}, (A1 tA2)(x)〉, 〈{(∀R1.A3)(x), (∃R2.∀R3.¬A4)(x)}, (A1 tA2)(x)〉,
〈{A1(x), A2(x)}, A5(x)〉, and 〈{(∀R1.A3)(x), (∃R2.∀R3.¬A4)(x)}, A5(x)〉.

Given an ALC ontology O, a function daf : ALC½Args× Args, is the map-
ping daf(O) = 〈U,A〉, which follows the translation methodology described
before. That is, O is turned into pANF, and consequently the DAF is obtained,
where each argument identified is considered active, i.e., A = U.

We will define as ALCArgs to the logic for ontologies O ⊆ LT × LA, using
LT for axioms and LA for assertions. It is clear that any ALCArgs ontology con-
forms the ALC DL, and it is always in pANF. Moreover, we will assume a function
af : ALC½ALCArgs, the argumental-DL function that translates any ALC on-
tology O into an equivalent ALCArgs ontology af(O). A desirable property of an
ALCArgs ontology is that each statement in it generates a single argument in its
related DAF, except for obvious unsatisfiable inclusions as A v ¬A, which are
filtered by consistency in Def. 1 –triggering no related argument in the DAF.

Proposition 1. 1 Let O and O′ be two ontologies. If O conforms the logic ALC,
and O′ conforms ALCArgs then

a) O′ conforms the logic ALC and is in pANF,
b) If af(O) = O′ then O is equivalent to O′, and
c) If O conforms the logic ALCArgs then |O| ≥ |U| where daf(O) = 〈U,A〉.

3.1 The Argumentation Machinery

An argument needs to find its premises supported as a functional part of the
reasoning process to reach its claim. In this framework, due to the logic used
to represent arguments derived from that of the ontology languages, a single
argument is sometimes not enough to support a premise. This is the reason why
we introduce the notion of coalitions: to identify a minimal set of arguments ver-
ifying some specific properties. For instance, a coalition Ĉ ⊆ Args may provide
support for an argument B ∈ Args through some of its premises. For that matter,
we present the functions ĉlset(Ĉ) = {cl(B)|B ∈ Ĉ}, and p̂rset(Ĉ) =

⋃
B∈Ĉ pr(B).

Definition 4 (Supporter). Given a DAF 〈U,A〉 ⊆ Args × Args, and an ar-
gument B ∈ U such that p ∈ pr(B). A set of arguments Ĉ ⊆ U is a supporting-
coalition, or just a supporter, of B through p iff it guarantees:

(support) ĉlset(Ĉ) |= p,
(consistency) p̂rset(Ĉ) ∪ ĉlset(Ĉ) ∪ pr(B) ∪ {cl(B)} 6|= ⊥, and
(minimality) no Ĉ′ ⊂ Ĉ is a supporter of B through p.

Definition 5 (Free Premise). Given a DAF 〈U,A〉 ⊆ Args × Args and an
argument B ∈ U, a premise p ∈ pr(B) of B is free wrt. U iff there is no
supporting-coalition Ĉ ⊆ U of B through p.

Example 2. Suppose we have a set U = {B1,B2,B3}, where arguments B1 =
〈{(∃R.A1)(x), A2(x)}, B(x)〉, B2 = 〈{}, R(a, b)〉, and B3 = 〈{}, A1(b)〉. The
set Ĉ = {B2,B3} is a supporting-coalition of B1 given that {R(a, b), A1(b)} |=
(∃R.A1)(x). Note that premise A2(x) is free wrt. U.
1 In this work, proofs will be omitted due to space reasons.

Example 3. Assume U = {B1,B2,B3,B4}, where B1 = 〈{A1(x)}, B1(x)〉, B2 =
〈{A1(x)}, B2(x)〉, B3 = 〈{A2(x)}, (A1 tB1)(x)〉, and B4 = 〈{A3(x)},¬B1(x)〉.
The set Ĉ = {B3,B4} is a supporting-coalition of B2. Note that Ĉ cannot be a
supporting-coalition of B1 since it violates (supporter) consistency.

Definition 6 (Supporting-Chain). Given a DAF 〈U,A〉 ⊆ Args × Args,
and a sequence λ = B p←− Ĉ1

p1←− Ĉ2
p2←− · · · , where (

⋃
i≥1 Ĉi) ∪ {B} ⊆ U, p ∈

pr(B), Ĉ1 is a supporting-coalition of B through p, and for every i > 1, pi−1 ∈
p̂rset(Ĉi−1), and Ĉi is a supporting-coalition of Ĉi−1 through pi−1. Thus, λ is
referred as a (possible infinite) supporting-chain for p of B wrt. U.

Whenever λ has a last identifiable element Ĉn, it follows that every premise
in p̂rset(Ĉn) is free wrt. U, or p̂rset(Ĉn) = ∅. In such a case, λ is said to be a
finite supporting-chain for p of length n wrt. U.

Definitions 4 and 5 are reviewed in Ex. 2 and 3. The iterated aggregation
of arguments via the support relation (c.f. Def. 4) may conform both, chains of
supporting-coalitions for a premise in some argument (c.f. Def. 6), as well as sets
of interrelated arguments (c.f. Def. 7). We will refer to such sets as structures
and will be a core part of the argumentation machinery for the proposed DAF.

Definition 7 (Structure). Given a DAF 〈U,A〉 ⊆ Args × Args, S ⊆ U is a
structure for c iff it guarantees:

(top argument) there exists a unique Btop ∈ S such that cl(Btop) = c,
(connectivity) for every B ∈ S \ {Btop}, there exists a unique subset Ĉ ⊆ S

such that B ∈ Ĉ where Ĉ is a supporting-coalition of an argument in S,
(self-consistency) p̂rset(S) ∪ ĉlset(S) 6|= ⊥, and
(acyclicity) every supporting-chain for every p of every B ∈ S wrt. S is finite.

The claim and premises of S are determined by the functions cl(S) = c and
pr(S) = {p ∈ p̂rset(S) | p is a free premise wrt. S}, respectively.

Note that functions “pr” and “cl” are overloaded and can be applied both to
arguments and structures. This is not going to be problematic since either usage
will be rather explicit. In addition to that, we will identify the top argument of
a structure S using the function top : 2Args½Args. Note that cl(top(S)) = cl(S).
Next, it is shown how our theory manages to handle ALC cyclic terminologies.

Example 4. Given an ALC ontology O = {A ≡ B}, after applying daf(O) ar-
guments B1 = 〈{A(x)}, B(x)〉, and B2 = 〈{B(x)}, A(x)〉, appear. However, a
set {B1,B2} cannot be part of any structure since the infinite supporting-chain

λ = B1
A(x)←− {B2} B(x)←− {B1} A(x)←− · · · for A(x) would violate (structure) acyclicity.

A structure S trivially formed by a single argument is referred as primitive
iff |S| = 1. Thus, if S = {B} then pr(B) = pr(S) and cl(B) = cl(S). However,

not every single argument has an associated primitive structure. For instance,
from an axiom A v A, no structure could contain its related argument given
that it would violate (structure) acyclicity. Depending on the condition of the
set of premises in a structure we may identify two different kinds of structures.

Definition 8 (Schematic & Argumental Structure). Given a DAF 〈U,A〉 ⊆
Args×Args, a structure S ⊆ U is referred either as: Argumental iff pr(S) =
∅, or Schematic iff pr(S) 6= ∅.

When no distinction is needed, we refer to primitive, schematic, or argumen-
tal structures, simply as structures. A sub-structure relation “E” relating
structures S ⊆ Args is defined as stated by the following intuition: given a
structure S for a claim c, if it contains a subset S′ verifying the conditions in
Def. 7 for a claim c′, then S′ is a structure for c′ and S′ES.

From a schematic structure and a supporting-coalition for it, a new structure
is formed. If this new structure has no free premises, it means that a variable
substitution was made over the schematic structure leading to an argumental
structure. In general, a structure that adds some evidential argument about an
individual name, say a, as part of the support for a schematic structure, provokes
a variable substitution in the latter. In that case, the argumental structure ends
up asserting some property –through its claim– about the individual a. Finally,
it is clear that if a structure states a property about some element of the world
by means of a free variable x then it is schematic.

Two argumental structures S1 and S2 are in conflict whenever they cannot
be assumed together. This notion may be made extensive to sets of argumental
structures, namely coalition of argumental structures. Coalition of structures is
analogous to that of arguments; its formalization is not given due to lack of space.
Therefore, the functions “ĉlset” and “p̂rset” are overloaded and can be applied
both to coalitions Ĉ of arguments and to coalitions Ĉ of structures. Formally,
ĉlset(Ĉ) = {cl(S)|S ∈ Ĉ}, and p̂rset(Ĉ) =

⋃
S∈Ĉ pr(S). Next, we specify the notion

of conflict between coalitions of structures as a generalization, since one of them
has to be necessarily a singleton. This is required to preserve conflict minimality.

Definition 9 (Conflict). Let 〈U,A〉 ⊆ Args×Args be a DAF, and Ĉ1 and Ĉ2,
two minimal, and consistent coalitions of structures in U verifying:

a) |Ĉ1| = 1, or |Ĉ2| = 1, and
b) p̂rset(Ĉ1) |= p̂rset(Ĉ2) (dependency), or ĉlset(Ĉ1) |= p̂rset(Ĉ2) (support).

Coalitions Ĉ1 and Ĉ2 are in conflict iff every structure S ⊆ (Ĉ1 ∪ Ĉ2), is the
smallest S needed to guarantee either:

(claim-conflict) ĉlset(Ĉ1) ∪ ĉlset(Ĉ2) |= ⊥, or
(premise-conflict) ĉlset(Ĉ1) ∪ p̂rset(Ĉ2)) |= ⊥.

Example 5. Assume we have A1 u A2 v B, A3 v A1, and A3 v ¬A2. Hence,
from arguments B1 = 〈{A1(x), A2(x)}, B(x)〉, B2 = 〈{A3(x)}, A1(x)〉, and B3 =
〈{A3(x)},¬A2(x)〉, two structures S1 = {B1,B2} and S2 = {B3} appear. The
trivial coalitions Ĉ1 = {S1} and Ĉ2 = {S2}model a premise-conflict. Note that
p̂rset(Ĉ1) = {A3(x), A2(x)}, p̂rset(Ĉ2) = {A3(x)}, and ĉlset(Ĉ2) = {¬A2(x)}.

Assume now that we have the same axioms determining arguments B1 and
B2, and A3 v ¬B triggering B′3 = 〈{A3(x)},¬B(x)〉. It is easy to verify that a
claim-conflict will be modeled from Ĉ1 and {{B′3}}.

Note that both conflicts in Ex. 5 come from dependency (c.f. Def. 9b). Ex-
amples of claim-conflict from support appear from an ontology {> v A,¬A(a)},
or either in Ex. 3. It is clear that no premise-conflict from support is possible
since both support and premise-conflict conditions cannot be mutually verified.

Deciding which coalition of structures succeeds between a conflicting pair,
requires a comparison criterion. Such a criterion should be defined upon (a)
entrenchment of knowledge and (b) novelty. For the former case, the ontology
engineer may decide to give different levels of importance to individual pieces of
knowledge, and for the latter, to prefer new knowledge to older one.

In that sense, we will assume there exists a partial order of arguments called
argument comparison criterion “<”, such that B1<B2 states that B1 has more
priority than B2. Afterwards, two conflictive coalitions of structures Ĉ1 and
Ĉ2 are assumed to be ordered by a function “pref” relying on “<”, where
pref(Ĉ1, Ĉ2) = (Ĉ1, Ĉ2) implies the attack relation Ĉ1RĈ2, i.e., Ĉ1 is a defeater
of (or it defeats) Ĉ2. Note that when no pair of arguments is related by “<”,
both Ĉ1RĈ2 and Ĉ2RĈ1 appear from any conflicting pair Ĉ1 and Ĉ2.

Definition 10 (Attack Relation Set). Given a DAF 〈U,A〉 ⊆ Args×Args,
the set R of attack relations is defined as R = {(Ĉ1, Ĉ2) | Ĉ1 ⊆ 2U and Ĉ2 ⊆ 2U

are two conflictive coalitions of structures and pref(Ĉ1, Ĉ2) = (Ĉ1, Ĉ2)}.
Regarding the active condition of the components of the framework, a struc-

ture is active iff all its arguments are active. This notion is also extended to
coalitions of structures by considering a coalition Ĉ active iff all its structures
are active. Finally, an attack relation Ĉ1RĈ2 is active iff both Ĉ1 and Ĉ2 are
active. That is, if (Ĉ1, Ĉ2) ∈ RA ⊆ R then Ĉ1 ⊆ 2A and Ĉ2 ⊆ 2A, where RA is
the set standing for every active attack relation in R.

3.2 Acceptability Analysis

In an ontology, inconsistency implies that there are contradictory concept defini-
tions, or assertions that will lead to conflicting arguments within the equivalent
DAF. Thus, once the translation is performed, each inconsistency in the original
ontology will be reflected as an attack in the resulting DAF. Since the objective
of converting an ontology to an argumentation framework is to remove inconsis-
tency from the former, there is a need for a mechanism that allows us to obtain
those arguments that prevail over the rest. That is, those arguments that can be
consistently assumed together, following some policy. For instance, structures
with no defeaters should always prevail, since there is nothing strong enough
to be posed against them. The tool we need to resolve inconsistency of con-
cept definitions via an argumentation framework is the notion of acceptability
of arguments, which is defined on top of an argumentation semantics [3]. There
are several well-known argumentation semantics, such as the grounded, the sta-
ble, and the preferred semantics [4]. These semantics ensure the obtention of a
consistent set of arguments, namely an extension. That is, the set of accepted
arguments calculated following any of these semantics is such that no pair of

conflictive arguments appears in that same extension. Finally, when we trans-
late an ontology to a DAF, all what is left to do to resolve inconsistencies is to
calculate the set of accepted arguments following some semantics, which is going
to be translated back to a consistent ontology. It is important to notice that the
chosen semantics will greatly affect the resulting ontology. Moreover, problems
like multiple extensions from semantics like both the stable and the preferred
may appear, requiring to make a choice among them. On the other hand, the
outcome of the grounded semantics is always a single extension, which could
be empty. Finally, since dealing with multiple extensions is a problem that falls
outside the scope of this article, we will choose the grounded semantics, which
can be implemented with a simple algorithm. Consequently, we define a mapping
sem : 2Args × 2Args½2Args × 2Args, that intuitively behaves as follows.

For every pair of active attack (Ĉ1, Ĉ2) ∈ RA, if there is no active coalition
of structures defeating Ĉ1 (undefeat), then we deactivate some argument from
some structure in Ĉ2 (deactivation). As a side-effect, any attack (Ĉ2, Ĉ3) will
disappear. This process is recursively applied on RA until every attack relation
is deactivated. As stated before, the outcome of a grounded semantics could be
an empty extension. Such an issue arises when there is a loop in the structures
attack graph. To overcome this, if undefeat is not verified for any (Ĉ1, Ĉ2) ∈ RA,
then deactivation is applied to some active attack. Thus, the loop is broken, and
the process determined by applying “sem” can be reconsidered.

Proposition 2. Given a DAF T ⊆ Args×Args, if sem(T) = 〈U,A〉 then RA = ∅.

4 Ontology Debugging & Change Through the DAF

In order to provide an ontology change model, we will formalize some properties
regarding the relation between the DAF here proposed and its related ontology.
Such properties are relevant also as a repairing methodology for terminologies,
and in general in the area of ontology debugging. In this sense, we will first
characterize the different classes of inconsistencies in an ontology.

Given an ontology O, a concept C is unsatisfiable iff for each interpretation
I ∈ M(O), CI = ∅. As stated in [6], an ontology O is incoherent iff there
exists an unsatisfiable concept in O. An incoherence may be considered a kind
of inconsistency in the TBox. However, the incoherence does not replace the
classical meaning of inconsistency, given that an incoherent ontology may admit
models. Hence, an ontology O is inconsistent iff it admits no model.

Let “ont” be a mapping from a DAF 〈U,A〉 ⊆ Args× Args to an ALC
ontology ont(〈U,A〉), following backwards the intuitions given to obtain a DAF
by “daf”. Consistency-coherency of the ont-outcome is related to the attacks in
the DAF by Prop. 3. Such relation along with that in Prop. 2 motivates Lemma 1.

Proposition 3. Given a DAF 〈U,A〉 ⊆ Args× Args, RA = ∅ iff ont(〈U,A〉)
is a consistent-coherent ALC ontology.

Lemma 1. Given a DAF T ⊆ Args× Args, ont(sem(T)) specifies a consistent-
coherent ALC ontology.

The main contribution of the DAF regarding ontology debugging is sated by
Theorem 1, afterwards, Corollary 1 relates that result through “af” (c.f. Sect. 3).

Theorem 1. Given an ALC ontology O, if O is inconsistent and\or incoherent
then ont(sem(daf(O))) is a consistent-coherent ALC ontology.

Corollary 1. Given an inconsistent-incoherent ALC ontology O, there exists a
consistent-coherent ontology O′, such that af(O′) ⊆ af(O).

Example 6. Let O = {A1 v B1 u B2, A2 v A1 u ¬B2, A1(a), B1(a), ¬B2(a),
A2(a)} be an ALC ontology, we want to debug O to obtain a related consistent-
coherent ontology OR. Applying daf(O), a DAF 〈U,A〉, where U = A appears:

Statement Args.
A1 v B1 uB2 {B1,B2}
A2 v A1 u ¬B2 {B3,B4}
A1(a) {B5}
B1(a) {B6}
¬B2(a) {B7}
A2(a) {B8}

S
4

S
5

S
3

S
6

S
1

S
2

B1 = 〈{A1(x)}, B1(x)〉
B2 = 〈{A1(x)}, B2(x)〉
B3 = 〈{A2(x)}, A1(x)〉
B4 = 〈{A2(x)},¬B2(x)〉
B5 = 〈{}, A1(a)〉
B6 = 〈{}, B1(a)〉
B7 = 〈{},¬B2(a)〉
B8 = 〈{}, A2(a)〉

Consider the structures S1 = {B3,B2}, S2 = {B8} ∪ S1, S3 = {B8,B4}, and
S4 = {B5,B2}; and the primitive structures S5 = {B4} and S6 = {B7}.Assuming
B2<B4 and B2<B7, the attack relation set is R = {({S1}, {S5}), ({S2}, {S6}),
({S4}, {S6}), ({S4}, {S3})} (see the graph depicted above). Note that ({S2}, {S3})
is not in R given that S1ES2, S5ES3, and ({S1}, {S5}) ∈ R (c.f. Def. 9).

The acceptability analysis determines S3, S5, and S6 to be deactivated, and
since S5ES3, deactivating B4 and B7 is enough. Afterwards, sem(daf(O)) deter-
mines the new set of active arguments {B1,B2,B3,B5,B6,B8}. Finally, following
the table above, the operation ont(sem(daf(O))) constructs the repaired ontology
OR = {A1 v B1 uB2, A2 v A1, A1(a), B1(a), A2(a)}.

Note that, assuming B7<B2<B4, conflicts involving S6 are inverted leading
to ({S6}, {S2}) and ({S6}, {S4}). In such a case, only B2 would be deactivated.

In the sequel, we propose an ontology change operator “C” forALC ontologies
wrt. a consistent-coherent ontology X. Afterwards, its rationality is analyzed.

Definition 11 (Ontology Change Operation). Let O and X be two ALC
ontologies, where X is consistent-coherent. The ontology change operator
“C” is defined as CO(X) = ont(sem(daf(O ∪X))).

A prioritized approach of change is assumed given that each piece of knowl-
edge from X is considered the ultimate perception of the world, consequently, X
will be fully accepted in the evolved ontology CO(X). In this sense, X<B is as-
sumed for any argument X determined from X, and any B from O. Afterwards, if
X appears in some conflicting coalition, the function “sem” will deactivate some
other B involved in the attack. Since X is required to be consistent-coherent, the
previous statement is verified given that no pair of arguments from X will be in
direct conflict. Finally, every argument generated from X will be kept active.

Example 7. Let O = {R(a, b), R(b, c), R(c, d), A(a), ¬A(c), ¬A(d)} be an on-
tology where R and A stand for “supervised-by” and “researcher”, respectively.
Now suppose that a new regulation poses that no academic researcher might
be supervised by a non-researcher. Therefore, we would need to provoke the
ontology to evolve by an operation CO(X), where X = {A v ∀R.A}.

Applying daf(O∪X), the DAF 〈U,A〉 is determined as U = A = {B1, B2, B3,
B4, B5, B6, X 1}, where B1 = 〈{}, R(a, b)〉, B2 = 〈{}, R(b, c)〉, B3 = 〈{}, R(c, d)〉,
B4 = 〈{}, A(a)〉, B5 = 〈{},¬A(c)〉, B6 = 〈{},¬A(d)〉, X 1 = 〈{A(x)}, (∀R.A)(x)〉.

Since the new information is prioritized it follows X 1<Bi, i ∈ {1, . . . , 6}.
The argumental structure S1 = {B4,X 1} appears. Later on, the set Ĉ1 =
{X 1,B1} is a supporting-coalition of X 1 through A(b), Ĉ2 = {X 1,B2} is a
supporting-coalition of X 1 through A(c), and Ĉ3 = {X 1,B3} is a supporting-
coalition of X 1 through A(d). Hence, the schematic structures S2 = {X 1,B1},
S3 = {X 1,B2}, and S4 = {X 1,B3}, appear with claims cl(S2) = (∀R.A)(b),
cl(S3) = (∀R.A)(c), and cl(S4) = (∀R.A)(d); and premises pr(S2) = A(a),
pr(S3) = A(b), and pr(S4) = A(c). Thus, appear the related argumental struc-
tures S5 = {B4,X 1,B1}, S6 = {B4,X 1,B1,B2}, and S7 = {B4,X 1,B1,B2,B3},
where S2ES5, S3ES6, and S4ES7, as well as S5ES6, and S6ES7. Note also that,
S1 is sub-structure of S5, S6, and S7.

Consider now the coalitions of structures Ĉ1 = {{B2}, {B5}}, and Ĉ2 =
{{B3}, {B6}}. The following attack relations appear: {S5}RĈ1 and {S6}RĈ2

(refer to Fig. 2). Later on, considering also the coalitions of structures Ĉ3 =
{S5, {B2}}, and Ĉ4 = {S6, {B3}}, attacks Ĉ3R{{B5}} and Ĉ4R{{B6}} appear.

The acceptability analysis determines coalitions Ĉ1, Ĉ2, {{B5}}, and {{B6}}
to deactivate. Later on, the deactivation of B5 and B6 deactivates every at-
tack. Afterwards, sem(daf(O ∪ X)) determines the set of active arguments as
{B1,B2,B3,B4,X 1}. Finally, the operation ont(sem(daf(O∪X))) constructs the
evolved ontology OR = {A v ∀R.A, R(a, b), R(b, c), R(c, d), A(a)}.

Assuming also B5<B2 and B6<B6, {{B5}}RĈ3 and {{B6}}RĈ4 appear along
with the attacks from Fig. 2. Hence, only B2 and B3 would be deactivated.

In the last few years, different ontology change operations have been proposed
usually along with some characterization for its rationality. Some examples may
be found in [15,16,14,12]. Particularly, in [6], a set of rationality postulates is
analyzed abstracting away from the definition of any change operation. In this
work, we analyze the model of change proposed wrt. the following general set of
basic postulates for an ontology change operation O ∗X.

(O ∗ 1) X ⊆ O ∗X.
(O ∗ 2) If O ∪X is consistent-coherent then O ∗X = O ∪X.
(O ∗ 3) If X is consistent-coherent then O ∗X is consistent-coherent.
(O ∗ 4) If X ∼= Y then O∗X ∼= O∗Y (assuming “∼=” as logically equivalent to).
(O ∗ 5) O ∗X ⊆ O ∪X.

Properties (O∗1) to (O∗4) are adapted from the revision postulates proposed
in [6] which in turn follow the original basic AGM postulates for revision exposed
in [1]. Besides, (O ∗ 5) is adapted from [9].

B
4

∅

S
2

S
5

∅

X
1

X
1
B
1

B
2

∅

B
5

∅

Ĉ
1

B
3

∅

B
6

∅

S
3

S
5 S

6

∅

∅

X
1

X
1

B
2

S
2

B
1

X
1

B
4

∅

Ĉ
2

Fig. 2. Some attacks from Ex. 7. Multiple occurrences of an argument within a struc-
ture refer to its different instances determined by every possible variable substitution.

Lemma 2. Given two ontologies O and X, and assuming CO(X) as O ∗X:

a) If O and X conform the ALCArgs DL then “C” satisfies (O ∗ 1) to (O ∗ 5).
b) If O and X conform the ALC DL then “C” satisfies (O ∗ 1) to (O ∗ 4).

As stated by Lemma 2b), “C” fails to satisfy (O ∗ 5) for ALC ontologies.
For instance, assume two ALC ontologies O = {A v B1 u B2, A(a)}, and X =
{¬B1(a)}. If assertional loss is required to be avoided, then we prefer (via “<”)
evidential arguments over any other argument. Finally, the evolved ontology
would end up as CO(X) = {A v B2, A(a),¬B1(a)}.
Proposition 4. Given the ALC ontologies O, and X, “af” is distributable wrt.
the ontology change operator “C”. That is, af(CO(X)) = Caf(O)(af(X)).

Since every ALC ontology O can be translated into an equivalent ALCArgs
af(O) (c.f. Prop. 1), Theorem 2 captures the change operator “C” in a rational
manner by means of (O ∗ 1) to (O ∗ 5), Theorem 1, Lemma 2, and Prop. 4.

Theorem 2. Given the ALC ontologies O, and X, an ontology change operator
“C” satisfies (O ∗ 1) (O ∗ 5) through “af” iff af(CO(X)) = af(O) ∗ af(X).

Finally, “C” is said to be rational through argumental-DL form.

5 Related and Future Work

Debugging of terminologies is usually focused on the recognition of sources of
concept-unsatisfiability. In this sense, the union of conflictive coalitions of struc-
tures presented in this work, may be related to constructions like Kernel Sets [8]
or, minimal inconsistent preserving sub-terminologies (MIPS) [20], which have
been previously used in ontology debugging [19] and change [14]. MIPS may be
also related to works in ontology integration [10], and debugging like [11], where
maximally concept-satisfiable subsets (MCSS) were proposed for that matter.

As minimal sets inferring ⊥, kernel sets are also similar to the union of conflic-
tive coalitions of structures. Moreover, in works like [16,14,12], incision functions
are used to cut the appropriate piece of knowledge from every kernel such that
they do not appear in the evolved ontology. In that sense, the function “sem”
deactivates the appropriate argument from each attack in order to deactivate
every possible argument conflict from the DAF, just like incision functions do.

As stated before, further implementations of the model here presented could
be done (1) as a module to be incorporated to the DL reasoner, or (2) as a
DL-argumentation reasoner. For the second option, a DL reasoner based on ar-
gumentation could be an interesting alternative to those like RACER, FaCT, and
FaCT++. An approach relying on defeasible logic to enrich ontologies with argu-
mentation is presented in [21], but our proposal differs in that we abstract away
from the logic to specify arguments, and also in the argumentation framework
and machinery proposed to handle ontology dynamics. A dynamic argumenta-
tive approach could decide “on the fly” what to keep or discard from different
sources without applying any changes to them. Moreover, an ontology may keep
inconsistencies leaving its resolution up to the argumentation process, that is,
the ontology reasoner would manage to dynamically handle inconsistency.

It also seems interesting to further investigate this proposal from a theoreti-
cal point of view. This would allow, to relate it to other approaches of ontology
change like [15,16,14,12], and even to investigate the existence of equivalences
regarding other models of change beyond the scope of the semantic web, like the
classical AGM model [1]. To this matter, works like [7,5] should be considered.
In this sense, since the approach here presented was constructed as an exten-
sion of widespread accepted argumentation methodologies [4], it could benefit
from previous results in that area. Moreover, a preliminary abstract DAF was
presented in [17], and formalized in detail in [18]. Besides, a model of change in
argumentation systems was recently proposed in [17], known as Argument The-
ory Change, and reified to defeasible logic programming in [13], meaning that
properties and methodologies from that model of change could also be adapted
to the model here proposed, and even implemented.

As mentioned before, the grounded semantics [4] could return empty exten-
sions. For instance, refer to Ex. 6 assuming an empty comparison criterion “<”.
Thus, the usage of different semantics [3] could be studied to overcome this issue.

6 Conclusion

A novel theoretical approach to handle ontology debugging through argumenta-
tion was presented. Such approach manages ontology dynamics by proposing an
ontology change operator along with a characterization for its rationality.

The methodology here proposed was deemed as theoretical given the com-
plexity to translate ontologies into a DAF. In this sense, we claimed this proposal
to be a starting point to two different practical approaches: a specialized ontol-
ogy reasoner based on argumentation, and the theoretical model at issue. The
former case exposes an interesting proposal to incorporate to the semantic web

the most characteristic feature of argumentation reasoners: to keep inconsistency
while managing to reason on top of it.

References

1. C. Alchourrón, P. Gärdenfors, and D. Makinson. On the Logic of Theory Change:
Partial Meet Contraction and Revision Functions. The Journal of Symbolic Logic,
50:510–530, 1985.

2. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, editors.
Description Logic Handbook: Theory, Implementation and Application. Cambridge
University Press, Cambridge, 2003.

3. P. Baroni and M. Giacomin. On Principle-Based Evaluation of Extension-Based
Argumentation Semantics. Artificial Intelligence, 171(10-15):675–700, 2007.

4. P. Dung. On the Acceptability of Arguments and its Fundamental Role in Non-
monotonic Reasoning and Logic Programming and n-person Games. Artificial
Intelligence, 77:321–357, 1995.

5. G. Flouris. On Belief Change and Ontology Evolution. Doctoral Dissertation,
Department of Computer Science, University of Crete, February 2006.

6. G. Flouris, Z. Huang, J. Z. Pan, D. Plexousakis, and H. Wache. Inconsistencies,
Negations and Changes in Ontologies. In AAAI, pages 1295–1300, 2006.

7. G. Flouris, D. Plexousakis, and G. Antoniou. On Applying the AGM Theory to
DLs and OWL. In ISWC, pages 216–231, 2005.

8. S. O. Hansson. Kernel Contraction. Journal of Symbolic Logic, 59:845–859, 1994.
9. S. O. Hansson. A Textbook of Belief Dynamics: Theory Change and Database

Updating. Springer. 1999.
10. T. Meyer, K. Lee, and R. Booth. Knowledge Integration for Description Logics.

In AAAI, pages 645–650, 2005.
11. T. Meyer, K. Lee, R. Booth, and J. Z. Pan. Finding Maximally Satisfiable Termi-

nologies for the Description Logic ALC. In AAAI, 2006.
12. M. Moguillansky, M. Falappa, and G. Simari. Model-Based Contractions for De-

scription Logics. In NMR, pages 34–42, 2008.
13. M. Moguillansky, N. Rotstein, M. Falappa, A. Garćıa, and G. Simari. Argument

Theory Change Applied to Defeasible Logic Programming. In AAAI, pages 132–
137, 2008.

14. G. Qi, P. Haase, Z. Huang, and J. Z. Pan. A Kernel Revision Operator for Termi-
nologies. In DL, 2008.

15. G. Qi, W. Liu, and D. A. Bell. Knowledge Base Revision in Description Logics. In
JELIA, pages 386–398, 2006.

16. M. M. Ribeiro and R. Wassermann. Base Revision in Description Logics - prelim-
imnary results. In IWOD, 2007.

17. N. Rotstein, M. Moguillansky, M. Falappa, A. Garćıa, and G. Simari. Argument
Theory Change: Revision Upon Warrant. In COMMA, pages 336–347, 2008.

18. N. Rotstein, M. Moguillansky, M. Falappa, A. Garćıa, and G. Simari. An Abstract
Argumentation Framework for Handling Dynamics. In NMR, pages 131–139, 2008.

19. S. Schlobach. Debugging and Semantic Clarification by Pinpointing. In ESWC,
pages 226–240, 2005.

20. S. Schlobach and R. Cornet. Non-Standard Reasoning Services for the Debugging
of Description Logic Terminologies. In IJCAI, pages 355–362, 2003.

21. M. Williams and A. Hunter. Harnessing Ontologies for Argument-Based Decision-
Making in Breast Cancer. ICTAI, 2:254–261, 2007.

