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Abstract. This work addresses the problem of providing explanation capabili-
ties to an argumentation system. Explanation in defeasible argumentation is an
important, and yet undeveloped field in the area. Therefore, we move in this di-
rection by defining a concrete argument system with explanation facilities.

We consider the structures that provide information on the warrant status of
a literal. Our focus is put on argumentation systems based on a dialectical proof
procedure, therefore we study dialectical explanations. Although arguments rep-
resent a form of explanation for a literal, we study the complete set of dialectical
trees that justifies the warrant status of a literal, since this set has proved to be a
useful tool to comprehend, analyze, develop, and debug argumentation systems.

1 Introduction

There has been attention focused on the role of explanations from several areas of Ar-
tificial Intelligence –especially from the expert systems community [1,2,3]. A few of
them treat explanations in relation with argument systems [4]. In the literature, often
an argument is regarded as an explanation for a certain literal. That is, the claim being
explained is put under discussion, and only then it will be accepted or not. In belief
revision, the role of explanations has also been studied [5]: a new perception is accom-
panied by an explanation, which is used (when needed) to resolve inconsistency with
the agent’s current beliefs. The piece of knowledge having the “best” explanation is the
one that prevails, and is accepted as a new belief.

We are concerned with the type of explanations that give the necessary information to
understand the warrant status of a literal. Since our focus is put on argumentation sys-
tems based on a dialectical proof procedure, we study dialectical explanations (from
now on, δ-Explanations). Although we recognize arguments as an explanation for a lit-
eral, we are interested in obtaining the complete set of dialectical trees that justify the
warrant status of a literal. We show how δ-Explanations can be a useful tool to com-
prehend and analyze the interactions among arguments, and for aiding in the encoding
and debugging of the underlying knowledge base. Several examples, generated with an
implemented system that returns, for a given query, both the answer and the associated
δ-Explanation, are given throughout the paper.
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An interesting review about explanations in heuristic expert systems is given in [1],
in which a definition is given: “...explaining consists in exposing something in such a
way that it is understandable for the receiver of the explanation –so that he/she improves
his/her knowledge about the object of the explanation– and satisfactory in that it meets
the receiver’s expectations.” In our approach, we explain through exposing the whole
set of dialectical trees related to the queried literal. We believe that this information is
understandable from the receiver’s point-of-view, because all the arguments built, their
statuses (i.e., defeated/undefeated), and their interrelations are explicitly shown. This
type of information would be satisfactory for the receiver, because it contains all the
elements at stake in the dialectical analysis that supports the answer.

An empirical analysis about the impact of different types of explanations in the con-
text of expert systems is given in [2]. The typology there described includes: 1) trace:
a record of the inferential steps that led to the conclusion; 2) justification: an explicit
description of the rationale behind each inferential step; 3) strategy: a high-level goal
structure determining the problem-solving strategy used. From this typology, the au-
thors claim that –through their empirical analysis– the most useful type of explanation
is “justification”. We contend that the type of explanations we propose correspond to
both the “justification” and the “strategy” types; that is, we are giving not only the strat-
egy used by the system to achieve the conclusion, but also the rationale behind each
argument, which is clearly stated by its role in the dialectical tree.

We agree with [4], in that “argumentation and explanation facilities in knowledge-
base systems should be investigated in conjunction”. Therefore, we propose a type of
explanation that attempts to fill the gap in the area of explanations in argument systems.
Our approach is to provide a higher-level explanation in a way that the whole context
of a query can be revealed. The examples given in this paper stress this point.

This paper is organized as follows: first we will briefly outline the DELP concepts,
then we will introduce δ-Explanations and their relation with DELP’s answers, and
finally we will discuss the related literature.

2 DeLP Overview

Defeasible Logic Programming (DELP) combines results of Logic Programming and
Defeasible Argumentation. The system is fully implemented and available online [6]. A
brief explanation is included below (see [7] for full details). It has the declarative capa-
bility of representing weak information in the form of defeasible rules, and a defeasible
argumentation inference mechanism for warranting the entailed conclusions. A DELP-
program P is a set of facts, strict rules and defeasible rules defined as follows. Facts
are ground literals representing atomic information or the negation of atomic informa-
tion using the strong negation “∼” (e.g., chicken(little) or ∼scared(little)). Strict
Rules represent non-defeasible information and are denoted L0 ← L1, . . . , Ln, where
L0 is a ground literal and {Li}i>0 is a set of ground literals (e.g., bird← chicken)
or ∼innocent← guilty). Defeasible Rules represent tentative information and are de-
noted L0 –≺L1, . . . , Ln, where L0 is a ground literal and {Li}i>0 is a set of ground
literals. (e.g., ∼flies –≺chicken or flies –≺chicken, scared).
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When required, P is denoted (Π, Δ) distinguishing the subset Π of facts and strict
rules, and the subset Δ of defeasible rules (see Example 1). Strong negation is allowed
in the head of rules, and hence may be used to represent contradictory knowledge.
From a program (Π, Δ) contradictory literals could be derived. Nevertheless, the set Π
(which is used to represent non-defeasible information) must possess certain internal
coherence. Therefore, no pair of contradictory literals can be derived from Π .

A defeasible rule is used to represent tentative information that may be used if noth-
ing could be posed against it. Observe that strict and defeasible rules are ground. How-
ever, following the usual convention [8], some examples use “schematic rules” with
variables. To distinguish variables, as usual, they start with an uppercase letter.

Example 1. Consider the DELP-program (Π1, Δ1) where:

Π1 =

⎧
⎨

⎩

(bird(X)← chicken(X)) chicken(little)
chicken(tina) bird(rob)
scared(tina)

⎫
⎬

⎭

Δ1=

⎧
⎨

⎩

flies(X) –≺bird(X)
flies(X) –≺chicken(X), scared(X)
∼flies(X) –≺chicken(X)

⎫
⎬

⎭

This program has three defeasible rules representing tentative information about the
flying ability of birds in general, and about regular chickens and scared ones. It also has
a strict rule expressing that every chicken is a bird, and three facts: ‘tina’ and ‘little’
are chickens, and ‘tina’ is scared.

From a program is possible to derive contradictory literals, e.g., from (Π1, Δ1) of Ex-
ample 1 it is possible to derive flies(tina) and ∼flies(tina). For the treatment of con-
tradictory knowledge DELP incorporates a defeasible argumentation formalism. This
formalism allows the identification of the pieces of knowledge that are in contradiction,
and a dialectical process is used for deciding which information prevails as warranted.
This dialectical process (see below) involves the construction and evaluation of argu-
ments that either support or interfere with the query under analysis. Once the analysis is
done, the generated arguments will represent an explanation for the query. As we will
show next, arguments that explain an answer for a given query will be shown in a partic-
ular way using dialectical trees. The definition of dialectical tree will be included below,
but first, we will give a brief explanation of other related concepts (for the details see [7]).

Definition 1 (Argument Structure). Let (Π, Δ) be a DELP-program, 〈A, L〉 is an
argument structure for a literal L from (Π, Δ), if A is the minimal set of defeasible
rules (A⊆Δ), such that: (1) there exists a defeasible derivation for L from Π ∪ A, and
(2) the set Π ∪ A is non-contradictory.

Example 2. From the DELP-program (Π1, Δ1) the following arguments can be ob-
tained (due to space restrictions ‘tina’ will be abbreviated to ‘t’ and ‘flies(tina)’ to ‘f’):
〈A1, f〉 = 〈{flies(t) –≺bird(t)}, f lies(t)〉
〈A2, ∼f〉 = 〈{∼flies(t) –≺chicken(t)}, ∼flies(t)〉
〈A3, f〉 = 〈{flies(t) –≺chicken(t), scared(t)}, f lies(t)〉

In DELP a literal L is warranted if there exists a non-defeated argument A sup-
porting L. To establish if 〈A, L〉 is a non-defeated argument, defeaters for 〈A, L〉 are
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considered, i.e., counter-arguments that by some criterion are preferred to 〈A, L〉. It is
important to note that in DELP the argument comparison criterion is modular and thus,
the most appropriate criterion for the domain that is being represented can be selected.
In the examples in this paper we will use generalized specificity [9], a criterion that fa-
vors two aspects in an argument: it prefers (1) a more precise argument (i.e., with greater
information content) or (2) a more concise argument (i.e., with less use of rules). Using
this criterion in Ex. 2 〈A3, f〉 is preferred to 〈A2, ∼f〉 (more precise) and 〈A2, ∼f〉 is
preferred to 〈A1, f〉 (the later use the strict rule bird(X)← chicken(X)).

A defeater D for an argument A can be proper (D is preferred to A) or blocking
(same strength). Since defeaters are arguments, there may exist defeaters for them, and
defeaters for these defeaters, and so on. Thus, a sequence of arguments called argu-
mentation line is constructed, where each argument defeats its predecessor. To avoid
undesirable sequences, that may represent circular or fallacious argumentation lines, in
DELP an argumentation line has to be acceptable, that is, it has to be finite, an argument
can not appear twice, and supporting arguments, i.e., in odd positions, (resp. interfering
arguments) have to be not contradictory (see [7]).

Example 3. (Extends Ex. 2) The argument 〈A2, ∼f〉 is a proper defeater of 〈A1, f〉,
and 〈A3, f〉 is a proper defeater of 〈A2, ∼f〉. Hence, [〈A1, f〉, 〈A2, ∼f〉, 〈A3, f〉] is
an acceptable argumentation line.

Clearly, there can be more than one defeater for a particular argument A. Therefore,
many acceptable argumentation lines could arise from A, leading to a tree structure.
Given an argument 〈A0, h0〉, a dialectical tree [7] for 〈A0, h0〉, denoted T (〈A0, h0〉), is
a tree where every node is an argument. The root of T (〈A0, h0〉) is 〈A0, h0〉, and every
inner node is a defeater (proper or blocking) of its parent. Leaves correspond to non-
defeated arguments. In a dialectical tree every path from the root to a leaf corresponds
to a different acceptable argumentation line. Thus, a dialectical tree provides a structure
for considering all the possible acceptable argumentation lines that can be generated
for deciding whether an argument is defeated. We call this tree dialectical because it
represents an exhaustive dialectical analysis for the argument in its root.

Given a literal h and an argument 〈A, h〉 to decide whether a literal h is warranted,
every node in the dialectical tree T (〈A, h〉) is recursively marked as “D” (defeated) or
“U” (undefeated), obtaining a marked dialectical tree T ∗(〈A, h〉). Nodes are marked by
a bottom-up procedure that starts marking all leaves in T ∗(〈A, h〉) as “U”s. Then, for
each inner node 〈B, q〉 of T ∗(〈A, h〉), (a) 〈B, q〉 will be marked as “U” iff every child
of 〈B, q〉 is marked as “D”, or (b) 〈B, q〉 will be marked as “D” iff it has at least a child
marked as “U”.

Given an argument 〈A, h〉 obtained from P, if the root of T ∗(〈A, h〉) is marked as
“U”, then we will say that T ∗(〈A, h〉) warrants h and that h is warranted from P .

In this paper, marked dialectical trees will be depicted as a tree of labelled triangles
where edges denote the defeat relation (in Figure 1 three marked dialectical trees are
shown). A double arrow edge represents a blocking defeat, whereas a single arrow
represents a proper defeat. An argument 〈A, h〉 will be depicted as a triangle, where
its upper vertex is labelled with the conclusion h, and the set of defeasible rules A are
associated with the triangle itself. At the right of each node the associated mark (“U”
or “D”) will be shown.
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Example 4. (Extends Ex. 3) Figure 1 shows the marked dialectical tree for T ∗(〈A1, f〉)
(the leftmost tree), which has only one argumentation line. Observe that the argument
〈A2, ∼f〉 interferes with the warrant of ‘flies(tina)’ and the argument 〈A3, f〉 reinstates
〈A1, f〉. The root of T ∗(〈A1, f〉) is marked as “U” and therefore the literal ‘flies(tina)’
is warranted.

3 DeLP Answers and δ-Explanations

Next, we will define queries, answers and explanations. We will introduce two types
of queries: ground (called DELP-queries) and schematic. For both types of queries we
will define explanations and a way to obtain the corresponding answer, that is: YES, NO,
UNDECIDED or UNKNOWN.

Definition 2 (Queries). A DELP-query is a ground literal that DELP will try to war-
rant. A query with at least one variable will be called schematic query and will represent
the set of DELP-queries that unify with the schematic one.

The dialectical process for warranting a query involves the construction and evaluation
of several arguments that either support or interfere with the query under analysis. These
generated arguments are connected through the defeat relation and are organized in
dialectical trees. Observe that given a query Q there could exist different arguments
that support Q, and each argument will generate a different dialectical tree. Therefore,
as we will show below, the returned answer for Q will be only ‘the tip of the iceberg’ of
a set of several dialectical trees that have been explored to support the resulting answer.

Thus, to understand why a query has a particular answer, it is essential to consider
which arguments have been generated and what connections exist among them. In
DELP, δ-Explanations for answers will be the set of dialectical trees that have been
explored to obtain a warrant for that query. The definition for a δ-Explanation for a
DELP-query follows, whereas explanations for schematic queries will be introduced
by the end of this Section.

3.1 δ-Explanations for DELP-Queries

We contend that δ-Explanations are a central part of an argumentation system whose
proof procedure is based on dialectical trees, because they allow to visualize the reason-
ing carried out by the system, and the support for the answer. It is clear that without this
information at hand it will be very difficult to understand the returned answer. Next, we
will introduce explanations for ground queries. Then, we will generalize explanations
for schematic queries. Given a literal L, the complement with respect to strong negation
will be denoted L (i.e., a=∼a and ∼a=a).

Definition 3 (δ-Explanation).
Let P be a DELP-program and Q a DELP-query. Let 〈A0, Q〉,. . .,〈An, Q〉 be all the
arguments for Q from P, and 〈B0, Q〉,. . .,〈Bm, Q〉 be all the arguments for Q from
P. Then, the explanation for Q in P is the set of marked dialectical trees EP (Q) =
{T ∗(〈A0, Q〉),. . .,T ∗(〈An, Q〉)} ∪ {T ∗(〈B0, Q〉),. . .,T ∗(〈Bm, Q〉)}.

Now it is possible to define DELP-answers in terms of their δ-Explanation.



300 A.J. Garcı́a, N.D. Rotstein, and G.R. Simari

A2

A3

~flies(tina)

flies(tina)
U

DA1

flies(tina)
U

A3

flies(tina)
U A2

~flies(tina)
D

A3

flies(tina)
U

Fig. 1. δ-Explanation for flies(tina)

Definition 4 (DELP-answer). Given a DELP-program P and a DELP-query Q, the
answer for Q is either:
YES, if at least one tree in EP (Q) warrants Q.
NO, if at least one tree in EP (Q) warrants Q.
UNDECIDED, if no tree in EP (Q) warrants Q nor Q.
UNKNOWN, if Q is not in the signature of P .

Example 5. (Extends Ex. 4) Figure 1 shows the δ-Explanation for the DELP-query
‘flies(tina)’, where two dialectical trees for ‘flies(tina)’ are marked “U”. There-
fore, ‘flies(tina)’ is warranted and the answer is YES. Note that the δ-Explanation of
Figure 1 is also an explanation for query ‘∼flies(tina)’ which answer is NO. Finally,
observe that the answer for ‘walks(tim)’ is UNKNOWN, because it is not in the program
signature.

Remark 1. The explanation for complementary literals will always be the same, since
it is composed by both the trees for the literal and the trees for its complement.

As we will show in the examples below, the semantics of the programs is sensitive to the
addition or deletion of rules and facts. That is, a new fact added to a program can have
a big impact on the number of arguments that can be built from the modified program.
Taking into account this characteristic and considering the many possible interactions
among arguments via the defeat relation (that lead to the construction of different dialec-
tical trees), δ-Explanations become essential for understanding the reasons that support
an answer.

Example 6. Consider the DELP-program (Π6, Δ6):

Π6 = {q, t} Δ6 =
{

(r –≺q) (∼r –≺q, s)
(r –≺s) (∼r –≺t)

}

where the following arguments can be built:
〈R1, ∼r〉 = 〈{∼r –≺t}, ∼r〉 〈R2, r〉 = 〈{r –≺q}, r〉
From this program the answer for the query ‘r’ is UNDECIDED, and Figure 2 shows
its δ-Explanation. Note that, although the literal ‘s’ is in the program signature (in the
body of a rule), there is no supporting argument for it. Therefore, the answer for query
‘s’ is UNDECIDED, and the δ-Explanation is the empty set (i.e., E(Π6,Δ6)(s)=∅).

Remark 2. DELP-queries with UNKNOWN answers always have an empty δ-Explana
tion. However, DELP-queries that have UNDECIDED answers may have empty or non-
empty explanations. Finally, DELP-queries with YES or NO answers will always have
a non-empty explanation.
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R2

~r
U

R1
D

r

R1

r
U

R2
D

~r

Fig. 2. δ-Explanation E(Π6,Δ6)(r)

Example 7 shows how the introduction of a single fact in (Π6, Δ6) makes a significant
difference in E(Π6,Δ6)(r).

Example 7. (Extends Ex. 6) Consider the DELP-program (Π6 ∪ {s}, Δ6) where the
fact ‘s’ is added to the program of Example 6. If we query for ‘r’ again, we get the
answer NO with the δ-Explanation shown in Figure 3. Note that this δ-Explanation
consists now of two more trees than the one in the previous example. This is so because
there are two newly generated arguments:

〈R3, r〉 = 〈{r –≺s}, r〉 〈R4, ∼r〉 = 〈{∼r –≺q, s}, ∼r〉
It is our contention that, in DELP, the answer for a query can be easily explained by
presenting the user the associated dialectical trees. From this set of trees the answer
becomes thoroughly justified, and the context of the query is revealed. The following
examples have more elaborated DELP-programs and the δ-Explanations show that a
defeater D for A may attack an inner point of A.

Example 8. Consider the DELP-program (Π8, Δ8):

Δ8 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(a –≺b) (b –≺c)
(∼b –≺d) (d –≺e)
(∼d –≺f, e) (∼b –≺e)
(a –≺x) (x –≺c)
(∼x –≺e) (a –≺h)
(h –≺f ) (∼h –≺i)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

Π8 = {c, e, f}

where the following arguments can be built:

R1

R2

R4

~r

~r

U

U R4

~r
U

D R3
D

rr

R4U
~r

R2

R1

r
D

U R4
U

~r~r

R3

R1

r
D

U R4
U

~r~r

Fig. 3. δ-Explanation E(Π6∪{s},Δ6)(r)
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〈B1, b〉 = 〈{b –≺c}, b〉 〈B2, ∼b〉 = 〈{∼b –≺e}, ∼b〉
〈X1, x〉 = 〈{x –≺c}, x〉 〈X2, ∼x〉 = 〈{∼x –≺f}, ∼x〉
〈D1, d〉 = 〈{d –≺e}, d〉 〈D2, ∼d〉 = 〈{(∼d –≺f, e)}, ∼d〉
〈A1, a〉 = 〈{(a –≺h), (h –≺f)}, a〉

From (Π8, Δ8) the answer for ‘a’ is YES, and the answer for ‘∼a’ is NO. As stated
in Remark 1, although both queries have different answers, they both have the same
δ-Explanation, which is depicted in Figure 4. In that figure, sub-arguments are repre-
sented as smaller triangles contained in the triangle which corresponds to the main
argument at issue. For instance, the argument 〈B2, ∼b〉 defeats 〈B1, b〉 that is a subar-
gument of 〈{(a –≺b), (b –≺c)}, a〉.

Example 9. Consider the DELP-program (Π8 ∪ {i}, Δ8) where the fact ‘i’ is added
to the program of Example 8. Now the argument 〈H2, ∼h〉 can be generated which is a
defeater for 〈H1, h〉 (a subargument of 〈A1, a〉):
〈H2, ∼h〉 = 〈{∼h –≺i}, ∼h〉 〈H1, h〉 = 〈{h –≺f}, h〉
Here, argument H2 blocks argument H1 (subargument of A1), leaving no undefeated
arguments for ‘a’; then, the answer for both ‘a’ and ‘∼a’ is UNDECIDED. The rest of
the explanation remains the same as the one in Figure 4.

From the DELP programmer point-of-view, δ-Explanations give a global idea of the
interactions among arguments within the context of a query. This is an essential de-
bugging tool when programming: if unexpected behaviour arises, the programmer can
check the given explanations to detect errors.

In the previous examples we have not shown an explanation associated with a query
with an UNKNOWN answer, because this type of answers have an empty δ-Explanation.
Finally, observe that queries that do not correspond to the intended domain of the pro-
gram will return the answer UNKNOWN. This will capture errors like querying for “fly”
instead of “flies”, or a query like “penguin(X)” in Example 1.

3.2 Explanations for Schematic Queries

A schematic query is a query that has at least one variable (see Definition 2), and hence,
it represents the set of DELP-queries that unify with it. Now, we will extend the defini-
tion of δ-Explanation to include schematic queries. Consider again the DELP-program

A1
U

a

B1

D1

b

a

D

D2

~d
U

D
B2
U

~b~b

�

d

�

X1

X2

~x
U

Dx

a�

Fig. 4. δ-Explanation E(Π8,Δ8)(a)
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of Example 1, the schematic query flies(X) has actually infinite terms that unify with
variable X . However, all queries with terms that are not in the program signature will
produce an UNKNOWN answer and therefore an empty explanation. Thus, the set of in-
stances of a schematic query that will be considered for generating an explanation will
refer only to those instances of DELP-queries that contain constants from the program
signature. An explanation for a schematic query will be the set of δ-Explanations of
those instances whose answers are YES, NO, or UNDECIDED.

Definition 5 (Generalized δ-Explanation).
Let P be a DELP-program and Q a schematic query. Let {Q1, . . . , Qz} be all the
instances of Q so that their DELP-answer is different from UNKNOWN. Let EP (Qi)
be the δ-Explanation for the DELP-query Qi (1 ≤ i ≤ z) from program P . Then, the
generalized δ-Explanation for Q in P is EP (Q) = { EP (Q1), . . ., EP (Qz)}.

Observe that a δ-Explanation (Definition 3) is a particular case of a Generalized δ-
Explanation, where the set EP (Q) is a singleton.

Example 10. Consider again the DELP-program (Π1, Δ1), and suppose that we want
to know if from this program it can be warranted that a certain individual does not fly.
If we query for ∼flies(X), the answer is YES, because there is a warranted instance:
∼flies(little). The supporting argument is (‘little’ was abbreviated to ‘l’):
〈B1, ∼flies(l)〉 = 〈{∼flies(l) –≺chicken(l)}, ∼flies(l)〉
The trees of the generalized explanation are shown in Figure 5. This explanation also
shows that the other instance (∼flies(tina)) is not warranted.

It is important to note that the answer for the schematic query flies(X) is also YES,
but with a different set of warranted instances: flies(tina) and flies(rob). The sup-
porting argument for instance ‘X = tina’ was already discussed, and the undefeated
argument for instance ‘X = rob’ is:
〈C1, f lies(rob)〉 = 〈{flies(rob) –≺bird(rob)}, f lies(rob)〉

The generalized δ-Explanation for flies(X) is the same as the one for ∼flies(X),
depicted in Figure 5 (see Remark 1).

Definition 6 (DELP-answer for a schematic query). Given a DELP-program P and
a schematic query Q, the answer for Q is

B2

~flies(little)
U C1

flies(rob)
UA2

A3

~flies(tina)

flies(tina)
U

DA1

A2

A3

~flies(tina)

flies(tina)

flies(tina)

U

U

D

A3

flies(tina)
U

B2

~flies(little)
U

B1

flies(little)
D

Fig. 5. Generalized δ-Explanation for ‘∼flies(X)’
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– YES, if there exists an instance Qi of Q such that at least one tree in EP (Qi)
warrants Qi.

– NO, if for every instance Qi of Q that is in the signature of P, there is no tree in
EP (Qi) that warrants Qi, and there exists an instance Qi of Q such that at least
one tree in EP (Qi) warrants Qi.

– UNDECIDED, if for every instance Qi of Q that is in the signature of P , there is no
tree in EP (Qi) that warrants Qi nor Qi.

– UNKNOWN, if there is no instance Qi of Q such that Qi is in the signature of P.

Observe that Definition 4 is a particular case of the previous definition, where there is a
single instance of Q.

Example 11. Consider the following DELP-program:

Π11 =
{

adult(peter) adult(annie)
unemployed(peter) student(annie)

}

Δ11 =

⎧
⎨

⎩

has a car(X) –≺adult(X)
∼has a car(X) –≺unemployed(X)
∼has a car(X) –≺student(X)

⎫
⎬

⎭

where the following arguments can be built(‘has a car’ was replaced by ‘car’, ‘annie’
by ‘a’, and ‘peter’ by ‘p’):
〈A1, car(a)〉 = 〈{car(a) –≺adult(a)}, car(a)〉
〈A2, ∼car(a)〉 = 〈{∼car(a) –≺student(a)}, ∼car(a)〉
〈P1, car(p)〉 = 〈{car(p) –≺adult(p)}, car(p)〉
〈P2, ∼car(p)〉 = 〈{∼car(p) –≺unemployed(p)}, ∼car(p)〉

When querying for ‘has a car(X)’, variable ‘X’ unifies with both ‘annie’ and
‘peter’. Then, DELP builds arguments for both instances: A1 and A2 for ‘X = annie’,
and P1 and P2 for ‘X = peter’. From Figure 6, it is clear that no argument is unde-
feated, i.e., there is no tree that warrants ‘has a car(X)’, for either of the two in-
stances. Therefore, the answer is UNDECIDED, and the variable remains unbound.

Schematic queries give us the possibility of asking more general questions than ground
queries. Now we are not asking whether a certain piece of knowledge can be believed,
but we are asking if there exists an instance of that piece of knowledge (related to an
individual) that can be warranted in the system. This could lead to deeper reasoning as
we may pose a query, gather the warranted instances and continue reasoning with those
individuals.

P1

P2

~car(peter)
U

D

car(peter)

P2

P1

car(peter)
U

D

~car(peter)

A1

A2

~car(annie)
U

D

car(annie)

A2

A1

car(annie)
U

D

~car(annie)

Fig. 6. Generalized δ-Explanation for ‘has a car(X)’
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The δ-Explanations system receives a DELP-program P, a query Q and an argument
comparison criterion C, and returns a δ-Explanation EX along with the proper answer
ANS. The system is described by the following algorithm in a Prolog-like notation:

d_Explanations(P,C,Q,EX,ANS):- warrants(P,C,Q,WSQ),
complement(Q,NQ), warrants(P,C,NQ,WSNQ),
get_trees(WSQ,WSNQ,EX), get_answer(Q,WSQ,WSNQ,ANS).

warrants(Q,WS):- findall((Q,TREES),warrant(Q,TREES),WS).
get_answer(_,WSQ,WSNQ,yes):- WSQ \= [].
get_answer(_,WSQ,WSNQ,no):- WSNQ \= [].
get_answer(Q,_,_,unknown):- not_in_signature(Q).
get_answer(_,_,_,undecided).

Predicate warrant/2 takes a query and attempts to warrant it; it does so by building
dialectical trees. In case the query is warranted, the dialectical trees built are ‘saved’
along with the query. Different instances of a query can be obtained via backtracking.
Predicate warrants/2 takes a query Q and returns all its warranted instances (along
with their corresponding trees) within a list. Predicate get trees/3 retrieves the di-
alectical trees information from the warranted instances for both Q and ∼Q. Finally,
predicate get answer/4 takes the query, both lists of warranted instances (for Q and
∼Q), and returns the answer.

The above described system is fully implemented and offers support for queries,
answers and explanations. Explanations are written into an XML file, which is parsed
by a visualization applet. The visualization of trees belonging to dialectical explanations
is enhanced by allowing the user to zoom-in/out, implode/explode arguments, etc. The
internal structure of an argument is hidden when imploding, and a unique tag is shown
instead.

Lemma 1 (δ-Explanation Soundness). Let P be a DELP-program, C an argument
comparison criterion, and Q a schematic query posed to P. Let E be the δ-Explanation
returned in support of the answer A. Then E justifies (Definition 6) A.

Lemma 2 (δ-Explanation Completeness). Let P be a DELP-program, C an argu-
ment comparison criterion, and Q a schematic query posed to P . Let E be the δ-
Explanation returned in support of the answer A. Then E contains all the possible
justifications (Definition 6) for any instance of A.

4 Related Work

A very thorough survey relating explanation and argumentation capabilities can be
found in [4]. Although the authors are mainly concerned about negotiation/persuasion,
and interactive/collaborative explanations, the discussion Section of that article poses
really interesting issues about the integration of explanation and argumentation; for in-
stance, whether the same knowledge base can be used to generate both explanatory and
argumentative information. In our approach, we do extract all the information from the
given knowledge base (i.e., the DELP-program) to return both kinds of information.
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In [4], the authors claim that these two areas (i.e., argumentation and explanation
facilities in knowledge-base systems) should be “investigated in conjunction”. Our pa-
per tries to move forward in that direction, providing means to “better understand the
mechanisms underlying the activities of explanation and argumentation”.

Recently, Douglas Walton [10] has offered a dialogue theory of explanation. In that
work a successful explanation is defined as transfer of understanding in a dialogue
system where a questioner and a respondent take part. The questioner begins by asking
a question seeking to understand some piece of information and the respondent gives
a reply that conveys understanding of that information to the questioner. His approach
follows a different path than ours, focussing in the distinction between explanation and
argument and defining an explanation as a new speech act.

Our approach handles δ-Explanations within argumentation systems through a
graphical representation of dialectical trees. Visualization in argumentation has been
addressed in [11]. In that paper, the objective is to provide a visual tool that does not
require the reader to understand logic to be able to follow the argumentative process
shown by the system. To achieve this, they use an animated argumentation space: ar-
guments are introduced one by one in the process to allow for a more comprehensive
visualization. They also allow to see this space in a static manner. Both ways give
the user the possibility to navigate the space at will, or in auto-pilot mode. Every ele-
ment taking part of the argumentation process is represented graphically: conflicts are
highlighted and arguments are tagged with the role they are playing in the whole pro-
cess.

Although the article by Schroeder uses argumentation trees in a similar way as we do,
we focus on explanations; that is, we are concerned with providing the whole context
corresponding to the query. Our explanations are represented in such a way that they
are useful to both humans and software agents.

5 Conclusions and Future Work

Future work includes further research about additional information that can be attached
to the current form of the δ-Explanations. In particular, we are currently formalizing
the notion of discarded arguments. These arguments are discarded by the system in the
sense that their introduction into an acceptable argumentation line renders it fallacious.
At the moment, we have singled out two reasons for an argument A to be discarded:
(1) Non-attacking arguments: when A conflicts with the last argument in the line, but
does not attack it (i.e., the last argument is better than A wrt. the comparison criterion);
(2) Double-blocking arguments: when the final argument in the line An is a blocking
defeater of the preceding argument An−1, and A is, in turn, a blocking defeater for An.
More dialectical constraints can be considered thus adding more types of discarded
arguments. It is interesting to show discarded arguments within a δ-Explanation, be-
cause the user has the possibility of analyzing why a particular argument has not been
included into the explanation. Sometimes, it is not clear why these situations occur.

We have addressed the problem, not often considered, of providing explanation ca-
pabilities to an argumentation system. We have defined a concrete argument system
with explanation facilities. We consider the structures that provide information on the
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warrant status of a literal. As the system has been implemented, we are developing
applications that uses the δ-Explanation system as subsystem.
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