
An Alternative Foundation for DeLP: Defeating
Relations and Truth Values

Ignacio D. Viglizzo1,2,5, Fernando A. Tohmé1,3,5, and Guillermo R. Simari1,4
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Abstract. In this paper we recast the formalism of argumentation for-
malismknownasDeLP (DefeasibleLogicProgramming) in game-theoretic
terms. By considering a game between a Proponent and an Opponent,
in which they present arguments for and against each literal we obtain
a bigger gamut of truth values for those literals and their negations as
they are defended and attacked. An important role in the determination
of warranted literals is assigned to a defeating relation among arguments.
We consider first an unrestricted version in which these games may be
infinite and then we analyze the underlying assumptions commonly used
to make them finite. Under these restrictions the games are always deter-
mined -one of the players has a winning strategy. We show how varying
the defeating relation may alter the set of truth values reachable under
this formalism. We also show how alternative characterizations of the
defeating relation may lead to different assignations of truth values to
the literals in a DeLP program.

1 Introduction and Motivation

The development of defeasible reasoning in the last decades [Pol87,SL92,Nut94,
Pol95,CML00,PV02], provided the foundations of an alternative form of declar-
ative programming, Defeasible Logic Programming (DeLP) [GS04]. This for-
malism blends Logic Programming with Defeasible Argumentation, allowing the
representation of tentative knowledge and leaving for the inference mechanism
the task of finding the conclusions that the knowledge base warrants [CDSS03].

DeLP inherits from Logic Programming (LP) the formal characterization of
programs as sets of rules. The difference is that in DeLP two kinds of rules are
considered. On one hand, strict rules, which are assumed to represent sound
knowledge and are handled as the rules in LP. On the other hand, defeasible
rules represent tentative knowledge that may be defeated by other information.
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Again as in LP, DeLP operates by resolving the status of pieces of knowledge
that we may deem as queries. A query l succeeds if there exists a warranted
argument for l. Arguments are constructed using both types of rules and facts
(which can be seen as special cases of strict rules).

The core of DeLP resides in the characterization of the warrant procedure.
Defeasible Argumentation has provided a solid foundation over which the stan-
dard formalization of this procedure has been constructed. A key element in the
warrant procedure is the set of criteria according to which two contradicting
arguments are compared and eventually one of them deemed as defeating the
other. While pure syntactic criteria like specificity constitute the main choice
in the design of the warrant procedure [Poo85, SL92, SGCS03], the notion of
warrant can be abstracted away from the details of the order relation among
arguments.

The inference mechanism generates all the arguments that either support or
contradict l. Then, a warrant procedure is applied determining which arguments
end up undefeated. If there exists at least one argument warranting l, it yields
a positive answer.

Various papers have been published by the LIDIA group in Argentina, devel-
oping the theory, providing prototype implementations and exploring a variety of
applications. Some other groups have also been publishing papers that extend the
theory and use it for applications. But while this framework has well-established
and interesting features, we find that many aspects of the inference mechanism
of DeLP as well as its corresponding semantics, have a strong game-theoretic
flavor. This is inherited from the dialogical schema on which DeLP bases the
warrant of queries [GS04].

As it is well known, one of the salient ways in which rational agents try to
establish the appropriateness of claims is by means of discussions. The idea is
that more appropriate contentions should be supported by the more cogent ar-
guments in a given discussion. When discussions are seen as foundations for logic
and reasoning systems, the goal is not to determine who wins the discussion, but
instead which conclusions are supported by the better arguments. Furthermore,
for the purpose of determining the relevant conclusions, it does not matter either
whether a discussion has a non-cooperative or cooperative nature. The former
case is known as a debate, in which some agents win and others lose. In a coop-
erative discussion, instead, agents collaborate in order to find the best answer
to some question. But even if the goals of the discussants are non-conflicting,
arguments for and against potential answers have to be weighted up to find out
which one is more appropriate. It seems natural then, to resort to the idea of
a game in which two fictitious players make their moves, that is, they select
arguments to be uttered in a discussion. The winning strategies end up leading
to a win by either one of the two players.

Although game-theoretic approaches to logic systems are well-known [Hin73,
LL78, HS97, vB02], our goals here are somewhat different. We intend to pro-
vide an alternative foundation for DeLP closer to the developments in dia-
logue systems ([Ham70], [Ham71]), particularly in AI ([Bre01], [Lou98]) with
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applications in law ([LAP00], [MP02], [PWA03]). Even closer to our goals are
developments like the explicit or implicit use of game-theoretic notions for argu-
mentation [BH01,AC02,Dun95,Pra05].

The whole idea in that literature is that there exists a relation of defeat among
arguments (which are basically derivations of claims). This relation allows to
determine the arguments that are either undefeated or with defeated defeaters.
The claims supported by these arguments are said warranted. The shape of the
class of either these claims or of their supporting arguments has been assessed in
many settings. But it has to be said that the use of the results of game-theoretic
results (instead of just its terminology) in those analysis has been rather scarce.

What we intend to do here is to introduce an alternative, game-theoretic,
presentation of DeLP. In particular, we use the notion of winning strategy as a
central component of the inference mechanism, that yields answers to queries,
and consequently for the determination of their truth values. We find that this
alternative does preserve DeLP central features, in particular the class of war-
ranted claims, and this is why we claim that the formalism presented here is an
alternative foundation, instead of an entirely new formalism. On the other hand,
our use of game-theoretic notions can be easily extended to the whole gamut of
argumentation formalisms, yielding an alternative semantics to which strategic
concepts can be applied.

As said, this paper takes some basic ideas from game theory and uses them
for an alternative definition for DeLP. The approach is more abstract. It is
interesting because it clarifies some of the notions in DeLP, and it suggests some
alternative definitions for aspects of DeLP.

Perhaps more importantly the paper suggests a more general framework for
viewing a variety of other argumentation systems in a common game-theoretic
way. If so, this paper could be the first step of a very important line of research
for understanding the foundations of argumentation. The goal of this paper is to
provide an alternative specification of DeLP. It allows to express the main ideas
in the formalism in terms of the sets of literals that are warranted. It allows
a game-theoretic representation of the warrant procedure and yields a graded
truth valuation of literals. We will show how this depends on the properties of
the defeating relation among arguments.

2 The Basics of DeLP

In order to discuss the set-theoretical properties of DeLP, we have to present the
basics of this formalism.1

Each Defeasible Logic Program IP is a finite set of facts, strict rules, and
defeasible rules IP = 〈Π, Δ〉, where Π denotes the set of facts and strict rules,
while Δ denotes the set of defeasible rules. The set Π is the disjoint union of
the sets ΠF of facts and ΠR of strict rules.

Facts and rules are defined in terms of atoms. More precisely, let At be the set
of atoms that occur in a given program IP. Given a set X ⊆ At of atoms, ∼ X

1 We follow very closely the presentation in [GS04].
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is the set {∼x : x ∈ X}. Then, the set Lit is the set of all literals in At∪ ∼At.
The complement l̄ of a literal l ∈ Lit is ∼ x if l is an atom x and x if l is a
negated atom ∼x. This indicates the strong syntactic bent of DeLP and makes
the formalism purely propositional.

Then, the main components of a program IP are:

ΠF : Facts, which are ground literals in Lit.
ΠR: Strict Rules of the form l0 ← l1, . . . , ln, where l0 is the head and {li}i>0 is

the body. Each li in the body or the head is in Lit.
Δ: Defeasible Rules of the form l0 –≺ l1, . . . , ln, where l0 is the head and {li}i>0

is the body. Again, each li in the body or the head is a literal.

Example 1. Let’s consider a simple program IP1 with ΠF = {b, c}; ΠR = {d← a}
and Δ = {a –≺ b, ∼a –≺ c}.

Rules, both strict and defeasible act on facts, allowing to derive literals. More
precisely, a defeasible derivation of l up from X ⊆ Lit, R ⊆ ΠR and A ⊆ Δ is
a finite sequence l1, . . . , ln = l of literals in Lit such that each li is either in X
or there exists a rule in R with li as its head, and every literal bj in its body is
such that bj ∈ {lk}k<i.

Then:

Definition 1. Given sets X ⊆ Lit, R ⊆ ΠR and A ⊆ Δ, C(X, R, A) is the set
of all literals defeasibly derivable from X ∪R∪A. The set of strict consequences
of X ⊆ Lit is Cs(X) = C(X, ΠR, ∅). Finally, we are going to use often C(A) =
C(ΠF , ΠR, A) for sets A ⊆ Δ.

Definition 2. Given a set X ⊆ Lit, let X+ = X ∩At and X− = {a ∈ At :∼a ∈
X}. X is said to be contradictory if X+ ∩ X− �= ∅. A set of defeasible rules A
is contradictory if C(A) is contradictory.

Example 2. For IP1 of example 1, we have C({b}, ∅, {a –≺ b}) = {a, b}; Cs({a}) =
{a, d}; Cs(ΠF ) = ΠF and C(Δ) = {a, b, c, d, ∼a}, a contradictory set.

We assume that for all programs, the set Π of facts and strict rules is not
contradictory. A fundamental relation in DeLP is that of disagreement between
literals:

Definition 3. Two literals h, q ∈ Lit are said to disagree (for a given program
IP) if Cs(ΠF ∪ {h, q}) = C(ΠF ∪ {h, q}, ΠR, ∅) is contradictory. We define a
binary relation D ⊆ Lit × Lit to record which pairs of literals disagree. This
relation is clearly symmetric.

This relation matters for the comparison of arguments. In order to get to that,
let us define the fundamental concept of argument. We will use P to denote the
powerset construction.
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Definition 4. An argument is a pair 〈A, h〉 ∈ P(Δ) × Lit that satisfies:

1. h ∈ C(A)
2. A is not contradictory.
3. If h ∈ C(A′), then A′ �⊂ A, that is, A′ is not a proper subset of A.

Definition 5. Let Arg(IP) be the set of all arguments of a program IP. The
argument 〈A1, h〉 is a subargument of 〈A2, h

′〉 iff A1 ⊆ A2. We denote this with
〈A1, h〉  〈A2, h

′〉.

Example 3. With the program IP1 of Example 1, we let A1 = {a –≺ b} and
A2 = {∼a –≺ c}. Then the arguments are:

Arg(IP1) = {〈∅, b〉, 〈∅, c〉, 〈A1, a〉, 〈A1, d〉, 〈A2, ∼a〉}.

The disagreeing relation D is formed by the set {(a, ∼a), (d, ∼a)} together with
its symmetric pairs.

Note that the subargument relation  is a preorder over Arg(IP). Furthermore,
if 〈A1, h〉  〈A2, h

′〉 and 〈A2, h
′〉  〈A1, h〉, then A1 = A2. This means that if

we identify arguments with the same first component,  is simply a restriction
of the inclusion relation over P(Δ).

Definition 6. For each literal h we define the binary relation Rh on Arg(IP)
by 〈A1, h1〉Rh〈A2, h2〉 iff there exists 〈A, h〉 ∈ Arg(IP) such that A ⊆ A1 and
(h, h2) ∈ D. We say in this case that the argument 〈A1, h1〉 is attacked by
〈A2, h2〉 at h or that 〈A2, h2〉 attacks or rebutts 〈A1, h1〉 at h. We also say
that 〈A2, h2〉 is a counter-argument of 〈A1, h1〉.

Example 4. Following again the analysis of IP1, we have that, for example,
〈A1, a〉Ra〈A2, ∼ a〉 and also 〈A1, a〉Rd〈A2, ∼ a〉. On the other hand, we have
that 〈A2, ∼a〉R∼a〈A1, a〉 and 〈A2, ∼a〉R∼a〈A1, d〉.

We have the following easy consequences of the definition:

Proposition 7. 1. If 〈A1, h1〉Rh〈A2, h2〉, then for some A ⊆ A1,〈A, h〉 is an
argument and 〈A2, h2〉Rh2〈A, h〉.

2. If 〈A, l〉Rl〈B, p〉, then 〈B, p〉Rp〈A, l〉.
3. If q ∈ Cs(ΠF ), then 〈∅, q〉 is an argument and it has no counter-arguments.
4. Furthermore, an argument 〈∅, q〉 cannot be a counterargument of any

argument.

Proof. 1. From the definition of Rh, we know that for some 〈A, h〉 ∈ Arg(IP)
we have that A ⊆ A1 and (h, h2) ∈ D. Therefore, there exists A2 ⊆ A2 and
(h, h2) ∈ D so we can claim that 〈A2, h2〉Rh〈A, h〉.

2. Using the definition of Rl, this simply means that l and p disagree, and this
is enough to justify that 〈B, p〉Rp〈A, l〉, since the arguments are attacked
precisely at the literals they support, so no subarguments need be considered.
Recall also the minimality of the sets that form the argument.
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3. It is easy to check that since q ∈ C(∅) while ∅ is not contradictory and has
no proper subset, so 〈∅, q〉 is an argument. Now assume it has a counterargu-
ment 〈A2, h

′〉 that attacks 〈∅, q〉 at h. Then there exists an argument 〈A, h〉
with A ⊆ ∅, so h ∈ C(∅), and (h, h′) ∈ D. This means that Cs(ΠF ∪{h, h′})
is contradictory, but since C(∅) ⊆ C(A2), {h, h′} ⊆ C(A2), so A2 is contra-
dictory, and therefore 〈A2, h

′〉 cannot be an argument.
4. If 〈A, h〉 is an argument and 〈A, h〉Rp〈∅, q〉, then there is an argument 〈A′, p〉

with (p, q) ∈ D but we have seen in the previous proof that this contradicts
the fact that A′ is not contradictory.

Example 5. Consider the program IP2 with ΠF = {c} and Δ = {a –≺ b, b –≺ c,
∼b –≺ c}. Letting A1 be {a –≺ b, b –≺ c} and A2 = {∼b –≺ c} we have that
〈A1, a〉Rb〈A2, ∼ b〉. This follows from the fact that 〈A2, ∼ b〉 attacks the sub-
argument 〈{b –≺ c}, b〉 of 〈A1, a〉. In symbols, this is 〈{b –≺ c}, b〉Rb〈A2, ∼ b〉.
Applying the previous proposition, part 2, we get 〈A2, ∼b〉R∼b〈{b –≺ c}, b〉.

Now we have the set Arg(IP) with the relations Rh over it. We want to have a
method to decide, given a literal l, whether it’s supported by the program IP or
not. Clearly we want all literals in C(∅) to be supported or warranted. Which
other literals should be supported? If there is a defeasible derivation of a literal
l while l̄ is not derivable, we want l to be warranted as well.

But what about the cases in which the derivation of l yields a contradictory
set of literals, or there are arguments that support the negation of l as well?

We have seen that if the relation Rh holds between two arguments, there is
also some attack on the attacking argument (Lemma 7, 1). We need to be able
to tell which of these two arguments (if any) ‘wins’ the discussion.

There are several ways to do this. Our choice is to assume a binary relation
≤ contained in R =

⋃
h∈Lit Rh (it will be of no consequence for us if ≤ holds in

other cases, so we may as well just concentrate on subsets of R). The notation for
this relation is somewhat misleading since we do not assume for the moment that
≤ is a partial order or even a preorder. It will just be an arbitrary way of deciding
which one of two arguments, if any, is stronger than the other. This information
will be used to construct a game as described in the following section.

We call ≤ the defeating relation. We define proper and blocking defeaters as
follows:

Definition 8. 〈A1, h1〉 is a proper defeater of 〈A2, h2〉 iff 〈A2, h2〉 ≤ 〈A1, h1〉
and it is not the case that 〈A1, h1〉 ≤ 〈A2, h2〉.

〈A1, h1〉 is a blocking defeater of 〈A2, h2〉 iff 〈A2, h2〉≤〈A1, h1〉 and 〈A1, h1〉≤
〈A2, h2〉. We denote this by 〈A1, h1〉 ≈ 〈A2, h2〉.

Example 6. The defeating relation can be chosen arbitrarily as a subset of R,
but this alone provides certain constraints. Continuing our ongoing example
of IP1 and its arguments, we observe that no defeating relation can compare
the arguments 〈A1, a〉 and 〈A1, d〉. So if we have a defeating relation ≤1 such
that 〈A1, d〉 ≤1 〈A2, ∼ a〉 ≤1 〈A1, a〉, we cannot expect it to be transitive. No
defeating relation for this program could be a total order, either.
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We can also have 〈A1, a〉 ≤2 〈A2, ∼a〉, 〈A2, ∼a〉 ≤2 〈A1, a〉 and 〈A2, ∼a〉 ≤2
〈A1, d〉 so under this relation, 〈A2, ∼ a〉 has 〈A1, a〉 as a blocking defeater and
〈A1, d〉 as a proper one.

Note that in [GS04], proper and blocking defeaters are defined in terms of an
underlying comparison criterion ≺. We can always take as defeating relation
the one stemming out of this prior relation, and thus subsume the previous
work in our framework. Our definition, however, allows for the case in which
two arguments attacking each other are not related under the defeating relation.
In [GS04], these two would be blocking defeaters of each other, even if they were
unrelated under the comparison criterion.

3 Warrant Games

Given a literal l we want to find out what the program IP has to say about it.
What if there are more than one argument supporting l? What if one of them is
undefeated and the other is defeated? We will answer these questions through a
slightly generalized version of the mechanism of warrant of DeLP [GS04], using
the language of game theory, which turns out to be quite natural for framing
the dialectical process that leads to the warrant of a literal.

First, we will introduce the definition of extensive games with perfect informa-
tion. Then we will define warrant games, a class of games tailored to our needs,
and finally we will show how to use them for answering queries to the program.

Definition 9. (following [OR94]) An extensive game with perfect information
G = 〈N, H, P, (Ui)i∈N 〉 consists of:

– A set N , the set of players.
– A set H of sequences (finite or infinite) that satisfies the following three

properties:
• The empty sequence ∅ is in H.
• If (ak)k=1,...,K ∈H (where K may be infinite) and L<K then (ak)k=1,...,L

∈ H.
• If an infinite sequence (ak)∞k=1 satisfies (ak)k=1,...,L ∈ H for every posi-

tive integer L, then (ak)∞k=1 ∈ H.
The members of H are called histories. Each component ak of a history is
an action taken by a player. A history (ak)k=1,...,K ∈ H is terminal if it
is infinite or there is no aK+1 such that (ak)k=1,...,K+1 ∈ H. The set of
terminal histories is denoted with Z.

– A function P : H \ Z → N , that indicates for each history in H which one
of the players takes an action after the history.

– Functions Ui : Z → IR for i ∈ N that give for each terminal history and
each player, the payoff of that player after that history.

The set H can be seen as a tree with root ∅, with its nodes labeled by the
function P , and the leaves labeled by the functions Un. We identify the elements
ak with edges of the tree. Therefore, each particular branch from the root is a
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history, in which the edges are the consequent actions chosen by the players. We
call the game finite if H is finite. After any nonterminal history h player P (h)
chooses an action from the set A(h) = {a : (h, a) ∈ H}.

A warrant game for a literal l is an extensive game with perfect information
with two players. We will call these two players Proponent and Opponent. We
define the game as follows:

– P (∅) = Proponent.
– The actions that the proponent can take at the root of the tree are all the

arguments of the form 〈A, l〉.
– The actions after a nonterminal history h are the arguments 〈A′, q〉 such

that 〈A, p〉 ≤ 〈A′, q〉, where 〈A, p〉 is the last component in h.
– The utility for the proponent assumes the value 1(win) at a history h ∈ Z

if the length of h is odd, and −1 otherwise. The utility for the opponent is
−1 times the utility of the proponent.

If we have that the relation ≤ is simply the relation R =
⋃

h∈Lit Rh, and a
literal l has some argument which can be attacked, then we will have an infinite
tree.

Example 7. We build the warrant game for the literal a in the program IP1 from
example 1, assuming that ≤= R.

∅P

��
〈A1, a〉

��
〈A2, ∼a〉

���������
����������

〈A1, a〉
��

〈A, d〉
��

〈A2, ∼a〉

����
��

��

����
��

��
〈A2, ∼a〉

����
��

��

����
��

��

...
...

...
...

Notice that in the diagram we indicate the nodes by a single argument. The
histories can be reconstructed by tracing the path in the tree up to the root.
The superscript P or O on the root indicates the player who moves first.

If we consider instead the relation ≤ to favor arguments based on A2 to those
based on A1, the game gets reduced to

∅P

��
〈A1, a〉

��
〈A2, ∼a〉

(−1, 1)
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In this tree we have a terminal history and we have written below the payoffs
for the players Proponent and Opponent, respectively.

A plan for a given player, in which she has a response for every possible contin-
gency of the game is called a strategy:

Definition 10. [OR94] A strategy for a player i ∈ N in an extensive game
with perfect information 〈N, H, P, Un〉 is a function that assigns an action in
A(h) to each nonterminal history h ∈ H \ Z for which P (h) = i.

Since players are rational, they will seek to get the highest utility. In order to do
that each one will seek the best possible strategy. The joint strategy profiles of all
players yield a single history. In the case of warrant games, since each terminal
history pays either 1 or −1, we can in principle define a winning strategy for a
player:

Definition 11. A winning strategy for one of the players in a warrant game
is a strategy that yields a terminal history z ∈ Z such that her utility is 1, no
matter what the other player’s actions are.

It turns out that in some warrant games (for example those without terminal
histories), none of the players has a winning strategy.

Now we pose a query to IP. The query is a literal l. Then we analyze two
associated games. In the first place, we look at the warrant game for the literal l,
and then the warrant game for the complement literal l̄ in which the Proponent
and Opponent change their roles. That is, the Opponent starts the game by
choosing an argument for l̄.

This presents a slight departure from the formalism presented in [GS04], where
the existence of a winning strategy for the proponent of a literal l is enough to
yield the answer “yes” to a query. On the other hand, in that paper, to yield the
answer “no” to l, the status of l̄ is analyzed, which clearly suggests the road we
have taken here.

The following table summarizes the possible outcomes (meaning which of the
players has a winning strategy) of both games and how they jointly yield an
answer to the query:

Warrant game for l Warrant game for l̄ Answer to the query
Proponent Proponent YES
Proponent Opponent Undecided
Proponent None yes
Opponent Proponent Undecided
Opponent Opponent NO
Opponent None no

None Proponent yes
None Opponent no
None None Undecided
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Thus we have a system in which a literal l can take different truth values which
can be displayed in a partially ordered set:

PP

��������

��������

PN

���
��

��
�

�������� NP

��������

���
��

��
�

PO

���
��

���
NN

��������

�������� OP

���
��

��
�

NO

�������� ON

��������

OO

where each pair of letters indicates first who has a winning strategy in the game
for l and then who has a winning strategy in the game for l̄. P corresponds to
the Proponent, O to the Opponent and N , in turn, indicates that none of them
has a winning strategy.

We need an interpretation for each of these outcomes. We have marked in the
table with YES and NO the cases in which the arguments are clearly settled
for or against the literal l. If for l the Proponent has a winning strategy and
nor she or the Opponent have one for the warrant game on l̄, we want to give a
positive answer for the literal l, but not as strong one as we would for the case
in which the Proponent has a winning strategy for both games. This presents a
slight departure from the formalism presented in [GS04].

Example 8. We look now at the warrant game initiated by the Opponent for the
literal ∼a in the conditions we established in Example 7. If ≤= R, the game is

∅O

��
〈A2, ∼a〉

���������
����������

〈A1, a〉
��

〈A, d〉
��

〈A2, ∼a〉

����
��

��

����
��

��
〈A2, ∼a〉

����
��

��

����
��

��

...
...

...
...

so the outcome for the query a is NN.
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On the other hand, if the relation ≤ is empty, we just get

∅O

��
〈A2, ∼a〉

(−1, 1)

So here we get the result OO, and the answer “NO” for the query a.

We have the following trivial result:

Proposition 12. The literals that are facts of a program always get the outcome
PP and therefore the answer Y ES.

Proof. Since the class of facts is not contradictory, given a fact l, we know
by Lemma 7, 1 that 〈∅, l〉 is an argument and it has no counter-arguments.
Therefore, the game for l ends after the Proponent chooses 〈∅, l〉 and since there
is no counterargument, she wins. Alternatively, for l̄, there can be no arguments
so the Opponent has no valid moves and the Proponent wins again. Therefore,
the corresponding element in the lattice is PP , which yields a Y ES answer.

4 Finite Warrant Games

If we restrict the definition of warrant games in a way that makes them finite,
then in each game one of the players has a winning strategy. The reason for this
is that finite games are always determined [Myc92]. Our set of possible results
(or truth-values) for a given query gets reduced to four possibilities: PP , PO,
OP and OO.

PP

��
��

��
��

��
��

��
��

PO

��
��

��
��

OP

��
��

��
��

OO

The top and bottom yield, respectively the Y ES and NO answers to the
query. The middle possibilities yield UNDECIDED, but with different mean-
ings. If we obtain PO, both the literal l and its negation are warranted and we
are facing a (defeasible) contradiction, while if the answer is OP , neither the
literal nor its negation can be convincingly supported.

As we noted before, if we just let the defeating relation be R =
⋃

h∈Lit Rh,
then all the branches of a warrant game have length 1 (in the case that a literal
has an argument for it that is not attacked) or are infinite.

We claim that the following feature of ≤ ensures the finiteness of the warrant
games:
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Definition 13. The relation ≤ is said to be s-acyclic if there is no sequence
〈A0, h0〉,〈A1, h1〉,. . .,〈Ak+1, hk+1〉 in Arg(IP), such that 〈Aj , hj〉 ≤ 〈Aj+1, hj+1〉,
for j = 0, . . . , k, and 〈Ak+1, hk+1〉 is a subargument of 〈A0, h0〉.

Then:

Proposition 14. If ≤ is s-acyclic, the warrant game for any literal l is finite.

Proof. Each history h in the warrant game is a sequence 〈A0, h0〉, . . ., 〈AK , hK〉,
where 〈Aj , hj〉 ≤ 〈Aj+1, hj+1〉, for j = 0, . . . , K−1. Since the set Arg(IP) is finite
and ≤ is s-acyclic, K must be finite as well.

Instead of imposing conditions on ≤, desirable outcomes can be ensured by
means of a protocol that restricts the admissible actions that may be taken in
a warrant game. The main idea here is that one doesn’t want to allow repeti-
tion of arguments, or subarguments, and each player should maintain internal
consistence in the arguments she supports.

Let ≈ be the binary relation between arguments defined by 〈A1, h1〉 ≈ 〈A2, h2〉
iff 〈A1, h1〉 ≤ 〈A2, h2〉 and 〈A2, h2〉 ≤ 〈A1, h1〉. DeLP assumes the following
protocol:

Definition 15. In a warrant game for a literal l, a history is h = 〈A0, h0〉, . . .,
〈AK , hK〉, where 〈Aj , hj〉 ≤ 〈Aj+1, hj+1〉, for j = 0, . . . , K − 1. We say that h
is DeLP-admissible if and only if:

– Given 〈Aj , hj〉, 〈Aj+1, hj+1〉 and 〈Aj+2, hj+2〉 in h, if 〈Aj , hj〉≈〈Aj+1 , hj+1〉,
then it is not the case that 〈Aj+2, hj+2〉 ≤ 〈Aj+1, hj+1〉. In other words, a
blocking defeater can only be followed by a proper defeater.

– The sets
⋃

j≥0 A2j and
⋃

j≥0 A2j+1 are not contradictory (concordance).
– Every subsequence of any history of the game h = 〈A0, h0〉, . . . , 〈AK , hK〉 is

an s-acyclic sequence.

Proposition 16. A warrant game in which each history is DeLP-admissible is
finite.

Proof. Immediate, since every h is DeLP-admissible, h is a s-acyclic sequence.
Given that Arg(IP) is finite, the length of h is finite.

5 The Defeating Relation and Truth Values

Now we turn our attention to two extreme cases for the relation ≤ and see how it
restricts the DeLP-admissibility of histories and therefore the winning conditions
of warrant games. That is, how it partitions Lit in classes corresponding each to
the four possibilities in finite games.

Proposition 17. If ≤= ∅, then a player has a winning strategy for a warrant
game for a given literal l if and only if there exists at least one argument for the
literal according to the program.
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Proof. Immediate from the fact that the first move for the Proponent (in the
game for l) or the Opponent (in the game for l̄) is to state an argument for
either l or l̄ and there is no argument the other party can use to counterargue,
so the game ends. If one of the players cannot find an argument for her literal
the other wins.

This means that for each literal l, if there exist arguments for both the literal
and its negation, we get the truth value PO, i.e. a defeasible contradiction.
Otherwise, if either l or l̄ has no supporting arguments in IP while the other has
at least one, the truth value of l will be PP or OO.

Proposition 18. If ≤= R =
⋃

h∈Lit Rh the DeLP-admissibility implies that
every terminal history of the warrant games has length at most two.

Proof. Since ≤ coincides with the attacking relation R, all defeaters are blocking
defeaters, so no history can have length more than two. There can be terminal
histories with length one: those consisting of single arguments that have no
attackers, as for instance the facts of the program. Finally, we can have trees
with a single node with the empty sequence in case the queried literal has no
arguments supporting it.

In this case, if the game for a literal l has a terminal history of length one, the
Proponent can choose it and win both the games for l and l̄, i.e. the truth value of
l becomes PP . The same is true if the game for l̄ has a terminal history of length
one: the truth value of l is OO. In the cases in which the lengths of terminal
histories are two, each of the players has a winning strategy which yields a win
by blocking the first argument in the history. Therefore, OP arises as the truth
value of l.

6 Conclusions and Future Work

We have re-casted the basic definitions of DeLP in a simple mathematical lan-
guage so that we can analyze its underlying assumptions in a new light. We hope
that the proposed formal framework can shed some light on how the warrant
mechanism works and in particular, on the role of the defeating relation. We have
borrowed a page from game theory to present the dialectical process in what we
believe is a natural way. By initially dropping all restrictions in the dialectical
process we uncovered more possibilities for the outcome of a proposed query. We
can see these outcomes as truth values, yielding more information on the nature
of what a given DeLP program concludes about each literal.

We checked that the facts of the program get a positive answer before turning
to the conditions that make our warrant games finite. These conditions can come
either from the defeating relation itself or from an imposed protocol on the way
the games are constructed. Once we have a way that the games considered are
finite, we have fewer truth values. We analyzed the effect of having the extreme
cases of an empty defeating relation and also the biggest possible one.
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Game semantics for DeLP have already been introduced in in [CS04] and
[CFS06] The main differences with our approach are that, on one hand, they
do not apply standard notions of game theory, while on the other hand they
restrict themselves to a single game, that may yield only three truth values.
Their notions of strategy and of when a game is won lead to the collapse of
several of our truth values into one of theirs. While this is enough for them,
since they seek a game semantics independent of the features of the defeating
relation, our approach allows to detect fine-grained details of how DeLP works,
in particular how it varies according to that relation.

The inference procedure associated to finding winning strategies has a natural
“semantical” counterpart. That is, the pair of winners, one for each of the two
games can be immediately associated to a truth value as described in the table
in section 3. In turn, this means that for each defeating relation we have a
partition of the class of literals associated to a DeLP program. As it can be
seen from Propositions 17 and 18, the partitions may overlap, even for a pair of
defeating relations in which one is a subset of the other.

This framework of analysis can be extended to other argumentative system.
In a system as DeLP, where arguments support certain logical formulas2. Then,
any defeating relation among these arguments may be applied to yield games for
a formula and its negation. The properties of the defeating relation determine
the actual partition of the class of formulas.

In a more general setting, when arguments are abstract entities there is no
“negation” involved. But then, we can still partition the class of arguments in
terms of a single game for an argument. If there is a winning strategy for it, it
is deemed true.

As a next step we want to study some of the proposed intermediate defeating
relations like specificity and look for desirable properties the defeating relations
should have.
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