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Abstract. In this work, an agent architecture that combines defeasible argumen-
tation and the BDI model is described. Argumentation will be used as a mech-
anism for reasoning about beliefs, for filtering desires considering the agent’s
current environment, and for selecting proper intentions. The approach allows to
define different types of agents and this will affect the way in which desires are fil-
tered and hence, which intention is selected. For performing defeasible reasoning,
the approach uses a concrete framework based on a working defeasible argumen-
tation system: Defeasible Logic Programming (DeLP). A set of filtering rules,
represented as a defeasible logic program, will be used to represent reasons for
and against adopting desires. Thus, based on its perceived or derived beliefs, the
agent will argue about which of its desires are achievable in the current situation.
To clarify the ideas two applications will be introduced to show two significantly
different types of agent that can be implemented using this approach.

1 Introduction and Motivation

In this work, an agent architecture that combines defeasible argumentation and the BDI
model is described. Argumentation will be used for reasoning about beliefs, for filtering
desires considering the agent’s current environment, and for selecting proper intentions.
The approach allows to define different types of agents and this will affect the way in
which desires are filtered and hence, which intention is selected. For performing defea-
sible reasoning, the approach uses a concrete framework based on a working defeasible
argumentation system: Defeasible Logic Programming (DeLP).

This work is an extension of the article “Reasoning from Desires to Intentions: A
Dialectical Framework” published in AAAI 2007 by the same authors [1]. Here, besides
presenting the approach, we focus on two types of applications: a security system and
robotic soccer. They were chosen because they represent two significantly different
kinds of agents that can be implemented using our approach. As explained below, the
security-system agent will have the goal of handling unexpected problematic situations,
whereas the soccer agent will control the behavior of a robot in order to play somehow
successfully.
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In the first application domain, we consider a security system agent supervising a
building with several rooms (e.g., a museum). The agent’s goal will be to act in case
of unexpected problems (e.g., fire or intruders) and to decide which is the best ac-
tion to take in each case. The agent will have sources of information from which to
gather beliefs: video cameras and smoke, motion and temperature sensors. These sen-
sors can be thought as coupled and thus work as two mutual backup subsystems: the
smoke/temperature sensors pair would detect fire and the camera/motion sensor pair,
intruders. As it will be explained in detail in Section 7, agent’s intentions could be:
“send a guard to a room”, “call the police” or “call the firemen”.

The security system agent perceives information from the environment through the
mentioned sensors and this information represents its perceived belief. (e.g., “there is
motion in room 2” or “ there is no smoke in room 3”). Besides perceived beliefs the
agent may have more knowledge represented as a defeasible logic program (Section 2)
that will be used for warranting derived beliefs.

Our approach provides a defeasible reasoning mechanism for filtering agent’s desires
in order to obtain a set of current desires, i.e., those that are achievable in the current
situation. A set of filtering rules, represented as a defeasible logic program, will be
used to represent reasons for and against adopting desires. For example, the defeasible
rule call(firemen) –≺smoke(R) means “if there is smoke in a room R then there
are reasons for calling the firemen”. Thus, the security system agent will be provided
with a set of filtering rules that will represent reasons for and against adopting one of
its desires, i.e., call the firemen, call the police or send a guard. Thus, based on its
perceived or derived beliefs, the agent will debate which of its desires are achievable
in the current situation. For example, if the agent perceive that there is smoke in one
room then “call firemen” could be one of its current desires. Since the approach allows
to define different agent types, in the case of the security system application we will
develop a cautious agent, that is, an agent that only selects warranted desires. Once the
set of current desires is obtained, then the agent will be able to select one intention. The
security system agent will be explained in detail in Section 7.

The other application domain that we will consider in this work is robotic soccer.
Our robotic soccer agent senses its environment through a video camera that takes the
whole playing field, and from that perception it can build its set of perceived beliefs
(e.g., it is marked, a mate has the ball). Our proposed agent will have rules in order to
derived other beliefs, for instance, the defeasible rule “if a mate has the ball then the
agent may receive the ball” will allow the agent to build an argument for the belief that
it may receive the ball, based on the perception that a mate has the ball. However, as
we will show in detail in the next section, other rule like “if the agent is marked and a
mate has the ball then it will not receive the ball” can be used for building a counter-
argument for the previous one. The set of desires of the soccer agent could be shoot,
carry, pass and move, i.e., shoot to goal, carry the ball, pass the ball to a teammate and
move to a different position in the field.

A significant difference between the two application domains is how they select
intentions. The security-system agent is allowed to select and fulfill possibly many
intentions at the same time, because it would have to deal with multiple hazardous
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situations simultaneously. In opposition to this, a robotic-soccer agent can pursue just
one intention at a time, since, for instance, it cannot shoot on goal and pass the ball to
a teammate at once.

2 The Proposed Architecture

An outline of this architecture appears in Fig. 1 [1]. Briefly, the main input is the per-
ception from the environment, which is part of the set of belief rules (ΠB,ΔB) that,
through an argumentation process, leads to the set B of warranted beliefs. For example,
suppose that a soccer agent perceives that it is marked and a teammate has the ball,
then it can warrant the belief “I will not receive the ball”.

As shown in the figure, the set of filtering rules, along with a set D of desires and the
specification of a filtering function are the input to a dialectical filtering process, whose
output is the set Dc of the agent’s current desires. Following our example, consider that
our soccer agent has the filtering rule “if I will not receive the ball then there is a reason
to move to a different place”. Since there is a warrant for “I will not receive the ball”,
then move will be a current desire. The final stage of the agent behavior loop shown in
the figure involves the usage of a set of intention rules, embedded in an intention policy
that will determine the preferred rule. The current desire in the head of this rule will be
the selected intention.

As shown in Fig. 1, there are three main processes. They use defeasible argumenta-
tion based on Defeasible Logic Programming (DeLP). Next, we give a brief summary
of DeLP (for more details see [2]). In DeLP, knowledge is represented using facts, strict
rules, and defeasible rules:
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– Facts are ground literals representing atomic information or the negation of atomic
information using strong negation “∼” (e.g., hasBall(opponent)).

– Strict Rules are denotedL0← L1, . . . , Ln, where L0 is a ground literal and {Li}i>0
is a set of ground literals (e.g., ∼hasBall(myTeam)← hasBall(opponent)).

– Defeasible Rules are denoted L0 –≺L1, . . . , Ln, where L0 is a ground literal and
{Li}i>0 is a set of ground literals. (e.g., ∼pass(mate1) –≺marked(mate1)).

Rules are distinguished by the type of arrows, and a defeasible rule “Head –≺Body”
expresses that “reasons to believe in the antecedent Body give reasons to believe in the
consequent Head” representing tentative information that may be used if nothing could
be posed against it.

A Defeasible Logic Program (de.l.p.) P is a set of facts, strict rules and defeasible
rules. When required, P is denoted (Π, Δ) distinguishing the subset Π of facts and
strict rules, and the subset Δ of defeasible rules. Strict and defeasible rules are ground,
however, following the usual convention [3], some examples will use “schematic rules”
with variables.

Strong negation could appear in the head of program rules, and can be used to rep-
resent contradictory knowledge. From a program (Π, Δ) contradictory literals could
be derived, however, the set Π (used to represent non-defeasible information) must be
non-contradictory, i.e., no pair of contradictory literals can be derived from Π . Given
a literal L, L represents the complement with respect to strong negation. If contradic-
tory literals are derived from (Π, Δ), a dialectical process is used for deciding which
literal prevails. In short, an argument for a literal L, denoted 〈A, L〉, is a minimal set of
defeasible rules A⊆Δ, such that A∪Π is non-contradictory, and there is a derivation
for L from A∪Π . A literal L is warranted from (Π, Δ) if there exists a non-defeated
argument A supporting L. To establish if 〈A, L〉 is a non-defeated argument, argument
rebuttals or counter-arguments that could be defeaters for 〈A, L〉 are considered, i.e.,
counter-arguments that by some criterion are preferred to 〈A, L〉. A defeater A1 for
an argument A2 can be proper (A1 stronger than A2) or blocking (same strength). In
the examples that follow we assume generalized specificity as the comparison criterion,
however, as explained in [2] the criterion could be easily changed.

Since defeaters are arguments, there may exist defeaters for them, and defeaters for
these defeaters, and so on. Thus, a sequence of arguments called argumentation line
is constructed, where each argument defeats its predecessor in the line (for a detailed
explanation of this dialectical process see [2]). In DeLP, a query Q could have four
possible answers: YES, if Q is warranted; NO, if the complement of Q is warranted;
UNDECIDED, if neither Q nor its complement is warranted; and UNKNOWN, if Q is not
in the signature of the program.

3 Warranting Beliefs

Following [4], agent’s beliefs correspond to the semantics1 of a defeasible logic pro-
gram PB = (ΠB,ΔB). In ΠB two disjoint subsets will be distinguished: Φ of perceived
beliefs that will be updated dynamically (see Fig. 1), and Σ of strict rules and facts that

1 Since the semantics of DeLP is skeptical, there is only one.
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will represent static knowledge, ΠB= Φ ∪ Σ. Besides the perceived beliefs, the agent
may use strict and defeasible rules from PB to obtain a warrant for its derived beliefs
(see Definition 1).

We require ΠB to be non-contradictory, and also assume that perception is correct
in the sense that it will never give a pair of contradictory literals. The next definition
introduces the different types of belief that an agent will obtain from a defeasible logic
program (ΠB,ΔB).

Definition 1 (Belief types). A Perceived belief is a fact in Φ that the agent has per-
ceived directly from its environment. A Strict belief is a literal that is not a perceived
belief, and it is derived from ΠB = Φ ∪ Σ (i.e., no defeasible rules are used for its
derivation). A Defeasible belief is a warranted literal L supported by an non-empty ar-
gument A (i.e., it uses at least one defeasible rule). Finally, a Derived belief is a strict
or a defeasible belief. We will denote with Bs the set of strict beliefs, and with Bd the
set of defeasible beliefs. Therefore, in any given situation, the beliefs of an agent will be
B = Φ ∪ Bs ∪ Bd.

Example 1. Consider a robotic-soccer agent with the following program (ΠB,ΔB),
where ΠB was divided distinguishing the set Φ={hasBall(t1), marked(t1)} of per-
ceived facts representing “player t1 has the ball”, and “teammate t1 is marked”, the
set Σ of non-perceived information, and the set ΔB of defeasible knowledge:

Σ =

⎧
⎨

⎩

mate(t1), opponent(o1),
(∼mate(X)← opponent(X)),
(∼receive(self)← hasBall(self))

⎫
⎬

⎭

ΔB =

⎧
⎨

⎩

(receive(self) –≺hasBall(X), mate(X)),
(∼receive(self) –≺marked(self)),
(∼receive(self) –≺hasBall(X), ∼mate(X))

⎫
⎬

⎭

From (ΠB,ΔB) the agent can infer the strict belief: ∼mate(o1). The argument built
from (ΠB,ΔB) for receive(self): {receive(self) –≺hasBall(t1), mate(t1)}, has no
defeaters, and therefore, there is a warrant for one defeasible belief: receive(self) (the
agent may receive a pass).

The sets Φ, Bs and Bd are disjoint sets. It can be shown that the set B of beliefs of an
agent is a non-contradictory set of warranted literals. Although perceived beliefs are
facts in ΠB, there could be other facts in ΠB which are not perceived, for instance, facts
that represent agent’s features, roles, etc. These facts that do not represent perceived
information are persistent in the sense that they cannot change with perception, like
myRole(defender), or mate(t1).

We assume a perception function that provides the agent with information about its
environment. This function will be invoked by the agent to update its perceived beliefs
set Φ. When this happens the new information overrides the old one following some
criterion. Updating a set of literals is a well-known problem and many proposals exist
in the literature [5,6]. Since we require ΠB to be non-contradictory,when Φ is updated, a
revision function will ensure that ΠB remains a non-contradictory set. The specification
of a proper revision operator is out of the scope of this paper.
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Example 2. In the context of Ex. 1, with the perception that the agent is now marked,
the set Φ becomes {hasBall(t1), marked(t1), marked(self)}. Now the argument for
receive(self) has a “blocking defeater”, which means that the DeLP answer for both
receive(self) and ∼receive(self) will be UNDECIDED.

Consider a different situation, where the perception is Φ= {hasBall(o1)}. Here, the
answer for receive(self) is NO, since there is a warrant for ∼receive(self) supported
by the non-defeated argument {∼receive(self) –≺hasBall(o1), ∼mate(o1)}.

4 Filtering Desires

Agents desires will be represented by a given set D of literals that will contain a literal
representing each desire the agent might want to achieve. Clearly, D may be contradic-
tory, that is, both a literal L and its complement L might belong to D. We will assume
that beliefs and desires are represented with separate names, i.e., D ∩ B = ∅. Hence, a
desire cannot be perceived or derived as a belief.

Set D represents all the desires that the agent may want to achieve. However, de-
pending on the situation in which it is involved, there could be some desires impossible
to be carried out. For example, if the agent does not have the ball and the ball is in a
place p, then, the desire shoot could not be effected, whereas goto(p) is a plausible
option. Therefore, agents should reason about their desires to select the ones that could
be actually realized. Following the spirit of the BDI model, once appropriate desires
are detected, the agent may select (and commit to) a specific intention (goal), and then
select appropriate actions to fulfill that intention (see Figure 1).

In [4] a reasoning formalism was introduced for selecting from D those desires that
are suitable to be brought about. To perform this selection, the agent uses its beliefs
(representing the current situation) and a defeasible logic program (ΠF ,ΔF ) composed
by filtering rules. The filtering rules represent reasons for and against adopting desires.
In other words, filtering rules eliminate those desires that cannot be effected in the
situation at hand. Once the set of achievable desires is obtained, the agent can adopt
one of them as an intention.

Definition 2 (Filtering rule). Let D be the set of desires of an agent, a filtering rule is
a strict or defeasible rule that has a literal L ∈ D in its head and a non-empty body.

Observe that a filtering rule can be either strict or defeasible and, as will be explained
below, that will influence the filtering process. Note also that a filtering rule cannot be
a single literal (i.e., a fact). Below we will explain how to use filtering rules in order to
select desires, but first we will introduce an example to provide some motivation.

Example 3. A robotic-soccer agent Ar could have the following sets of desires and
filtering rules:

D =

⎧
⎪⎪⎨

⎪⎪⎩

shoot
carry
pass
move

⎫
⎪⎪⎬

⎪⎪⎭

ΠF =

⎧
⎨

⎩

∼carry← ∼ball
∼shoot← ∼ball
∼pass← ∼ball

⎫
⎬

⎭
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ΔF =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

shoot –≺theirGoalieAway
carry –≺noOneAhead
pass –≺freeT eammate
∼shoot –≺farFromGoal
∼carry –≺shoot
move –≺∼ball

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

Consider a particular situation in which an agent does not have the ball (i.e., ∼ball ∈
Φ). If the agent has ΔB = ∅, ΠB = Φ and the filtering rules (ΠF ,ΔF ) from Ex. 3,
then, there are warrants for ∼carry, ∼pass and ∼shoot from this information. Hence,
in this particular situation, the agent should not consider selecting the desires carry,
pass, and shoot, because there are justified reasons against them. Observe that these
reasons are not defeasible.

Consider now a different situation with a new set of perceived beliefs: B = Φ =
{ball, theirGoalieAway, farFromGoal}, that is, a situation in which the agent has
the ball and the opponent goalie is away from its position, but the agent is far from the
goal. Then, from the agent’s beliefs and the filtering rules (ΠF ,ΔF ) of Ex. 3, there are
arguments for both shoot and ∼shoot. Since these two arguments defeat each other,
a blocking situation occurs and the answer for both literals is UNDECIDED. In our ap-
proach (as will be explained later) an undecided desire could be eligible.

In this formalism, beliefs and filtering rules should be used in combination. Hence,
we need to explain how two defeasible logic programs can be properly combined.
Agents will have a de.l.p. (ΠB,ΔB) containing rules and facts for deriving beliefs, and
a de.l.p. (ΠF ,ΔF ) with filtering rules for selecting desires. We need to combine these
two de.l.p., but the union of them might not be a de.l.p., because the union of the sets
of strict rules could be contradictory. To overcome this issue, we use a merge revision
operator “◦” [6]. Hence, in our case, the join of (ΠB,ΔB) and (ΠF ,ΔF ) will be a pro-
gram (Π ,Δ), where Π = ΠB◦ΠF and Δ = ΔB ∪ ΔF ∪ ΔX . A set X is introduced,
containing those strict rules ri that derive complementary literals. This set is eliminated
when merging ΠB and ΠF , then every ri is transformed into a defeasible rule, and the
set ΔX is generated, carrying the resulting defeasible rules (see [4] for more details).

Definition 3 (Agent’s Knowledge Base)
Let (ΠB,ΔB) be the set containing rules and facts for deriving beliefs; (ΠF ,ΔF ), the
set of filtering rules; and ΔX = {(α –≺γ) | (α← γ) ∈ (ΠB ∪ ΠF ) and (ΠB ∪ ΠF ) �
{α, α}}. Then KAg = (ΠB◦ΠF , ΔB∪ΔF ∪ΔX ) will be the agent’s knowledge base.

The next definition introduces a mechanism for filtering D obtaining only those desires
that are achievable in the current situation. We allow the representation of different
agent types, each of which will specify a different filtering process.

Definition 4 (Current desires). Let T be a boolean function representing a selection
criterion. The set Dc of Current Desires is defined as:

Dc = filter(T, D) = {δ ∈ D | T (δ, KAg) = true}.

Observe that the filtering function can be defined in a modular way. Methodologically,
it would be important to make this function related to the KAg, in order to obtain a
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rational filtering. Implementing a sensible filtering function is not a trivial task, as it
is domain-dependent, and a general criterion cannot be stated. Different agent types
or personalities can be obtained depending on the chosen selection criterion T . The
following are interesting alternatives:

– CAUTIOUS AGENT: T (δ, KAg) is true when there is a warrant for δ from KAg.
– BOLD AGENT: T (δ, KAg) is true when there is no warrant for δ from KAg.

Notice that when neither δ nor δ has a warrant built from KAg, then both literals will
be included into the set Dc of a bold agent. Therefore, the agent will consider these two
options (among others), albeit in contradiction.

The way a bold agent selects its current desires (see Ex. 4) becomes clearer consider-
ing the relation of warrant states with DeLP answers. In DeLP, given a literal Q, there
are four possible answers for the query Q: YES, NO, UNDECIDED, and UNKNOWN.
Thus, agent types using DeLP can be defined as follows:

– CAUTIOUS AGENT: T (δ, KAg) is true when the answer for δ from KAg is YES.
– BOLD AGENT: T (δ, KAg) is true when the answer for δ from KAg is YES, UNDE-

CIDED or UNKNOWN.

Example 4. Extending Ex. 3, if we consider a bold agent as defined above and the set
of beliefs:

B = Φ =
{

farFromGoal, noOneAhead, ball
}

the agent will generate the following set of current desires:
Dc = {carry, pass}
In this case, we have KAg = (Φ ◦ ΠF , ∅ ∪ ΔF ∪ ∅). Regarding Dc, DeLP’s answer

for shoot is NO, for carry is YES, and for pass is UNDECIDED. Finally, note that a
cautious agent would choose carry as the only current desire.

As stated above, it is required that B and D be two separate sets to avoid the confusion
when joining the (ΠB,ΔB) and (ΠF ,ΔF ) programs. This is not a strong restriction, be-
cause a literal being both a belief and a desire brings about well-known representational
issues, e.g., symbol overload.

5 Selecting Intentions

In our approach, an intention will be a current desire d ∈ Dc that the agent can commit.
To specify under what conditions the intention could be achieved, the agent will be
provided with a set of intention rules. Next, these concepts and the formal notion of
applicable intention rule are introduced.

Definition 5 (Intention Rule)
An intention rule is a device used to specify under what conditions an intention could
be effected. It will be denoted as (d ⇐ {p1, . . . , pn}, {not c1, . . . , not cm}), where
d is a literal representing a desire that could be selected as an intention, p1, . . . , pn

(n ≥ 0) are literals representing preconditions, and c1, . . . , cm (m ≥ 0) are literals
representing constraints.
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Example 5. The robotic-soccer agent Ar might have the following set of intention
rules:

IR1 : (carry ⇐ {ball}, {})
IR2 : (pass ⇐ {ball}, {not shoot})
IR3 : (shoot ⇐ {ball}, {not marked})
IR4 : (carry ⇐ {winning}, {})
IR5 : (move ⇐ {}, {})

Now we describe how an intention becomes applicable.

Definition 6 (Applicable Intention Rule)
Let KAg= (ΠB◦ΠF , ΔB∪ΔF ∪ΔX ) be the knowledge base of an agent, and Dc, its set
of current desires. Let B be the set of beliefs obtained from (ΠB,ΔB). An intention rule
(d ⇐ {p1, . . . , pn}, {not c1, . . . , not cm}) is applicable iff

1. d ∈ Dc,
2. for each precondition pi (0 ≤ i ≤ n) it holds pi ∈ (B ∪ Dc)
3. for each constraint ci (0 ≤ i ≤ m) it holds cj �∈ (B ∪ Dc).

Thus, in every applicable intention rule it holds:

1. the head d is a current desire of the agent selected by the filtering function,
2. every precondition pi that is a belief is warranted from KAg,
3. every precondition pi that is a desire belongs to set Dc,
4. every belief constraint ci has no warrant from KAg, and
5. every ci that is a desire does not belong to Dc.

Example 6. Consider a bold agent, and K , B and Dc as given in Example 4. Now it
is possible to determine which of the intention rules of Example 5 are applicable. Rule
IR1 is applicable because carry ∈ Dc. Rule IR2 is applicable because pass ∈ Dc,
ball ∈ B, and shoot �∈ Dc. Rule IR3 is not applicable because shoot �∈ Dc. Rule IR4
is not applicable because the precondition is not a literal from K . Finally, IR5 is not
applicable because move �∈ Dc. Thus, {IR1, IR2} is the set of applicable rules.

Intention rules’ goal is to select the final set of intentions. In general, this selection
among current desires cannot be done by using filtering rules. For instance, if we have
to select just one intention, and there are two warranted current desires, how can we
choose one? There is a need for an external mechanism to make that decision.

Intention rules and filtering rules (Definition 2) have different semantics and usage:

– Filtering rules are used to build arguments for and against desires (thus, they are
the basis of the dialectical process for warranting a desire), whereas intention rules
are used on top of the dialectical process.

– Intention rules do not interact, whereas filtering rules do interact because they can
be in conflict or can be used for deriving a literal in the body of another filtering
rule.
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– Applicable intention rules depend on the result of the filtering process over desires
and warranted beliefs, whereas a filtering rule is “applicable” when its body literals
are supported by perceived beliefs, or by other defeasible or strict rules.

The set of all applicable intention rules contains rules whose heads represent ap-
plicable intentions achievable in the current situation. Depending on the application
domain, there are many possible policies to select from the set of applicable intentions.
For example, the agent could try to pursue some of them simultaneously, or it might be
forced to commit to one. Furthermore, each of these two options has, in turn, several
solutions. The idea behind having intention rules and policies is to give a more flex-
ible mechanism than plain priorities. Next, we define how to obtain a set of selected
intentions.

Definition 7 (Set of Selected Intentions)
Let IR be the set of intention rules, and App ⊆ IR be the set of all the applicable
intention rules. Let p : IR → D be a given selection policy. Then, the set of selected
intentions I will be p(App).

The policy p(App) could be defined in many ways. For instance, p(App) could be “re-
turn all the heads of rules in App”. However, depending on the application domain,
more restrictive definitions for p(App) could be necessary. For example, in our robotic
soccer domain, agents must select a single applicable intention at a time (i.e., an agent
cannot shoot and pass the ball at the same time). One possibility for defining a pol-
icy that returns a single intention is to provide a sequence with all the intention rules
[IR1,...,IRn] that represents a preference order among them. Then, the policy p(App)
selects the first rule IRk (1 ≤ k ≤ n) in the sequence that belongs to App, returning
the head of IRk.

Example 7. Continuing with Ex. 6. The set of applicable intention rules is App =
{IR1, IR2, IR5}, and suppose that the policy p is the one introduced above. Then, if
the preference order is [IR1, IR2, IR3, IR4, IR5], the selected intention will be the
head of IR1, i.e., p(App) = {carry}.

Now we can formally define the structure of an agent.

Definition 8 (DeLP-Based BDI Agent)
An agent A is a tuple 〈D, (ΠB,ΔB), (ΠF ,ΔF ), T, IR, p〉, where: D is the set of de-
sires of the agent, (ΠB,ΔB) is the agent knowledge (that will include perceived beliefs),
(ΠF ,ΔF ) are filtering rules, T is an agent type, IR is a set of intention rules, and p(·)
is a policy for selecting intentions.

6 Application Example: Robotic Soccer

In this section a robotic-soccer agent Ar will be introduced and then we will show, using
different examples, how Ar selects appropriate intentions when faced with different
scenarios. In each example, the difference of defining a bold or a cautious agent will be
made clear.
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Fig. 2. Two scenarios for a robotic soccer agent

The robotic-soccer agent will be Ar=〈D, (ΠB,ΔB), (ΠF ,ΔF ), T, IR, p〉 where the
set D and (ΠF ,ΔF ) are the ones from Ex. 3, the set IR is the one defined in Ex. 5, the
policy p was defined in Ex. 7, and the set ΔB = ∅.

Example 8. Consider the agent Ar and the situation depicted in Fig. 2(a) where “o1”
and “o2” represent the positions of two opponents and “self” is the position of the
agent Ar who has the ball (small circle).
Here, the perception of Ar is Φ1 = {ball, noOneAhead, theirGoalieAway} . In this
situation, Ar can build the following arguments:

A1 : {shoot –≺theirGoalieAway},
A2 : {carry –≺noOneAhead},
A3 : {(∼carry –≺shoot), (shoot –≺theirGoalieAway)}.

Hence, shoot is warranted, whereas carry, ∼carry, pass and ∼pass are not. As stated
above the filter function will determine the type of agent (e.g., bold or cautious), which
could affect the set of selected intentions. For example:

– for a cautious agent, Dc
C1 = {shoot}, intention rule IR3 is applicable, and IC1 =

{shoot};
– for a bold agent, Dc

B1 = {shoot, carry, pass}, intention rules IR1 and IR3 are
applicable, and IB1 = {carry}.

Note that the cautious agent obtains only one current desire that is its selected intention.
On the other hand, since the bold agent includes “undecided” literals in its current
desires, Dc

B1 has more elements than Dc
C1, there are two applicable intention rules,

and the policy “p” has to be used.

Example 9. Consider the agent Ar but in a different scenario (depicted in Fig. 2(b)).
The perception of the agent is here Φ2 = {ball, noOneAhead, farFromGoal}. In
this situation, Ar can build the following arguments:

A4 : {∼shoot –≺farFromGoal},
A5 : {carry –≺noOneAhead}.

Hence, ∼shoot and carry are warranted, whereas pass and ∼pass are not, and:

– for a cautious agent, Dc
C2 = {carry}, intention rule IR1 is applicable, and IC2 =

{carry};
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Fig. 3. Two scenarios for a robotic soccer agent

– for a bold agent, Dc
B2 = {carry, pass}, intention rules IR1 and IR2 are applica-

ble, and IB2 = {carry}.

Example 10. Consider now that Ar is in the situation depicted in Fig. 3(a), where
“t1” represents the position of a teammate of Ar. The perception of Ar is Φ3 =
{ball, freeT eammate, farFromGoal}. In this situation, Ar can build the following
arguments:

A6 : {∼shoot –≺farFromGoal},
A7 : {pass –≺freeT eammate},

Hence, we have that pass and ∼shoot are warranted, whereas carry and ∼carry are
not, and:

– for a cautious agent, Dc
C3 = {pass}, intention rule IR2 is applicable, and IC3 =

{pass};
– for a bold agent, Dc

B3 = {carry, pass}, intention rules IR1 and IR2 are applica-
ble, and IB3 = {carry};

Example 11. Consider finally that Ar is in the situation of (Fig. 3(b)). The perception
of Ar will be Φ4 = {ball, freeT eammate, theirGoalieAway}, and we can build the
following arguments:

A8 : {shoot –≺theirGoalieAway},
A9 : {pass –≺freeT eammate},
A10 : {(∼carry –≺shoot), (shoot –≺theirGoalieAway)}.

Hence, pass, shoot and ∼carry are warranted, and:

– for a cautious agent, Dc
C4 = {shoot}, intention rule IR3 is applicable, and IC4 =

{shoot};
– for a bold agent, Dc

B4 = {shoot}, intention rules IR3 is applicable, and IB4 =
{shoot}.

7 Application Example: Security System

In this section, we present an example consisting of a security-system agent. The system
will be simplified in order to keep it easy to understand.
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The security-system agent senses rooms of a building from four different sources:
temperature, smoke, motion sensors, and video cameras. Whenever a temperature or
smoke sensor is on, the agent will have a reason to call the firemen; analogously, if
a motion sensor or a camera tells that an intruder might have entered to a room, the
police should be called. These are not strict rules, but defeasible, as will be clear next
(see Figure 4). The idea behind this setting is to have pairs of sensors acting as mutual
backup, that is, we have smoke sensors as the backup for temperature sensors (and vice
versa), and motion sensors as the backup for cameras (and vice versa).

Although sensor pairs provide robustness, they also bring about a few shortcomings,
e.g., a motion sensor in a room might detect that something is moving, while the cor-
responding camera is not showing any change in the image. Images coming from a
camera may remain static for several reasons: perhaps someone attached a photograph
to it, or the device could be simply malfunctioning. An analogous situation occurs when
a room is signaled as having smoke but the temperature sensor placed there shows no
activity. This generally means that one of the two sensors is not working properly. The
filtering rules modelling abnormal situations like these are shown in Figure 4.

Abnormal situations within a room are handled by the agent, who will send a guard
to that room (rules in ΠF , Figure 4). If the guard confirms that an intruder has entered
to the room or that the room is on fire, it will manually trigger the corresponding alarm,
providing a reason to the agent for calling the firemen or the police (last rule in Fig-
ure 4). Thus, once an alarm is fired, it will stop when a call (either to the police or
firemen) is made, or when a guard arrives to a room and finds that everything is normal.

In this section, we will define an agent As= 〈Ds, (Πs
B,Δs

B), (Πs
F ,Δs

F ), Ts, IRs, ps〉.
We start the description of the agent with its set of desires:

Ds = {send guard(R), call(firemen, R), call(police, R)}

Desire send guard(R) means that a guard could be sent to room R, and desires
call(firemen, R) and call(police, R) give the possibility of calling the firemen and
police because room R is on fire or an intruder entered to R, respectively.

In this case, there is no need to include negated literals in the set of desires, since, for
instance, the security agent will never intend to fulfill the desire ∼call(firemen, R).
The system just will not make a call or send a guard to a room if there are no justified
reasons to do it. This can be seen as just a design decision, but it turned to be a sensible
representation.

A fundamental difference with the soccer domain examples is that the security-
system agent does not require the selection of just one intention. This agent will select
an arbitrary amount of intentions; it may even select no current desire as an intention
(i.e., Is = ∅). For instance, the agent could send several guards to certain rooms while
making calls to both police and firemen regarding other rooms.

The security system will be managed by a cautious agent, i.e., agent As will put in
its set of current desires only the desires that are warranted from the DeLP-program
(Πs

B ◦ Πs
F , Δs

B ∪ Δs
F ∪ Δs

X ). This choice will be justified at the end of this section.
The beliefs program Ps

B has no rules, it will just consist of the set of perceived facts.
The program (Πs

F ,Δs
F ) of strict and defeasible filtering rules is shown in Figure 4.
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Πs
F =

⎧
⎪⎪⎨

⎪⎪⎩

send guard(R)← hi temp(R), ∼smoke(R)
send guard(R)← ∼hi temp(R), smoke(R)
send guard(R)← motion(R), ∼camera(R)
send guard(R)← ∼motion(R), camera(R)

⎫
⎪⎪⎬

⎪⎪⎭

Δs
F =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

call(firemen, R) –≺hi temp(R)
call(firemen, R) –≺smoke(R)
∼call(firemen, R) –≺hi temp(R), ∼smoke(R)
∼call(firemen, R) –≺∼hi temp(R), smoke(R)
call(police, R) –≺motion(R)
call(police, R) –≺camera(R)
∼call(police, R) –≺motion(R), ∼camera(R)
∼call(police, R) –≺∼motion(R), camera(R)
call(Who, R) –≺manual alarm(Who, R)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Fig. 4. Filtering rules for the security agent As

The set Πs
F of strict rules models situations in which a couple of sensor differs and

a guard has to be sent to a room, e.g., when a camera detects no change, but the motion
sensor placed in the same room says that something has moved.

Defeasible rules in Δs
F model reasons for and against making a call to police or

firemen; for instance, if the temperature sensor signals heat in a certain room, the agent
has a reason to call the firemen. However, if the corresponding smoke sensor has not
fired, the agent will prefer not to make that call, but send a guard instead (modelled via
strict rules). Regarding the last rule, if the manual alarm is fired by that guard, the call
should be made immediately.

Note also that the filtering rules supporting calls to firemen or police refer to the
room in which the danger was detected through variable R. This is important for the
dialectical analysis to be performed over the same “situation”. That is, if an argument
for calling the police is posed and is under attack, it must be attacked by a counter-
argument that speaks of the same room. This parameter also tells where firemen or
police must go to.

The set IRs of intention rules for the security agent are:

IR1 : (send guard(R) ⇐ {}, {not manual alarm(W, R)})
IR2 : (call(firemen, R) ⇐ {}, {})
IR3 : (call(police, R) ⇐ {}, {})

Observe that intention rule IR1 has a constraint: a guard will not be sent to a room
R in which a manual alarm has been triggered (variable W refers to whom should
be called: police or firemen). This is because a guard is already there: the one who
sounded the alarm. As will be clear below, this is best written as a constraint, rather
than included into the filtering rules. Intention rules IR2 and IR3 specify that firemen
and police should be called to go to room R whenever the head of the rule is a current
desire.
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It is important to note that, if the manual-alarm constraint of IR1 is coded in the
strict filtering rules, we should add this constraint in the body of each of the four rules.
Keeping this constraint at intention-rules level allows us to write simpler filtering rules.
For the agent As the policy ps for selecting intentions will be simple, taking the set App
of applicable intention rules and returning the set containing their heads:

ps(App) = {h | (h ⇐ P, C) ∈ App}

Next, we introduce a series of sets of beliefs (B0 through B3) describing different
scenarios. For each of them, the set of selected intentions will be calculated. In order to
keep the example small and simple, we place our security agent in a building with two
rooms: r1 and r2. The initial set of beliefs is:

B0 =

⎧
⎪⎪⎨

⎪⎪⎩

hi temp(r1), smoke(r1),
∼camera(r1), ∼motion(r1),
∼hi temp(r2), ∼smoke(r2),
∼camera(r2), ∼motion(r2)

⎫
⎪⎪⎬

⎪⎪⎭

Where positive literals represent a sensor that has fired, whereas negative literals
mean the opposite. These beliefs, along with the filtering rules, give us two undefeated
arguments for call(firemen, r1):

〈{call(firemen, r1) –≺hi temp(r1)}, call(firemen, r1)〉,
〈{call(firemen, r1) –≺smoke(r1)}, call(firemen, r1)〉.

Then, the set of current desires is Dc
0 = {call(firemen, r1)}, which means that the

only applicable intention rule is IR2, and the set of selected intentions consists of the
head of IR2, that is Is0 = Dc

0 = {call(firemen, r1)}.

Observation: To avoid the system to keep sending guards to a room, we will assume
that queries about desires are performed only when the set of beliefs has changed.

Suppose now a different situation, in which not only the temperature and smoke
sensors in room r1 had fired, but also did the motion sensor in room r2. The new set of
beliefs is:

B1 =

⎧
⎪⎪⎨

⎪⎪⎩

hi temp(r1), smoke(r1),
∼camera(r1), ∼motion(r1),
∼hi temp(r2), ∼smoke(r2),
∼camera(r2), motion(r2)

⎫
⎪⎪⎬

⎪⎪⎭

As before, call(firemen, r1) has two undefeated arguments. In addition, now there
is one argument for calling the police:

〈{call(police, r2) –≺motion(r2)}, call(police, r2)〉,

which is attacked by:

〈{∼call(police, r2) –≺motion(r2), ∼camera(r2)}, ∼call(police, r2)〉.
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Since the argument for not calling the police is more specific than the other, the ar-
gument supporting call(police, r2) is defeated and does not belong to Dc

1 (note that
∼call(police, r2) is warranted). In addition to this, there is an empty argument for
send guard(r2) from the strict rule (send guard(R)← motion(R), ∼camera(R)).
Thus, we have Dc

1 = {call(firemen, r1), send guard(r2)}. Intention rule IR1 is ap-
plicable, because its precondition holds: send guard(r2) ∈ Dc

1, and its constraint is
satisfied: manual alarm(W, r2) �∈ B1. Intention rule IR2 is also applicable, because
call(firemen, r1) ∈ Dc

1. Hence, again we have that the current set of selected inten-
tions equals the set of current desires, i.e., Is1 = Dc

1. This will happen whenever the
manual alarm is not triggered, since the set of intention rules IRs is quite simple (rules
have no preconditions nor constraints, excepting IR1), and so is the policy (to take the
head of every applicable intention rule as a selected intention).

Now suppose that the situation in room r1 is now normal, but the motion sensor
in room r2 fired, and a guard has been sent to that room to check if an intruder has
effectively entered there. Let us assume that the guard finds a thief in room r2. Then,
the guard triggers the manual alarm, which changes the set of beliefs of the security-
system agent:

B2 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∼hi temp(r1), ∼smoke(r1),
∼camera(r1), ∼motion(r1),
∼hi temp(r2), ∼smoke(r2),
∼camera(r2), motion(r2),
manual alarm(police, r2)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

The following arguments for and against call(police, r2) are built:

As
1 = 〈{call(police, r2) –≺motion(r2)}, call(police, r2)〉,

As
2 = 〈{∼call(police, r2) –≺motion(r2), ∼camera(r2)}, ∼call(police, r2)〉,

As
3 = 〈{call(police, r2) –≺manual alarm(police, r2)}, call(police, r2)〉.

ArgumentAs
1 hasAs

2 asproperdefeater, since the latter ismorespecific than the former.
In turn, As

2 is blocked by defeater As
3, reinstating As

1. Thus, the desire call(police, r2) is
now warranted, and belongs to Dc

2. Desire send guard(r2) is also in Dc
2 from the strict

rule (send guard(R)← motion(R), ∼camera(R)). Therefore, Dc
2 = {call(police,

r2), send guard(r2)}. Note that now intention rule IR1 is not applicable, because its
constraint (not manual alarm(police, r2)) does not hold. Here, the only applicable in-
tention rule is IR3. Thus, the set of selected intentions is Is2 = {call(police, r2)}, which
differs from Dc

2. It is a sensible decision not to send a guard to a room when the police is
already being sent there by a guard in that room.

Finally, consider that sensors do not detect anything abnormal, then:

B3 =

⎧
⎪⎪⎨

⎪⎪⎩

∼hi temp(r1), ∼smoke(r1),
∼camera(r1), ∼motion(r1),
∼hi temp(r2), ∼smoke(r2),
∼camera(r2), ∼motion(r2),

⎫
⎪⎪⎬

⎪⎪⎭

This set of beliefs builds no arguments for any desire from the filtering rules. Then,
the set of current desires is empty, and so is the set of selected intentions, i.e., Dc

3 =
Is3 = ∅. The system will remain in this state until a sensor is fired.
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The choice of a cautious agent instead of a bold one is clear when analyzing the
latter case. A bold agent would select every desire as a current desire, since there are no
arguments for nor against any of them:

D′c
3 =

⎧
⎨

⎩

send guard(r1), send guard(r2),
call(firemen, r1), call(firemen, r2),
call(police, r1), call(police, r2)

⎫
⎬

⎭

Regarding intention rules, all of them will be applicable, and therefore I′s3 = D′c
3 .

This means that guards will be sent to rooms r1 and r2, and both the police and firemen
will be called to check on both rooms. Clearly, this is not the intended behavior for the
security-system agent.

8 Related Work

The use of defeasible argumentation in BDI architectures is not new and it was origi-
nally suggested in [7], and more recently in [8]. Also in [9] and [10] a formalism for
reasoning about beliefs and desires is given, but they do not use argumentation.

Recently, Rahwan and Amgoud [11] have proposed an argumentation-based ap-
proach for practical reasoning that extends [12] and [13], introducing three different
instantiations of Dung’s framework to reason about beliefs, desires and plans, respec-
tively. This work is, in our view, the one most related to ours. Both approaches use
defeasible argumentation for reasoning about beliefs and desires (in their work, they
also reason about plans, but this is out of the scope of our presentation). Like us, they
separate in the language those rules for reasoning about belief from those rules for rea-
soning about desires; and, in both approaches, it is possible to represent contradictory
information about beliefs and desires. Both approaches construct arguments supporting
competing desires, and they are compared and evaluated to decide which one prevails.
Their notion of desire rule is similar to our filtering rules.

In their approach, two different argumentation frameworks are needed to reason
about desires: one framework for beliefs rules and another framework for desires rules.
The last one depends directly on the first one, and since there are two kinds of ar-
guments, a policy for comparing mixed arguments is given. In our case, only one ar-
gumentation formalism is used for reasoning with both types of rules. In their object
language, beliefs and desires include a certainty factor for every formula, and no ex-
plicit mention of perceived information is given. In our case, uncertainty is represented
by defeasible rules [2] and perceived beliefs are explicitly treated by the model. Besides,
the argumentation formalism used in their approach differs from ours: their comparison
of arguments relies on the certainty factor given to each formula, and they do not dis-
tinguish between proper and blocking defeaters. Another fundamental difference is that
we permit the definition of different types of agents. This feature adds great flexibility
in the construction of an agent.

9 Conclusions

We have shown how a deliberative agent can represent its perception and beliefs using
a defeasible logic program. The information perceived directly from the environment
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is represented with a subset of perceived beliefs that is dynamically updated, and a set
formed with strict rules and facts represent other static knowledge of the agent. In addi-
tion to this, defeasible argumentation is used to warrant agents (derived) beliefs. Strict
and defeasible filtering rules have been introduced to represent knowledge regarding
desires. Defeasible argumentation is used for selecting a proper desire that fits in the
particular situation the agent is involved. With this formalism, agents can reason about
its desires and select the appropriate ones.

We allow the representation of different agent types, each of which will specify a
different way to perform the filtering process. In our approach, an intention is a current
desire that the agent can commit to pursue. The agent is provided with a set of intention
rules that specify under what conditions an intention could be achieved. If there is more
than one applicable intention rule, then a policy is used to define a preference criterion
among them. Thus, intention policies give the agent a mechanism for deciding which
intentions should be selected in the current situation.

In this work, we have shown how to implement two rather different kinds of agents
using our model. We discussed their similarities and differences, stressing the point of
the selection of the set of intentions, which is bound to be a singleton in one application,
whereas is unrestricted in the other. Another difference regards to the way each of these
agents perceive and gather beliefs. Regarding the sets of desires of both applications,
they do not have any important structural difference; in fact, they coincide in not having
complementary literals. However, it is difficult to conceive an application domain with
a set of desires containing complementary literals. Usually, an argument concluding the
complement of a desire has the purpose of “stopping” the justification (in the sense of
warrant) of that desire, rather than supporting the opposite desire.

As future work, further research will be directed towards the improvement of the
implementation of the proposed architecture. We plan to use a DeLP-Server [14], which
provides a Defeasible Logic Programming reasoning service and allows client-agents
to perform contextual queries.
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