
Banker's algorithm

From Wikipedia, the free encyclopedia

The Banker's algorithm is a resource allocation & deadlock avoidance
algorithm developed by Edsger Dijkstra that tests for safety by simulating the
allocation of pre-determined maximum possible amounts of all resources, and
then makes a "safe-state" check to test for possible deadlock conditions for all
other pending activities, before deciding whether allocation should be allowed to
continue.

The algorithm was developed in the design process for the THE operating system

and originally described (in Dutch) in EWD108
[1]

. The name is by analogy with
the way that bankers account for liquidity constraints.

Contents

1 Algorithm

1.1 Resources

1.1.1 Example

1.2 Safe and Unsafe States

1.2.1 Pseudo-Code
[3]

1.2.2 Example

1.3 Requests

1.3.1 Example

2 Trade-offs

3 References

4 Further reading

5 External links

Algorithm

The Banker's algorithm is run by the operating system whenever a process

requests resources.
[2]

 The algorithm prevents deadlock by denying or
postponing the request if it determines that accepting the request could put the
system in an unsafe state (one where deadlock could occur). When a new
process enters a system, it must declare the maximum number of instances of

Banker's algorithm - Wikipedia, the free encyclopedia http://en.wikipedia.org/w/index.php?title=Banker%...

1 of 7 11/01/2009 11:06 PM

each resource type that may not exceed the total number of resources in the
system.

Resources

For the Banker's algorithm to work, it needs to know three things:

How much of each resource each process could possibly request

How much of each resource each process is currently holding

How much of each resource the system has available

Some of the resources that are tracked in real systems are memory, semaphores
and interface access.

Example

Assuming that the system distinguishes between four types of resources, (A, B,
C and D), the following is an example of how those resources could be
distributed. Note that this example shows the system at an instant before a new
request for resources arrives. Also, the types and number of resources are
abstracted. Real systems, for example, would deal with much larger quantities of
each resource.

Available system resources:

A B C D

3 1 1 2

Processes (currently allocated resources):

 A B C D

P1 1 2 2 1

P2 1 0 3 3

P3 1 1 1 0

Processes (maximum resources):

 A B C D

P1 3 3 2 2

P2 1 2 3 4

P3 1 1 5 0

Safe and Unsafe States

A state (as in the above example) is considered safe if it is possible for all
processes to finish executing (terminate). Since the system cannot know when a
process will terminate, or how many resources it will have requested by then,
the system assumes that all processes will eventually attempt to acquire their
stated maximum resources and terminate soon afterward. This is a reasonable

Banker's algorithm - Wikipedia, the free encyclopedia http://en.wikipedia.org/w/index.php?title=Banker%...

2 of 7 11/01/2009 11:06 PM

assumption in most cases since the system is not particularly concerned with
how long each process runs (at least not from a deadlock avoidance perspective).
Also, if a process terminates without acquiring its maximum resources, it only
makes it easier on the system.

Given that assumption, the algorithm determines if a state is safe by trying to
find a hypothetical set of requests by the processes that would allow each to
acquire its maximum resources and then terminate (returning its resources to
the system). Any state where no such set exists is an unsafe state.

Pseudo-Code
[3]

P - set of processes

Mp - maximal requirement of resources for process p

Cp - current resources allocation process p

A - currently available resources

while (P != ∅) {

 found = False

 foreach (p ∈ P) {

 if (Mp − Cp ≤ A) {

 /* p can obtain all it needs. */

 /* assume it does so, terminates, and */

 /* releases what it already has. */

 A = A + Cp

 P = P − {p}

 found = True

 }

 }

 if (!found) return UNSAFE

}

return SAFE

Example

We can show that the state given in the previous example is a safe state by
showing that it is possible for each process to acquire its maximum resources
and then terminate.

P1 acquires 2 A, 1 B and 1 D more resources, achieving its maximum

The system now still has 1 A, no B, 1 C and 1 D resource available

1.

P1 terminates, returning 3 A, 3 B, 2 C and 2 D resources to the system

The system now has 4 A, 3 B, 3 C and 3 D resources available

2.

P2 acquires 2 B and 1 D extra resources, then terminates, returning all its

resources

3.

Banker's algorithm - Wikipedia, the free encyclopedia http://en.wikipedia.org/w/index.php?title=Banker%...

3 of 7 11/01/2009 11:06 PM

The system now has 5 A, 3 B, 6 C and 6 D resources

P3 acquires 4 C resources and terminates

The system now has all resources: 6 A, 4 B, 7 C and 6 D

4.

Because all processes were able to terminate, this state is safe5.

Note that these requests and acquisitions are hypothetical. The algorithm
generates them to check the safety of the state, but no resources are actually
given and no processes actually terminate. Also note that the order in which
these requests are generated – if several can be fulfilled – doesn't matter,
because all hypothetical requests let a process terminate, thereby increasing the
system's free resources.

For an example of an unsafe state, consider what would happen if process 2
were holding 1 more unit of resource B at the beginning.

Requests

When the system receives a request for resources, it runs the Banker's algorithm
to determine if it is safe to grant the request. The algorithm is fairly straight
forward once the distinction between safe and unsafe states is understood.

Can the request be granted?

If not, the request is impossible and must either be denied or put on a

waiting list

1.

Assume that the request is granted2.

Is the new state safe?

If so grant the request

If not, either deny the request or put it on a waiting list

3.

Whether the system denies or postpones an impossible or unsafe request is a
decision specific to the operating system.

Example

Continuing the previous examples, assume process 3 requests 2 units of
resource C.

There is not enough of resource C available to grant the request1.

The request is denied2.

On the other hand, assume process 3 requests 1 unit of resource C.

There are enough resources to grant the request1.

Banker's algorithm - Wikipedia, the free encyclopedia http://en.wikipedia.org/w/index.php?title=Banker%...

4 of 7 11/01/2009 11:06 PM

Assume the request is granted

The new state of the system would be:

2.

 Available system resources

 A B C D

Free 3 1 0 2

 Processes (currently allocated resources):

 A B C D

P1 1 2 2 1

P2 1 0 3 3

P3 1 1 2 0

 Processes (maximum resources):

 A B C D

P1 3 3 2 2

P2 1 2 3 4

P3 1 1 5 0

Determine if this new state is safe

P1 can acquire 2 A, 1 B and 1 D resources and terminate1.

Then, P2 can acquire 2 B and 1 D resources and terminate2.

Finally, P3 can acquire 3 C resources and terminate3.

Therefore, this new state is safe4.

1.

Since the new state is safe, grant the request2.

Finally, assume that process 2 requests 1 unit of resource B.

There are enough resources1.

Assuming the request is granted, the new state would be:2.

 Available system resources:

 A B C D

Free 3 0 1 2

 Processes (currently allocated resources):

 A B C D

P1 1 2 2 1

P2 1 1 3 3

P3 1 1 1 0

 Processes (maximum resources):

 A B C D

P1 3 3 2 2

P2 1 2 3 4

P3 1 1 5 0

Banker's algorithm - Wikipedia, the free encyclopedia http://en.wikipedia.org/w/index.php?title=Banker%...

5 of 7 11/01/2009 11:06 PM

Is this state safe? Assuming P1, P2, and P3 request more of resource B and

C.

P1 is unable to acquire enough B resources

P2 is unable to acquire enough B resources

P3 is unable to acquire enough C resources

No process can acquire enough resources to terminate, so this state is

not safe

1.

Since the state is unsafe, deny the request2.

Note that in this example, no process was able to terminate. It is possible that
some processes will be able to terminate, but not all of them. That would still be
an unsafe state.

Trade-offs

Like most algorithms, the Banker's algorithm involves some trade-offs.
Specifically, it needs to know how much of each resource a process could
possibly request. In most systems, this information is unavailable, making the
Banker's algorithm useless. Besides, it is unrealistic to assume that the number
of processes is static. In most systems the number of processes varies
dynamically. Moreover, the requirement that a process will eventually release all
its resources (when the process terminates) is sufficient for the correctness of
the algorithm, however it is not sufficient for a practical system. Waiting for
hours (or even days) for resources to be released is usually not acceptable.

References

^ E. W. Dijkstra "EWD108: Een algorithme ter voorkoming van de dodelijke

omarming (http://www.cs.utexas.edu/users/EWD/ewd01xx/EWD108.PDF) "

(in Dutch; An algorithm for the prevention of the deadly embrace)

1.

^ Bic, Lubomir F.; Shaw, Alan C. (2003). Operating System Principles

(http://vig.prenhall.com/catalog/academic/product

/0,1144,0130266116,00.html) . Prentice Hall. ISBN 0-13-026611-6.

http://vig.prenhall.com/catalog/academic/product

/0,1144,0130266116,00.html.

2.

^ Concurrency (http://www.cs.huji.ac.il/course/2006/os/notes/notes4.pdf)3.

Further reading

"Operating System Concepts (http://codex.cs.yale.edu/avi/os-book/os7) " by

Silberschatz, Galvin, and Gagne (pages 259-261 of the 7th edition)

"EWD623: The mathematics behind the Banker’s Algorithm

(http://www.cs.utexas.edu/users/EWD/ewd06xx/EWD623.PDF) " (1977) by E.

Banker's algorithm - Wikipedia, the free encyclopedia http://en.wikipedia.org/w/index.php?title=Banker%...

6 of 7 11/01/2009 11:06 PM

W. Dijkstra, published as pages 308–312 of Edsger W. Dijkstra, Selected

Writings on Computing: A Personal Perspective, Springer-Verlag, 1982.

ISBN 0-387-90652-5

External links

Deadlock Recovery, Avoidance and Prevention (http://www.isi.edu/~faber

/cs402/notes/lecture9.html)

Retrieved from "http://en.wikipedia.org/wiki/Banker%27s_algorithm"

Categories: Concurrency control algorithms

This page was last modified on 25 October 2009 at 10:10.

Text is available under the Creative Commons Attribution-ShareAlike

License; additional terms may apply. See Terms of Use for details.

Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a

non-profit organization.

Banker's algorithm - Wikipedia, the free encyclopedia http://en.wikipedia.org/w/index.php?title=Banker%...

7 of 7 11/01/2009 11:06 PM

