Linux threading models compared: LinuxThreads aRd’ N http://imww-128.ibm.com/developerworks/linux/ldy/I-threading.html?

1of7

Linux threading models compared: LinuxThreads
and NPTL

A rundown of the key differences for developers who need to port

Level: Intermediate

Vikram Shukla yikshukl@in.ibm.com), Software Engineer, IBM

31 Jul 2006

The LinuxThreads project originally brought multigading to Linux®, but LinuxThreads didn't
conform to POSIX threading standards. Althoughrtizee recent Native POSIX Thread Library
(NPTL) library has filled in some of the gaps, atissues remain. This article describes some of the
differences between these two Linux threading nofiel developers who may need to port their
applications from LinuxThreads to NPTL or who signplant to understand where the differences lie.

When Linux was first developed, it did not havel sgport for threading in the kernel. But it digbport processes
as schedulable entities through theone() system call. This call created a copy of the nglfprocess, with the
copy sharing the address space of the caller. ThexThreads project used this system call to siteularead
support entirely in user space. Unfortunately, #fiproach had a number of disadvantages, partigitethe areas of
signal handling, scheduling, and interprocess symwghation primitives. Moreover, the threading miodie not
conform to POSIX requirements.

To improve on LinuxThreads, it was clear that sieel support and a rewritten threads library \ddae required.
Two competing projects were started to addres®trexpuirements. A team including developers froi MBorked
on NGPT, or Next-Generation POSIX Threads. Mearayhievelopers at Red Hat were working on the NRNIGPT
was abandoned in mid-2003, leaving the field to NPT

Although the choice of NPTL over LinuxThreads sedikesa foregone conclusion, if you're maintainagps for an
aging Linux distribution and plan to upgrade saoigrating to NPTL will be an important part of therting
process. Alternatively, you may want to know abibese differences so you can design your applicatio
accommodate both the older and the newer techresogi

This article details which threading models arelengented on which distributions.

LinuxThreads design specifics

Threads split a program into one or more simultaneoushning tasks. Threads differ from thieocesses of

traditional multitasking in that threads share dtate information of a single process and shareaneand other
resources directly. Context switching between tiisda the same process is typically faster thanestrswitching
between processes. Hence, the advantage of ahredtited program is that it can operate fasterdhanltiprocessed
application. Furthermore, with threads you can engnt simultaneous processing. These relative atyasiover a
process-based approach led to implementation abdihreads.

The initial design of LinuxThreads started with thedief that context switches among related prazease fast
enough that each kernel thread can handle a comdsm user-level thread. This led to the evolutdthe
one-on-one threading model.

Let's review the high points of LinuxThreads' dassgecifics:

e One of the notable features of LinuxThreads ismheager thread. The manager thread fulfilled these
requirements:

8/31/2007 10:38 Al



Linux threading models compared: LinuxThreads aRd’ N http://imww-128.ibm.com/developerworks/linux/ldy/I-threading.html?

2 of 7

o The system must be able to react to fatal sigmadskdl the entire process.

o The de-allocation of memory used as stacks mugidrapfter a thread is finished. Therefore, theathre
cannot do this itself.

o Terminating threads must be waited on so that tleeyt turn into zombies.

o The de-allocation of thread-local data requiresatiag over all threads; this must be done by the
manager thread.

o If the main thread needs to cptihr ead_exi t (), the process is not terminated. The main thread
goes to sleep, and it is the job of the manageathto wake up the main thread when all other tlsrea
have been killed.

To maintain the thread-local data and memory, Lirhueads uses the top memory of the process adsjvass
just below the stack address.

The synchronization of primitives is achieved byame ofsignals. For example, threads block until awoken by
signals.

Under the initial design of the clone system, Lihbreads implemented each thread as a differenepsowith
a unique process ID.

A fatal signal is able to kill all the threads. ThieuxThreads design on this front has been comsisOnce a
process receives a fatal signal, the thread markiltgeall the other threads (processes) with tme signal.

According to LinuxThreads design, if an asynchransignal is sent, the manager thread will delilierdignal
to one of threads. If that thread is currently king the signal, the signal remains pending. Thisdcause the
manager thread cannot send a signal to a processad, each thread acts a process.

Scheduling between threads is handled by the ksatelduler.

LinuxThreads and its limitations

The design of LinuxThreads worked fine in gendpalk, when stressed by intensive applications,ffesed problems
with performance, scalability, and usability. Létiek at some of the limitations of the LinuxThrsatksign:

It uses the manager thread to create and coordanaseg all threads owned by each process. Thisases
the overhead of creating and destroying threads.

Because it's designed around a manager threaajses a lot of context switching, which potentiaimpers
scalability and performance.

Because the manager thread can run on only one &BAsynchronization performed can cause scakabilit
problems on SMP or NUMA systems.

Because of the way that threads are managed, @addmeach thread has a different process ID,
LinuxThreads is incompatible with other POSIX-reththreading libraries.

Signals were used to implement synchronization ifisies. This affected the response time of the apens.
Moreover, the concept of sending a signal to thenpebcess as such is not present. This, therefimes not
conform to the POSIX way of handling signals.

Point signal handling within LinuxThreads is conghtton a per-thread basis rather than on a peepsdtasis

as each thread has a separate process ID. Siigreadis sent to a dedicated thread, signalsaialized --
that is, the signals are funneled through thisati® other threads. This is in contrast to the IRG8&ndard's

8/31/2007 10:38 Al



Linux threading models compared: LinuxThreads aRd’ N http://imww-128.ibm.com/developerworks/linux/ldy/I-threading.html?

3of7

requirements for parallel handling of signals. Eeample, under LinuxThreads, signals senkvikl () are
delivered to individual threads rather than toghecess as a whole. This means that if that thieblbcking
the signal, then LinuxThreads will simply queughat thread and execute the handler only wherthinead
unblocks the signal, instead of executing the remdimediately in the other thread that does notibthe
signal.

e Since each thread in LinuxThreads is a procesqadssible that user and group ID information wilt be
common to all threads in a single process. Scexample, a multithreadesket ui d() /set gi d() process
could be different for different threads.

e There are instances where the multithread core duwegied does not contain all the thread informatio
Again, this behavior is a result of the fact thattethread is a process. If a crash happens oafdhg threads,
we see only that thread on a system core file. lewehis behavior applies mainly to on older vensi of the
LinuxThreads implementation.

e Because each thread is a separate process, toaiprotory is flooded with lots of process enttieat ideally
should have been threads.

e Because each thread is a process, there is adimit@ber of threads that can be created for aricapioin. For
example, on an I1A32 system, the total number of@sses possible -- and thus, the total numbereds that
can be created -- is 4,090.

e Because the method of calculating the thread-ldatd was based on the position of the stack addiesass
to that data was very slow. Another disadvantage tiat the user could not specify the size of taeks
confidently, as the user could accidentally mapstlagk address to an area that was meant to bdarsed
different purpose. Thgrow on demand concept (also called thkoating stack concept) was implemented in
version 2.4.10 of the Linux kernel onwards. Prtttis, LinuxThreads used a fixed stack.

About NPTL

NPTL, or Native POSIX Thread Library, is a new imyplentation of Linux threading that overcomes the
disadvantages of LinuxThreads and also conforn®81X requirements. It offers significant improversover
LinuxThreads in terms of performance and stabiMiTL, like LinuxThreads, implements the one-on-amalel.

Ulrich Drepper and Ingo Molnar are two employee&etl Hat who participated in NPTL's design. Soméheir
overall design goals were as follows:

e The new threading library should be POSIX compliant

The thread implementation should work well on systevith large number of processors.

Creating new threads for even a small piece of vgbduld have a low startup cost.

The NPTL thread library should be binary compatibith LinuxThreads. Note that you can use
LD _ASSUME_KERNEL, which is discussed later in this article, foistpurpose.

The new threading library should be able to takeaathge of NUMA support.

Advantages of NPTL

8/31/2007 10:38 Al



Linux threading models compared: LinuxThreads aRd’ N http://imww-128.ibm.com/developerworks/linux/ldy/I-threading.html?

NPTL holds a number of advantages over LinuxThreads

e NPTL does not use a manager thread. Some of thireatents of the manager thread, like sending fatal
signals to all the threads that were part of tlee@ss, were not required, as the kernel itseltake care of
them. The kernel also takes care of de-allocatisgriemory used by each thread stack. It even marhage
termination of all the threads by waiting on theefdse clearing the parent thread, thus avoidinglzem

e Because it doesn't use a manager thread, the NR&ading model has better scalability and synchkeadian
mechanisms on NUMA and SMP systems.

e With NPTL threading libraries along with the newrkel implementation, the synchronization of threbgs
means of signals was avoided. For this purpose LNRffoduces a new mechanism callefitax. A futex
works on shared memory regions and hence can bedshatween processes, thus providing interprocess
POSIX synchronization. It's also possible to slzafgtex across processes. This behavior made otsrgs
synchronization a reality. In fact, NPTL includesacro calledPTHREAD PROCESS SHARED that gives a
handle to the developer to make a user-level psogieare a mutex across threads of different presess

e Since NPTL is POSIX compliant, it handles signailsagper-process basiget pi d() returns the same
process ID for all the threads. For example, iigaa SI GSTOP is sent, the whole process would stop; with
LinuxThreads, the thread that received the sigmallevstop. This enables better usage of debugiler&DB
on NPTL-based applications.

e Since in NPTL all threads have one parent pro¢hesiesource usages reported to the parent (liké &
memory percentages) are reported for the entiregss) not for just one thread.

e One of the important features that was introdugethb NPTL threading library was support for ABI
(Application Binary Interface). This helped enablkward compatibility with LinuxThreads. This daa
done with the help dfD_ASSUVME_KERNEL, which is covered next.

The LD_ASSUME_KERNEL environment variable

As explained above, the introduction of ABI madpadssible for code to support both the NPTL andikirhreads
models. Basically this is taken care by Id (a dywedmker/loader), which decides which runtime #wléeng library to
dynamically link in.

As an example, here are some common settingsifovdiniable that WebSphere® Application Server pggshese
as appropriate for your requirements:

e LD ASSUME KERNEL=2. 4. 19: This overrides the NPTL implementation. This ienpkentation is
commonly referred to as the standard LinuxThreaddathwith floating stacks feature enabled.

e LD ASSUME KERNEL=2. 2. 5: This overrides the NPTL implementation. This inmpintation is commonly
referred to as LinuxThreads with fixed stack size.

Set this variable with following command:
export LD ASSUME_KERNEL=2. 4. 19

Note that support for arlyD_ASSUVE_KERNEL setting will depend on the ABI versions currergiypported for the
threading library. For example, if any threadiriydiry does not support ABI version 2.2.5, thenuber will not be
able to set D_ASSUME_KERNEL to 2.2.5. Typically, NPTL requires 2.4.20, and uxiThreads requires 2.4.1.

All these settings generally come into use if y@aimning on an NPTL-enabled Linux distribution patir
application has been designed on the basis ofithexChreads model.

4 of 7 8/31/2007 10:38 Al



Linux threading models compared: LinuxThreads aRd’ N

5o0f 7

The GNU_LIBPTHREAD_VERSION macro

http://imww-128.ibm.com/developerworks/linux/ldy/I-threading.html?

Most modern Linux distributions ship with both Likithreads and NPTL, and they provide a facilitywatsh
between the two. To discover which version of whintead library you're currently using on your syst run the

following command:

$ get conf GNU_LI BPTHREAD VERSI ON

The output will look something like this:

NPTL 0. 34
Or:

| i nuxt hr eads-0. 10

Linux distributions with threading model, glibc version, and kernel versions

Table 1 lists some of the popular Linux distribngpalong with the type of thread implementatigti®c libraries,

and kernel version for each.

Table 1. Linux distributions and their threading implementations

Threading implementation
LinuxThreads 0.7, 0.71 (for libc5)
LinuxThreads 0.7, 0.71 (for glibc 2)

LinuxThreads 0.8
LinuxThreads 0.8
LinuxThreads 0.9
LinuxThreads 0.9
LinuxThreads 0.10
NPTL 0.6

NPTL 0.61

NPTL 2.3.4
LinuxThreads 0.9
LinuxThreads 0.9
LinuxThreads 0.9
NPTL 2.3.5

Clibrary
libc 5.x
glibc 2.0.x

glibc 2.1.1
glibc 2.1.2

glibc 2.2.4
glibc 2.2.93
glibc 2.3
glibc 2.3.2
glibc 2.3.4
glibc 2.2
glibc 2.2.5
glibc 2.2.5
glibc 2.3.3

Distribution
Red Ha2 4
Riddt 5.x
Red Hat 6.0
Red Hat 6.1 and 6.2
Red Hat 7.2
Red Hat 2.1 AS
Red Hat 8.0
Red Hat 9.0
Red Hat 3.0 EL
Red Hat 4.0

SUSE Linux Enterprise efx.1
SUSE Linux EnterprisevBe8

United Linux

SUSE Linux Enterprise Server 9

Kernel

247
2.4.9
2.4.18

2.4.20
2421
2.6.9
2.4.18
2421
24.21
2.6.5

Note that from kernel 2.6.x and glibc 2.3.3 onwatte version numbering convention for NPTL seewnisave

changed: the library is now numbered in accordavittethe glibc version being used.

Java™ Virtual Machine (JVM) support can vary. IBMtt of the JVM supports most of the distributiamg able 1

that have glibc versions greater than 2.1.

8/31/2007 10:38 Al



Linux threading models compared: LinuxThreads aRd’ N http://imww-128.ibm.com/developerworks/linux/ldy/I-threading.html?

Conclusion

The limitations of LinuxThreads have been overcam®&PTL, as well as in some later versions of Lifbreads.
For example, the latest LinuxThreads implementatises thread registers for locating thread-loct;dan Intel®
processors, for instance, it uses#ies and%gs segment registers to locate the virtual addresstess thread-local
data. Though the results have shown improvemeti thvé changes that have gone into LinuxThreadsl@ns still
resurface under higher loads or stress tests bedddactors like overdependence on the manageadhiissues with
signal handling, and so on.

You should also keep in mind that while buildingiydibrary with LinuxThreads, use théd REENTRANT
compile-time flag. This makes the library threatesa

Finally, and perhaps most importantly, remember tthauxThreads is no longer being actively upddtgdhe
originators of the project, who see NPTL as a regateent.

The drawbacks of LinuxThreads should not be takemdan that NPTL is error free. NPTL, being an Sifiented
design, has drawbacks too. | have seen cases emtiiRed Hat kernels where a simple threading agupdic runs fine
on a single-processor machine but hangs on SMélieve there is still more work to be done on Lirtastruly make
it scalable to satisfy higher-end applications.

Resources

Learn

e "The Native POSIX Thread Library for Linux" (PDF) blrich Drepper and Ingo Molnar, describes the
reasons and goals for designing NPTL, includingsti@rtcomings of LinuxThreads and advantages ofINPT

e TheLinuxThreads FAQ covers frequently asked quest@mnkinuxThreads and NPTL. It's a useful resource
for learning a few of the shortcomings in older iempentations of LinuxThreads.

e "Explaining LD _ASSUME KERNEL," by Ulrich Drepper, @rides details about this environment variable.

e "Native POSIX Threading Library (NPTL) support delses the difference between LinuxThreads and NPTL
from the WebSphere perspective and explains howSfleere Application Server supports these two differ
threading models.

e Diagnosis documentation for IBM ports of the JVMides the diagnostic information to be collectecewla
Java application faces issues while running on.inu

¢ In thedeveloperWorks Linux zone, find more resourced foux developers.

e Stay current witldeveloperWorks technical events and Webcasts.

Get products and technologies
e ThelLinuxThreads README gives a general descriptiohiouixThreads.

e Order the SEK for Linux, a two-DVD set containimigetiatest IBM trial software for Linux from DB2®,
Lotus®, Rational®, Tivoli®, and WebSphere®.

e With IBM trial software, available for download direcfipm developerWorks, build your next development
project on Linux.

6 of 7 8/31/2007 10:38 Al



Linux threading models compared: LinuxThreads aRd’ N http://imww-128.ibm.com/developerworks/linux/ldy/I-threading.html?

Discuss
e Check outdeveloperWorks blogs and get involved in tleveloperWorks community.

About the author

Vikram Shukla, with more than six year's experieimcdevelopment and design using object-orientaduages,
currently works as a staff software engineer inJérea Technology Center at IBM, Banglore, Indigpsuting IBM

JVM on Linux.

IBM, DB2, Lotus, Rational, Tivoli, and WebSphere arademarks of IBM Corporation in the United Stateher
countries, or both. Linux is a trademark of Linusvalds in the United States, other countries,athbJava and all
Java-based trademarks are trademarks of Sun Mateayg, Inc. in the United States, other countdebpth. Intel is a
trademark of Intel Corporation or its subsidiatieshe United States and other countries. Othempamy, product, or

service names may be trademarks or service marhers.

7 of 7 8/31/2007 10:38 Al



