
Process (computing)

From Wikipedia, the free encyclopedia

In computing, a process is an instance of a computer program, consisting of

one or more threads, that is being sequentially executed
[1]

 by a computer
system that has the ability to run several computer programs concurrently.

A computer program itself is just a passive collection of instructions, while a
process is the actual execution of those instructions. Several processes may be
associated with the same program; for example, opening up several instances of
the same program often means more than one process is being executed. In the
computing world, processes are formally defined by the operating system (OS)
running them and so may differ in detail from one OS to another.

A single computer processor executes one or more (multiple) instructions at a
time (per clock cycle), one after the other (this is a simplification; for the full
story, see superscalar CPU architecture). To allow users to run several programs
at once (e.g., so that processor time is not wasted waiting for input from a
resource), single-processor computer systems can perform time-sharing.
Time-sharing allows processes to switch between being executed and waiting (to
continue) to be executed. In most cases this is done very rapidly, providing the
illusion that several processes are executing 'at once'. (This is known as
concurrency or multiprogramming.) Using more than one physical processor on
a computer, permits true simultaneous execution of more than one stream of
instructions from different processes, but time-sharing is still typically used to
allow more than one process to run at a time. (Concurrency is the term
generally used to refer to several independent processes sharing a single
processor; simultaneously is used to refer to several processes, each with their
own processor.) Different processes may share the same set of instructions in
memory (to save storage), but this is not known to any one process. Each
execution of the same set of instructions is known as an instance— a completely
separate instantiation of the program.

For security and reliability reasons most modern operating systems prevent
direct communication between 'independent' processes, providing strictly
mediated and controlled inter-process communication functionality.

Contents

1 Sub-processes and multi-threading

Process (computing) - Wikipedia, the free encyclopedia http://en.wikipedia.org/w/index.php?title=Process_...

1 of 8 09/27/2009 07:40 PM

2 Representation

3 Process management in multi-tasking operating systems

3.1 Process states

4 Inter-process communication

5 History

6 See also

7 Notes

8 References

9 External links

Sub-processes and multi-threading

Main article: Thread (computer science)

A process may split itself into multiple 'daughter' sub-processes or threads that
execute in parallel, running different instructions on much of the same
resources and data (or, as noted, the same instructions on logically different
resources and data).

Multithreading is useful when various 'events' are occurring in an unpredictable
order, and should be processed in another order than they occur, for example
based on response time constraints. Multithreading makes it possible for the
processing of one event to be temporarily interrupted by an event of higher
priority. Multithreading may result in more efficient CPU time utilization, since
the CPU may switch to low-priority tasks while waiting for other events to occur.

For example, a word processor could perform a spell check as the user types,
without "freezing" the application - a high-priority thread could handle user
input and update the display, while a low-priority background process runs the
time-consuming spell checking utility. This results in that the entered text is
shown immediately on the screen, while spelling mistakes are indicated or
corrected after a longer time.

Multithreading allows a server, such as a web server, to serve requests from
several users concurrently, thus avoiding unheard requests when the server is
busy with a processing request. One simple solution to that problem is one
thread that puts every incoming request in a queue, and a second thread that
processes the requests one by one in a first-come first-served manner. However,
if the processing time is very long for some requests (such as large file requests
or requests from users with slow network access data rate), this approach would
result in long response time also for requests that do not require long
processing time, since they may have to wait in queue. One thread per request
would reduce the response time substantially for many users and may reduce

Process (computing) - Wikipedia, the free encyclopedia http://en.wikipedia.org/w/index.php?title=Process_...

2 of 8 09/27/2009 07:40 PM

the CPU idle time and increase the utilization of CPU and network capacity. In
case the communication protocol between the client and server is a
communication session involving a sequence of several messages and responses
in each direction (which is the case in the TCP transport protocol used in for
web browsing), creating one thread per communication session would reduce
the complexity of the program substantially, since each thread is an instance
with its own state and variables.

In a similar fashion, multi-threading would make it possible for a client such as a
web browser to communicate efficiently with several servers concurrently.

A process that has only one thread is referred to as a single-threaded process,
while a process with multiple threads is referred to as a multi-threaded process.
Multi-threaded processes have the advantage over multi-process systems that
they can perform several tasks concurrently without the extra overhead needed
to create a new process and handle synchronised communication between these
processes. However, single-threaded processes have the advantage of even lower
overhead.

[2]

Representation

In general, a computer system process consists of (or is said to 'own') the
following resources:

An image of the executable machine code associated with a program.

Memory (typically some region of virtual memory); which includes the

executable code, process-specific data (input and output), a call stack (to

keep track of active subroutines and/or other events), and a heap to hold

intermediate computation data generated during run time.

Operating system descriptors of resources that are allocated to the process,

such as file descriptors (Unix terminology) or handles (Windows), and data

sources and sinks.

Security attributes, such as the process owner and the process' set of

permissions (allowable operations).

Processor state (context), such as the content of registers, physical memory

addressing, etc. The state is typically stored in computer registers when the

process is executing, and in memory otherwise.
[2]

The operating system holds most of this information about active processes in
data structures called process control blocks (PCB).

Any subset of resources, but typically at least the processor state, may be
associated with each of the process' threads in operating systems that support

Process (computing) - Wikipedia, the free encyclopedia http://en.wikipedia.org/w/index.php?title=Process_...

3 of 8 09/27/2009 07:40 PM

threads or 'daughter' processes.

The operating system keeps its processes separated and allocates the resources
they need so that they are less likely to interfere with each other and cause
system failures (e.g., deadlock or thrashing). The operating system may also
provide mechanisms for inter-process communication to enable processes to
interact in safe and predictable ways.

Process management in multi-tasking operating
systems

Main article: Process management (computing)

A multitasking* operating system may just switch between processes to give the
appearance of many processes executing concurrently or simultaneously,
though in fact only one process can be executing at any one time on a

single-core CPU (unless using multi-threading or other similar technology).
[3]

It is usual to associate a single process with a main program, and 'daughter'
('child') processes with any spin-off, parallel processes, which behave like
asynchronous subroutines. A process is said to own resources, of which an image
of its program (in memory) is one such resource. (Note, however, that in
multiprocessing systems, many processes may run off of, or share, the same
reentrant program at the same location in memory— but each process is said to
own its own image of the program.)

Processes are often called tasks in embedded operating systems. The sense of
'process' (or task) is 'something that takes up time', as opposed to 'memory',
which is 'something that takes up space'. (Historically, the terms 'task' and
'process' were used interchangeably, but the term 'task' seems to be dropping
from the computer lexicon.)

The above description applies to both processes managed by an operating
system, and processes as defined by process calculi.

If a process requests something for which it must wait, it will be blocked. When
the process is in the Blocked State, it is eligible for swapping to disk, but this is
transparent in a virtual memory system, where blocks of memory values may be
really on disk and not in main memory at any time. Note that even unused
portions of active processes/tasks (executing programs) are eligible for
swapping to disk. All parts of an executing program and its data do not have to
be in physical memory for the associated process to be active.

Process (computing) - Wikipedia, the free encyclopedia http://en.wikipedia.org/w/index.php?title=Process_...

4 of 8 09/27/2009 07:40 PM

The various process states, displayed
in a state diagram, with arrows
indicating possible transitions

between states.

*Tasks and processes refer essentially to the same entity. And, although they
have somewhat different terminological histories, they have come to be used as
synonyms. Today, the term process is generally preferred over task, except
when referring to 'multitasking', since the alternative term, 'multiprocessing', is
too easy to confuse with multiprocessor (which is a computer with two or more
CPUs).

Process states

Main article: Process states

An operating system kernel that allows
multi-tasking needs processes to have
certain states. Names for these states
are not standardised, but they have

similar functionality.
[2]

First, the process is "created" - it is

loaded from a secondary storage

device (hard disk or CD-ROM...)

into main memory. After that the

process scheduler assigns it the

state "waiting".

While the process is "waiting" it

waits for the scheduler to do a

so-called context switch and load

the process into the processor. The

process state then becomes

"running", and the processor

executes the process instructions.

If a process needs to wait for a resource (wait for user input or file to open

...), it is assigned the "blocked" state. The process state is changed back to

"waiting" when the process no longer needs to wait.

Once the process finishes execution, or is terminated by the operating

system, it is no longer needed. The process is removed instantly or is moved

to the "terminated" state. When removed, it just waits to be removed from

main memory.
[2][4]

Inter-process communication

Main article: Inter-process communication

Process (computing) - Wikipedia, the free encyclopedia http://en.wikipedia.org/w/index.php?title=Process_...

5 of 8 09/27/2009 07:40 PM

When processes communicate with each other it is called "Inter-process
communication" (IPC). Processes frequently need to communicate, for instance
in a shell pipeline, the output of the first process need to pass to the second one,
and so on to the other process.It is preferred in a well-structured way not using
interrupts.

It is even possible for the two processes to be running on different machines.
The operating system (OS) may differ from one process to the other, therefore
some mediator(s) (called protocols) are needed.

History

See also: History of operating systems

By the early 60s computer control software had evolved from Monitor control
software, e.g., IBSYS, to Executive control software. Computers got "faster" and
computer time was still neither "cheap" nor fully used. It made
multiprogramming possible and necessary.

Multiprogramming means that several programs run "at the same time"
(concurrently). At first they ran on a single processor (i.e., uniprocessor) and
shared scarce resources. Multiprogramming is also basic form of
multiprocessing, a much broader term.

Programs consist of sequence of instruction for processor. Single processor can
run only one instruction at a time. Therefore it is impossible to run more
programs at the same time. Program might need some resource (input ...) which
has "big" delay. Program might start some slow operation (output to printer ...).
This all leads to processor being "idle" (unused). To use processor at all time the

execution of such program was halted. At that point, a second (or n
th

) program
was started or restarted. User perceived that programs run "at the same time"
(hence the term, concurrent).

Shortly thereafter, the notion of a 'program' was expanded to the notion of an
'executing program and its context'. The concept of a process was born.

This became necessary with the invention of re-entrant code.

Threads came somewhat later. However, with the advent of time-sharing;
computer networks; multiple-CPU, shared memory computers; etc., the old
"multiprogramming" gave way to true multitasking, multiprocessing and, later,
multithreading.

See also

Process (computing) - Wikipedia, the free encyclopedia http://en.wikipedia.org/w/index.php?title=Process_...

6 of 8 09/27/2009 07:40 PM

Child process

Exit

Fork

Orphan process

Parent process

Process group

Process states

Task

Thread

Wait

Zombie process

Process management (computing)

Notes

^ Knott 1974, p.81.

^
a

b

c

d
 SILBERSCHATZ, Abraham; CAGNE, Greg, GALVIN, Peter Baer

(2004). "Chapter 4". Operating system concepts with Java (Sixth Edition

ed.). John Wiley & Sons, Inc.. ISBN 0-471-48905-0.

2.

^ Some modern CPUs combine two or more independent processors and

can execute several processes simultaneously - see Multi-core for more

information. Another technique called simultaneous multithreading (used

in Intel's Hyper-threading technology) can simulate simultaneous execution

of multiple processes or threads.

3.

^ Stallings, William (2005). Operating Systems: internals and design

principles (5th edition). Prentice Hall. ISBN 0-13-127837-1.

Particularly chapter 3, section 3.2, "process states", including figure

3.9 "process state transition with suspend states"

4.

References

Gary D. Knott (1974) A proposal for certain process management and

intercommunication primitives (http://doi.acm.org/10.1145

/775280.775282) ACM SIGOPS Operating Systems Review. Volume 8 , Issue

4 (October 1974). pp. 7 - 44

External links

Retrieved from "http://en.wikipedia.org/wiki/Process_(computing)"

Categories: Operating system technology | Concurrent computing | Process

(computing)

Process (computing) - Wikipedia, the free encyclopedia http://en.wikipedia.org/w/index.php?title=Process_...

7 of 8 09/27/2009 07:40 PM

This page was last modified on 23 September 2009 at 18:17.

Text is available under the Creative Commons Attribution-ShareAlike

License; additional terms may apply. See Terms of Use for details.

Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a

non-profit organization.

Process (computing) - Wikipedia, the free encyclopedia http://en.wikipedia.org/w/index.php?title=Process_...

8 of 8 09/27/2009 07:40 PM

