
An application of Defeasible Logic Programming
to Decision Making in a Robotic Environment

Edgardo Ferretti1, Marcelo Errecalde1,
Alejandro J. Garćıa2,3, and Guillermo R. Simari3

1 Laboratorio de Investigación y Desarrollo en Inteligencia Computacional
Universidad Nacional de San Luis, Argentina.

{ferretti, merreca}@unsl.edu.ar
2 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET)

3 Department of Computer Science and Engineering
Universidad Nacional del Sur, Bah́ıa Blanca, Argentina.

{ajg, grs}@cs.uns.edu.ar

Abstract. Decision making models for autonomous agents have received
increased attention, particularly in the field of intelligent robots. In this
paper we will show how a Defeasible Logic Programming approach with
an underlying argumentation based semantics, could be applied in a
robotic domain for knowledge representation and reasoning about which
task to perform next. At this end, we have selected a simple application
domain, consisting of a micro-world environment using real and simu-
lated robots for cleaning tasks.

1 Introduction

In this paper we will show how a Defeasible Logic Programming approach could
be applied in a robotic domain for knowledge representation and reasoning about
which task to perform next. At this end, we have selected a simple application
domain, consisting of a micro-world environment using real and simulated robots
for cleaning tasks. We use the Khepera 2 robot [1], a miniature mobile robot
ideal for this kind of experimentation. We also use a professional simulator (see
Fig. 1) called Webots [2], which allows behavior simulation prior to physical
experimentation with the robot.

The experimental environment (see Fig. 1(a)) is a square arena of 100 units
per side which is conceptually divided into square cells of 10 units per side each.
There is a global camera which provides the necessary information to perform
their activities. The store is a 30× 30 units square on the top-right corner and
represents the target area where boxes should be transported. There are boxes
of three different sizes (small, medium and big) spread over the environment.

As the robot is not able of measuring the state of its battery, it cannot perform
a globally optimized task. In this way, the robot will reason about which box
is more convenient to select next trying to minimize the time spent in moving
boxes. To reason, the robot will use perceptual information about the boxes and
its preferences (represented with defeasible rules). For example, the robot could



prefer the smallest box, or the nearest one, or the box that it is nearest to the
store. As we will show below, arguments for and against selecting a box will be
considered to select the more appropriate one.

A robot capable of solving this kind of problems must at least address the
following issues: to perceive the surrounding world, to decide which goal to reach
and to have the capabilities for reaching this goal. Several architectures providing
the agents with these skills have been proposed [3–5]. In this work, we only
consider the necessary reasoning processes to make decisions about which is the
most suitable box to be transported by the robots. We will not address the low-
level aspects related to sensorial perception and the implementation of low-level
actions for the Khepera robots, because they have been presented elsewhere [6].

(a) (b)

Fig. 1. Two possible different environments

2 Knowledge Representation and Defeasible Reasoning

Figure 1(a) shows an example with one robot (khep1) and three boxes to be
carried: a small one (box1) near to the robot, box3 that is medium size and it
is near to the store, and box4 that is big and it is far from both, robot and
store. Taking into account its preferences the robot will consider reasons for and
against selecting each box. We will refer to these reasons as arguments.

For example, there is an argument for selecting box3 because “it is near to
the store” but there is an argument against selecting box3 because box1 “is near
to the robot and it is smaller than box3.” As it will be shown below a dialec-
tical analysis involving arguments and counter-arguments will be performed to
decide which argument prevails. In this case box1 will be chosen, because it is
the smallest box near to the robot. Since the environment is dynamic, when
it changes new arguments could be generated and others could be invalidated.



Thus, the robot might select different boxes in different circumstances. For in-
stance, let us consider Fig. 1(b), that differs from Fig. 1(a) in that there is one
more small box (box2) in the environment. Here, in the new situation, the robot
khep1 will choose box2 because it has a new argument against selecting box1:
“there is another small box (box2) that it is nearer to the store than box1.”

The robot’s knowledge about the environment and its preferences for select-
ing a box will be represented using Defeasible Logic Programming (DeLP) a
formalism that combines logic programming and defeasible argumentation (for
a detailed presentation see [7]). In DeLP, knowledge is represented using facts,
strict rules or defeasible rules. Facts are ground literals representing atomic in-
formation or the negation of atomic information using the strong negation “∼”.
Strict Rules, are denoted L0← L1, . . . , Ln, where the head L0 is a ground literal
and the body {Li}i>0 is a set of ground literals. In the same way, Defeasible
Rules, are denoted L0 –≺L1, . . . , Ln, where the head L0 is a ground literal and
the body {Li}i>0 is a set of ground literals. In this work, facts will be used for
representing perceptual information about the environment, (e.g., box(box2) or
near(box2, store)), strict rules will be used for representing non-defeasible infor-
mation (e.g., ∼far(box1, khep1)← near(box1, khep1)), and defeasible rules will
be used for representing tentative reasons for (or against) selecting a box (e.g.,
choose(X) –≺ small(X)). The symbol “–≺ ” distinguishes a defeasible rule from
a strict one with the pragmatic purpose of using a defeasible rule to represent
defeasible knowledge, i.e., tentative information.

A Defeasible Logic Program P is a set of facts, strict rules and defeasible
rules. When required, P is denoted (Π, ∆) where Π=Πf∪Πr, distinguishing the
subset Πf of facts, strict rules Πr and the subset ∆ of defeasible rules. Observe
that strict and defeasible rules are ground following the common convention [9].
Some examples will use “schematic rules” with variables. As usual in Logic
Programming, variables are denoted with an initial uppercase letter.

Strong negation is allowed in the head of program rules, and hence may be
used to represent contradictory knowledge. From a program (Π,∆) contradic-
tory literals could be derived, however, the set Π (which is used to represent non-
defeasible information) must possess certain internal coherence. Therefore, Π
has to be non-contradictory, i.e., no pair of contradictory literals can be derived
from Π. Given a literal L the complement with respect to strong negation will be
denoted L (i.e., a=∼a and ∼a=a). To deal with contradictory and dynamic in-
formation, in DeLP, arguments for conflicting pieces of information are built and
then compared to decide which one prevails. The prevailing argument provides
a warrant for the information that it supports (A DeLP interpreter satisfying
the semantics of [7] is accessible online at http://lidia.cs.uns.edu.ar/DeLP).

In DeLP a literal L is warranted from (Π, ∆) if a non-defeated argument A
supporting L exists. An argument for a literal L, denoted 〈A, L〉, is a minimal
set of defeasible rules A⊆∆, such that A ∪ Π is non-contradictory and there is
a derivation for L from A ∪ Π. To establish if 〈A, L〉 is non-defeated, argument
rebuttals or counter-arguments that could be defeaters for 〈A, L〉 are considered,
i.e., counter-arguments that by some criterion are preferred to 〈A, L〉. Since



counter-arguments are arguments, defeaters for them may exist, and defeaters for
these defeaters, and so on. Thus, a sequence of arguments called argumentation
line is constructed, where each argument defeats its predecessor in the line.
Given a query Q there are four possible answers: yes, if Q is warranted; no, if
the complement of Q is warranted; undecided, if neither Q nor its complement
are warranted; and unknown, if Q is not in the language of the program.

3 Robot Decision Making: A Simple Example

In this section we describe the components used by the robot to decide which box
to transport next. Consider the situation depicted in Fig. 1(b). The knowledge
of the robot, referring to this particular scenario, will be represented with the
defeasible logic program P = (Π,∆) shown in Fig. 2.

robot(khep1) (1) big(box4) (10)
self(khep1) (2) near(box1, khep1) (11)
box(box1) (3) near(box2, khep1) (12)
box(box2) (4) near(box2, store) (13)
box(box3) (5) near(box3, store) (14)
box(box4) (6) far(box1, store) (15)
small(box1) (7) far(box3, khep1) (16)
small(box2) (8) far(box4, store) (17)
medium(box3) (9) far(box4, khep1) (18)

(a) Πf

∼near(X, O)← far(X, O) (19)
smaller(X, Y )← small(X), medium(Y ) (20)
smaller(X, Y )← small(X), big(Y ) (21)
smaller(X, Y )← medium(X), big(Y ) (22)
∼smaller(X, Y )← same size(X, Y ) (23)
same size(X, Y )← small(X), small(Y ) (24)
same size(X, Y )← medium(X), medium(Y ) (25)
same size(X, Y )← big(X), big(Y ) (26)

(b) Πr

choose(X)–≺ near(X, store) (27)
choose(X)–≺ self(Z), near(X, Z) (28)
∼choose(X)–≺ self(Z), near(Y, Z), near(X, store), diff(X, Y ) (29)
∼choose(X)–≺ big(X) (30)
choose(X)–≺ big(X), self(Z), near(X, Z) (31)
choose(X)–≺ big(X), near(X, store) (32)
choose(X)–≺ small(X) (33)
∼choose(X)–≺ small(X), far(X, store), self(Z), far(X, Z) (34)
∼choose(X)–≺ self(Z), near(X, Z), near(Y, Z), near(Y, store),

diff(X, Y ), same size(X, Y ) (35)
∼choose(X)–≺ choose(Y ), smaller(Y, X) (36)

(c) ∆

Fig. 2. Defeasible Logic program P = (Π,∆)

The defeasible rules of ∆ describe the robot’s preferences about which box to
choose in different situations. In this case, the defeasible rules model preference
criteria with respect to the size and location of the boxes. For instance, rules (27)
and (28) represent the robot’s preferences on those boxes near to the store or
near to itself. Moreover, rule (29) states that boxes near to the robot are more
desirable than those near to the store. Furthermore, rules (30)-(34) represent
the preferences of the robot with respect to the boxes’ size as well as in which
situations, boxes of a determined size are eligible. In addition, rule (35) states
that when two boxes of the same size, X and Y , are near to the robot, but Y
is also near to the store, then Y is preferred over X. Finally, rule (36) provides
defeasible reasons not to choose X if a smaller box Y was already chosen.



In the scenario depicted in Fig. 1(b), the robot should choose box2 because
it is near to itself and it is also near to the store. Observe that although from P,
there are two arguments (A1 and A2) supporting choose(box1), these arguments
are defeated by A3. Thus, the answer for choose(box1) is no.

A1 =
{

choose(box1)–≺ small(box1)
} A2 =

{
choose(box1)–≺ self(khep1), near(box1, khep1)

}

A3 =

{∼choose(box1)–≺ self(khep1), near(box1, khep1), near(box2, khep1), near(box2, store),
diff(box1, box2), same size(box1, box2)

}

The interaction among these arguments is shown below (where white triangles
represent defeated arguments, black triangles non-defeated ones, and arrows the
defeat relation). From P three arguments for choose(box2) can be obtained (A4,
A5 and A6) and one argument against it (A7). Here, A7 is a blocking defeater
of A4 and A5 and it is a proper defeater of A6, but A5 is also a blocking defeater
of A7, therefore, the answer to choose(box2) is yes because A6 is defeated by
A7 which is in turn defeated by A5, reinstating A6. Finally, the answers for
choose(box3) and choose(box4) are no because arguments that use rule (36) are
built to support ∼choose(box3) and ∼choose(box4).

A4 =
{

choose(box2)–≺ small(box2)
} A5 =

{
choose(box2)–≺ self(khep1), near(box2, khep1)

}

A6 =
{

choose(box2)–≺ near(box2, store)
}

A7 =
{∼choose(box2)–≺ self(khep1), near(box1, khep1), near(box2, store), diff(box2, box1)

}

A1 4 A2 4 A7 4 A4 4 A5 4 A6 N

A3 N

OO

A3 N

OO

A5 N

OO

A7 N

OO

A7 N

OO

A7 4

OO

A5 N

OO

4 Related work

Our proposal is closely related to the approach adopted by Parsons et al. [10]. In
particular, in our work we follow some ideas exposed in [10] about the integration
of high-level reasoning facilities with low-level robust robot control. We share the
approach of seeing the low-level module as a black box which receives goals to be
achieved from the high-level component, and plans to reach goals are internally
generated. However, our work differs from the proposal of [10] in that we do
not use a BDI deliberator as high-level reasoning layer, instead we use a non-
monotonic reasoning module based on a defeasible argumentation system.

With respect to this last issue, our approach to decision making is related
to other works which use argumentative processes as a fundamental component
in the decision making of an agent [11–13]. It is important to note that these
argumentation systems have been usually integrated in software agents. On the
other hand, in our approach, defeasible argumentation is applied in a robotic
domain where the uncertainty generated by noisy sensors and effectors, changes
in the physical environment and incomplete information about it, make this kind
of problems a more challenging test-bed for the decision processes of an agent.



5 Conclusions and Future Work

In this paper we have shown how a Logic Programming approach could be ap-
plied in a robotic domain for knowledge representation and reasoning about
which task to perform next. Our approach considers the ability of Defeasible
Logic Programming to reason with incomplete and potentially inconsistent in-
formation. The simple application domain described consists of a micro-world
environment using real and simulated robots for cleaning tasks. We have pre-
sented a problem and its solution when there is only one robot in the environ-
ment. Future work includes considering more complex environments, such as
more than one robot with different abilities working in the same environment
with the inclusion of obstacles.

Acknowledgment

We thank the Universidad Nacional de San Luis and the Universidad Nacional
del Sur for their unstinting support. This work is partially supported by, CON-
ICET (PIP 5050), and ANPCyT (PICT 2002, Nro.13096 and Nro.12600).

References

1. K-Team: Khepera 2. http://www.k-team.com (2002)
2. Michel, O.: Webots: Professional mobile robot simulation. Journal of Advanced

Robotics Systems 1(1) (2004) 39–42
3. Gat, E.: On three-layer architectures. In: Artificial Intelligence and Mobile Robots.

(1998)
4. Estlin, T., Volpe, R., Nesnas, I., Muts, D., Fisher, F., Engelhardt, B., Chien, S.:

Decision-making in a robotic architecture for autonomy. In: International Sympo-
sium, on AI, Robotics and Automation for Space. (2001)

5. Rotstein, N.D., Garćıa, A.J.: Defeasible reasoning about beliefs and desires. In:
Proc. of the 11th Int. Workshop on Non-Monotonic Reasoning. (2006) 429–436

6. Ferretti, E., Errecalde, M., Garćıa, A., Simari, G.: Khedelp: A framework to sup-
port defeasible logic programming for the khepera robots. In: ISRA06. (2006)

7. Garćıa, A.J., Simari, G.R.: Defeasible logic programming: an argumentative ap-
proach. Theory and Practice of Logic Programming (2004)

8. Simari, G.R., Loui, R.P.: A mathematical treatment of defeasible reasoning and
its implementation. Artificial Intelligence (1992)

9. Lifschitz, V.: Foundations of logic programming. In: Principles of Knowledge
Representation. CSLI (1996)

10. Parsons, S., Pettersson, O., Saffiotti, A., Wooldridge, M.: Robots with the Best
of Intentions. In: Artificial Intelligence Today: Recent Trends and Developments.
Springer (1999)

11. Atkinson, K., Bench-Capon, T.J.M., Modgil, S.: Argumentation for decision sup-
port. In: DEXA. (2006) 822–831

12. Kakas, A., Moraitis, P.: Argumentation based decision making for autonomous
agents. In: AAMAS. (2003)

13. Parsons, S., Fox, J.: Argumentation and decision making: A position paper. In:
FAPR. (1996)


