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Abstract

Argumentation systems have substantially evolved in the past few years, resulting in adequate tools to model some
forms of common sense reasoning. This has sprung a new set of argument-based applications in diverse areas.

In previous work, we defined how to use precompiled knowledge to obtain significant speed-ups in the inference pro-
cess of an argument-based system. This development is based on a logic programming system with an argumentation-
driven inference engine, called Observation Based Defeasible Logic Programming (ODeLP). In this setting was first
presented the concept of dialectical databases, that is, data structures for storing precompiled knowledge. These struc-
tures provide precompiled information about inferences and can be used to speed up the inference process, as TMS do
in general problem solvers.

In this work, we present detailed algorithms for the creation of dialectical databases in ODeLP and analyze these
algorithms in terms of their computational complexity.
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1 Introduction

Argumentation systems have substantially evolved in
the past few years, resulting in adequate tools to
model some forms of common sense reasoning. This
has sprung a new set of argument-based applica-
tions in diverse areas, where knowledge representa-
tion issues play a major role, such as clustering algo-
rithms [17], intelligent web search [6] and critiquing
systems [5].

In previous work [3], we defined how to use precom-
piled knowledge to obtain significant speed-ups in the

inference process of an argument-based system. The
development is based on a logic programming system
that uses an argumentation driven inference engine,
called Observation Based Defeasible Logic Program-
ming (ODeLP). Logic programming approaches to ar-
gumentation [7, 21] have proved to be suitable for-
malization tools in different application domains as
they combine the powerful features provided by logic
programming for knowledge representation together
with the ability to model complex, argument-based in-
ference procedures in unified, integrated frameworks.

In these models, real time issues play a particu-
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larly important role when modeling most applica-
tions, specially those concerning interactive systems.
In argument-based approaches a timely interaction is
especially hard to achieve, as the inference process in-
volved is complex and computationally expensive. To
achieve this kind of interaction we proposed the use of
precompiled knowledge for argumentation systems,
in the same way truth maintenance systems (TMS)
[12] use precompiled knowledge to improve the per-
formance of problem solvers.

To implement this idea we defined in [3] the concept
of dialectical databases. These are data structures
that store precompiled knowledge, providing precom-
piled information about inferences that can be used
to speed up the inference process, as TMS do in gen-
eral problem solvers. We discussed the main issues
of the integration of dialectical databases in ODeLP,
such as defining the theoretical background and mod-
ifying the inference process to take advantage of the
new component.

In this work, we present detailed algorithms for the
creation of dialectical databases in ODeLP. Then, we
analyze these algorithms in terms of their computa-
tional complexity. The remainder of this paper is or-
ganized as follows. First, we present a brief overview
of the ODeLP system. Next, we detail the rol of dialec-
tical databases as structures of precompiled knowl-
edge to assist inference, and finally we formulate and
analyze the algorithms for dialectical databases cre-
ation in ODeLP.

2 Related Work

Before addressing the contributions of our work, we
present a brief overview of related work in the fields
of precompiled knowledge. In truth maintenance sys-
tems (TMS) the use of precompiled knowledge helps
improve the performance of problem solvers. A sim-
ilar technique will be used in ODeLP to address real
time constrains.

Truth Maintenance Systems (TMS) were defined by
Doyle in [12] as support tools for problems solvers.
The function of a TMS is to record and maintain the
reasons for an agent’s beliefs. Doyle describes a se-
ries of procedures that determine the current set of be-
liefs and update it in accord with new incoming rea-
sons. Under this view, rational thought is deemed as
the process of finding reasons for attitudes [12]. Some
attitude (such as belief, desire, etc.) is rational if it is
supported by some acceptable explanation.

TMS have two basic data structures: nodes, which
represent beliefs, and justifications which model rea-
sons for the nodes. The TMS believes in a node if
it has a justification for the node and believes in the
nodes involved in it. Although this may seem circu-
lar, there are assumptions (a special type of justifica-
tions) which involve no other nodes. Justifications for
nodes may be added or retracted, and this accounts
for a truth maintenance procedure [12], to make any
necessary revisions in the set of beliefs. An interest-
ing feature of TMS is the use of a particular type of
justifications, called non-monotonic, to make tenta-
tive guesses. A non-monotonic justification bases an
argument for a node not only on current beliefs in cer-
tain nodes, but also on lack of beliefs in other nodes.
Any node supported by a non-monotonic justification
is called an assumption.

TMS solve part of the belief revision problem in gen-
eral problem solvers and provide a mechanism for
making non-monotonic assumptions. As Doyle men-
tions in [12] performance is also significantly im-
proved, even though the overhead required to record
justifications for every program belief might seem ex-
cessive, we must consider the expense of not keeping
these records. When information about derivations
is discarded, the same information must be contin-
ually re-derived, even when only irrelevant assump-
tions have changed.

The fundamental actions of a TMS are:

• create a new node, to which the problem solv-
ing program using the TMS can attach the state-
ment of a belief.

• add (or retract) a justification for a node, to rep-
resent a step of an argument for the belief rep-
resented by the node.

• mark a node as a contradiction, to represent the
inconsistency of any set of beliefs which enters
into an argument for the node.

Every node in the TMS has an associated set of justi-
fications. Each justification represents a different rea-
son for asserting it. The node is believed if and only if
at least one of the justifications is valid.1 In this case
it is say to be in the set of beliefs. Otherwise, the node
is out of this set. It is important to mark that the dis-
tinction between in and out is not that between true
and false. The former classification refers to current
possession of valid reason for belief; while true and

1see [12] for a precise definition.
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lion(simba).

lion(mufasa).

puppy(simba).

feline(X) –≺lion(X).

climbs tree(X) –≺feline(X).
∼climbs tree(X) –≺lion(X).

climbs tree(X) –≺lion(X), puppy(X).
∼climbs tree(X) –≺sick(X).

Figure 1: An ODeLP program modeling the behavior of a group of lions

false evaluate inferences according to its truth value,
independently of any reason.

In the TMS, each potential belief to be used as a hy-
pothesis or a conclusion of an argument must be given
its own distinct node. When uncertainty about some
inference P exists, nodes for both P and its negation
must be provided. Either of these nodes can have
or lack well-founded arguments, leading to a four-
element belief set (neither P nor ∼P are believed,
exactly one is believed, or both are believed). The
author details the procedures needed to establish the
state of every node, and to update these states in case
new justifications or facts are added to the TMS.

Since the appearance of TMS a large body of literature
and applications have been developed [10, 11, 13, 19,
14, 2]. The original idea appears not to have been
any particular technical mechanism, but the general
concept of an independent module for belief mainte-
nance [19].

3 Observation-based DeLP

Defeasible Logic Programming (DeLP) [15] provides
a language for knowledge representation and reason-
ing that uses defeasible argumentation to decide be-
tween contradictory conclusions through a dialecti-
cal analysis. Codifying the knowledge base of the
agent by means of a DeLP program provides a good
trade-off between expressivity and implementability.
Extensions of DeLP that integrate possibilistic logic
and vague knowledge along with an argument-based
framework have also been proposed [8]. Recent re-
search has shown that DeLP provides a suitable frame-
work for building real-world applications (e.g. clus-
tering algorithms [17], intelligent web search [6] and

critiquing systems [5]) that deal with incomplete and
potentially contradictory information.

In such applications, DeLP is intended to model the
behavior of a single intelligent agent in a static sce-
nario. DeLP lacks the appropriate mechanisms to
represent knowledge in dynamic environments, where
agents must be able to perceive the changes in the
world and integrate them into its existing beliefs [20].
The ODeLP framework aims at solving this problem
by modeling perception as new facts to be added to
the agent’s knowledge base. Since adding such new
facts may result in inconsistencies, an associated up-
dating process is used to solve them.

In what follows, we present a brief reference of the
ODeLP language. The interested reader can consult
[3] for a more detailed version.

The language of ODeLP is based on the language
of logic programming. Standard logic programming
concepts (such as signature, variables, functions, etc)
are defined in the usual way. Literals are atoms that
may be preceded by the symbol “∼” denoting strict
negation, as in extended logic programming.

ODeLP programs are formed by observations and de-
feasible rules. Observations correspond to facts in
the context of logic programming, and represent the
knowledge an agent has about the world. Defeasible
rules provide a way of performing tentative reasoning
as in other argumentation formalisms [7].

Definition 3.1. An observation is a ground literal
L representing some fact about the world, obtained
through the perception mechanism, that the agent
believes to be correct. A defeasible rule has the
form L0 –≺L1, L2, . . . , Lk, where L0 is a literal and
L1, L2, . . . , Lk is a non-empty finite set of literals.
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Definition 3.2. An ODeLP program is a pair 〈Ψ,∆〉,
where Ψ is a finite set of observations and ∆ is a fi-
nite set of defeasible rules. In a program P , the set Ψ
must be non-contradictory (i.e., it is not the case that
Q ∈ Ψ and ∼Q ∈ Ψ, for any literal Q).

Example 3.1. Fig. 1 shows an ODeLP program for
modeling the behavior of a group of lions. Observa-
tions describe that Mufasa is a lion, and Simba is a
puppy lion. The rules establish that felines usually
climb trees, lions usually don’t. Exceptionally, puppy
lions can climb trees. The remaining rule states that
seriously sick animals cannot climb trees.

Given an ODeLP program P , a query posed to P cor-
responds to a ground literal Q which must be sup-
ported by an argument [16]. Arguments are built
on the basis of a defeasible derivation computed by
backward chaining applying the usual SLD inference
procedure used in logic programming. Observations
play the role of facts and defeasible rules function as
inference rules. In addition to provide a proof sup-
porting a ground literal, such a proof must be non-
contradictory and minimal for being considered as an
argument in ODeLP. Formally:

Definition 3.3. [Defeasible Derivation]Let P =
〈Ψ,∆〉 be an ODeLP program and let Q be a ground
literal. A finite sequence of ground literals,

s = Q1, Q2, . . . , Qn−1, Q

is said to be a defeasible derivation for Q from P (ab-
breviated P |∼ Q) if for every Qi, 1 ≤ i ≤ n, there
exists a defeasible rule r ∈ ∆ and an ground instance
t of r, t = Qi –≺L1, . . . , Lm, where L1, . . . , Lm are
ground literals previously occurring in the sequence
s.

Definition 3.4. Given a ODeLP program P , an argu-
ment A for a ground literal Q, also denoted 〈A, Q〉,
is a subset of ground instances of the defeasible rules
in P such that: (1) there exists a defeasible derivation
for Q from Ψ ∪ A, (2) Ψ ∪ A is non-contradictory,
and (3) A is minimal with respect to set inclusion in
satisfying (1) and (2).

Given two arguments 〈A1, Q1〉 and 〈A2, Q2〉, we will
say that 〈A1, Q1〉 is a sub-argument of 〈A2, Q2〉 iff
A1 ⊆ A2.

To use defeasible rules in arguments we must first
obtain their ground instances, changing variables for
ground terms, so that variables with the same name
are replaced for the same term.

As in most argumentation frameworks, arguments in
ODeLP can attack each other. This situation is cap-
tured by the notion of counterargument.

Definition 3.5. An argument 〈A1, Q1〉 counter-
argues an argument 〈A2, Q2〉 at a literal Q if and only
if there is a sub-argument 〈A, Q〉 of 〈A2, Q2〉 such
that Q1 and Q are complementary literals.

Defeat among arguments is defined combining the
counterargument relation and a preference criterion
“�”. An argument 〈A1, Q1〉 defeats 〈A2, Q2〉 if
〈A1, Q1〉 is a counterargument of 〈A2, Q2〉 at a lit-
eral Q and 〈A1, Q1〉 � 〈A, Q〉 (proper defeater) or
〈A1, Q1〉 is unrelated to 〈A, Q〉 (blocking defeater).

Defeaters are arguments and may in turn be defeated.
Thus, a complete dialectical analysis is required to
determine which arguments are ultimately accepted.
Such analysis results in a tree structure called dialec-
tical tree, in which arguments are nodes labeled as
undefeated (U-nodes) or defeated (D-nodes) ac-
cording to a marking procedure. Formally:

Definition 3.6. The dialectical tree for an argument
〈A, Q〉, denoted T〈A,Q〉, is recursively defined as fol-
lows:

1. A single node labeled with an argument 〈A, Q〉
with no defeaters (proper or blocking) is by it-
self the dialectical tree for 〈A, Q〉.

2. Let 〈A1, Q1〉, 〈A2, Q2〉, . . . , 〈An, Qn〉 be all
the defeaters (proper or blocking) for 〈A, Q〉.
The dialectical tree for 〈A, Q〉, T〈A,Q〉, is
obtained by labeling the root node with
〈A, Q〉, and making this node the parent of
the root nodes for the dialectical trees of
〈A1, Q1〉, 〈A2, Q2〉, . . . , 〈An, Qn〉.

For the marking procedure we start labeling the leaves
as U-nodes. Then, for any inner node 〈A2, Q2〉, it
will be marked as U-node iff every child of 〈A2, Q2〉
is marked as a D-node. If 〈A2, Q2〉 has at least
one child marked as U-node then it is marked as a
D-node.

Dialectical analysis may in some situations give rise
to fallacious argumentation [16]. In ODeLP, dialec-
tical trees avoid fallacies applying additional con-
straints when building argumentation lines (the dif-
ferent possible paths in a dialectical tree). These con-
strains also avoid circular argumentation. The result-
ing kind of trees is called Acceptable dialectical trees.
The notions that follow have been developed to ad-
dress these issues.
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Definition 3.7. [Argumentation line] [9]
Let P = 〈Ψ,∆〉 be a DLP and let 〈A, q〉 be an ar-
gument in P . An argumentation line starting from
〈A, q〉, denoted λ〈A,q〉 (or simply λ), is a possibly in-
finite sequence of arguments

λ〈A,q〉 = [〈A0, q0〉, 〈A1, q1〉, . . . , 〈An, qn〉, . . .]

satisfying the following conditions:

1. If 〈A, q〉 has no defeaters, then λ〈A,q〉 =
[〈A, q〉].

2. If 〈A, q〉 has a defeater 〈B, s〉 in P , then λ〈A,q〉

= 〈A, q〉 ◦ λ〈B,s〉.

where the ‘◦’ operator stands for adding 〈A, q〉 as the
first element of λ〈B,s〉.

In each argumentation line

λ〈A,q〉 = [〈A0, q0〉, 〈A1, q1〉, . . . , 〈An, qn〉, . . .]

the argument 〈A0, q0〉 is supporting the main query
q0, and every argument 〈Ai, qi〉 defeats its predeces-
sor 〈Ai−1, qi−1〉. Thus, for k ≥ 0, 〈A2k, q2k〉 is a
supporting argument for q0 and 〈A2k+1, q2k+1〉 is an
interfering argument for q0. In other words, every ar-
gument in the line supports q0 or interferes with it.
As a result, an argumentation line can be split in two
disjoint sets: λS of supporting arguments, and λI of
interfering arguments.

Using the terms introduced above, the fallacies that
arise in ODeLP programs can be classified as follows:

1. An argument A1 may be introduced in an
argumentation line both as an interfering
and supporting argument, producing a con-
tradictory argumentation line e.g., λ1 =
[A1,A2,A3,A1, . . .].

2. An argument A1 may appear as a support-
ing argument for itself. Hence, a circular
argumentation line is obtained, e.g., λ2 =
[A1,A2,A3,A4,A1, . . .].

Argumentation lines as λ1 and λ2 should not justify
A1, since they represent flawed reasoning processes.
In the first one, the problem arises from accepting A3

as a defeater of A2 because A3 is contradictory with
A1. Since the internal coherence is essential to the di-
alectical process, an agreement should exists between
the supporting (resp. interfering) arguments in an ar-
gumentation line. The fact that A3 and A1 contradict

each other violates this condition. In the second case,
the argument A1 is supporting itself, which is clearly
superfluous and repetitive.

These fallacious situations can be generalized to cy-
cles of any length. An even cycle evidences contra-
dictory argumentation, while an odd cycle indicates
circular argumentation. To solve these problems, we
define the following concepts:

Definition 3.8. Contradictory set of arguments
A set of arguments S =

⋃n
i=1{〈Ai, qi〉} is contradic-

tory with respect to a DLP program P = 〈Ψ,∆〉 if
and only if the set Ψ ∪

⋃n
i=1Ai allows the derivation

of complementary literals.

Definition 3.9. Acceptable argumentation line [9]
Let P = 〈Ψ,∆〉 be a DLP, and let

λ = [〈A0, q0〉, 〈A1, q1〉, . . . , 〈An, qn〉, . . .]

be an argumentation line in P , such that

λ′ = [〈A0, q0〉, 〈A1, q1〉, . . . , 〈Ak, qk〉, . . .]

is an initial segment of λ. The sequence λ′ is an ac-
ceptable argumentation line in P if and only if it is
the longest initial segment in λ satisfying the follow-
ing conditions:

1. The sets λ′S and λ′I are each non-contradictory
sets of arguments with respect to P .

2. No argument 〈Aj , qj〉 in λ′ is a sub-argument
of an earlier argument 〈Ai, qi〉 of λ′ (i < j).

3. There is no subsequence of arguments

[〈Ai−1, qi−1〉, 〈Ai, qi〉, 〈Ai+1, qi+1〉]

in λ′, such that 〈Ai, qi〉, is a blocking de-
feater for 〈Ai−1, qi−1〉 and 〈Ai+1, qi+1〉 and is
a blocking defeater for 〈Ai, qi〉.

Lets analyze the rationale for the conditions in def-
inition 3.9. Condition 1 prohibits the use of contra-
dictory information on either side (proponent or op-
ponent). Condition 2 eliminates circular reasoning.
Finally, condition 3 enforces the use of an stronger ar-
gument to defeat an argument which acts as a block-
ing defeater. The reason for this policy is a simple
one: ODeLP does not use accrual of reasons. Suppose
that argumentation lines with two consecutive block-
ing are allowed and consider the following scenario.
An argument 〈A, h〉 is blocked by 〈B,∼h〉 who is in
turn blocked by 〈C, h〉. If there is no more arguments
to take into account, 〈A, h〉would be warranted. Nev-
ertheless, the arguments for h are no better than the ar-
guments for ∼h, h is warranted because there is more
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Figure 2: Dialectical tree from Example 3.2

arguments supporting this conclusions. This is clearly
accrual of reasons.

Finally, the notion of warrant is grounded on accept-
able dialectical trees. Given a query Q and an ODeLP
program P , we will say that Q is warranted wrt P
iff there exists an argument T〈A,Q〉 such that the root
of its associated dialectical tree T〈A,Q〉 is marked as a
U -node.

Solving a query Q in ODeLP accounts for trying to
find a warrant for Q, as shown in the following exam-
ple.

Example 3.2. Consider the program shown in Ex-
ample 3.1, and let climbs tree(simba) be a
query wrt that program. The search for a war-
rant for climbs tree(simba) will result in an
argument 〈A,climbs tree(simba)〉 with one
defeater, 〈B,∼climbs tree(simba)〉 that is in
turn defeated by 〈C,climbs tree(simba)〉. The
structure of these arguments is detailed in Fig. 2.

Using specificity as the preference criterion,
〈B,∼climbs tree(simba)〉 is proper defeater
for 〈A,climbs tree(simba)〉, but B is in turn
properly defeated by 〈C,climbs tree(simba)〉.
In this case climbs tree(simba) is a warranted
fact.

Suppose now we learn that Simba is sick. In ODeLP
we can add this fact to the knowledge base using
an updating function [3, 18]. Then, a new argu-
ment will arise that could not have been built before,
〈D,∼climbs tree(simba)〉 detailed Fig. 3.

Using specificity as the preference criterion,
〈D,∼climbs tree(simba)〉 is a blocking de-
feater for both 〈A,climbs tree(simba)〉 and
〈C,climbs tree(simba)〉. The resulting dialec-
tical tree is shown Fig.3. Now, the marking proce-
dure determines that the root node is a D-node and
therefore climbs tree(simba) is no longer war-
ranted.

4 Precompiling Knowledge in
ODeLP: dialectical databases

The ODeLP language was specifically designed to be
integrated in practical applications. Therefore, the
inference engine should be able to address real-time
constrains that arise in these scenarios. To do this,

we use precompiled knowledge to avoid recomputing
arguments which were already computed before, in a
TMS fashion.

The notion of dialectical databases is fundamental
for precompiled knowledge in ODeLP. A dialectical
database for a given program P collects a set of
schematic arguments, called potential arguments, and
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Figure 3: Final dialectical tree from Example 3.2

the defeat relation among them. Every potential argu-
ment represents a set of arguments that are obtained
using different instances of the same defeasible rules.
This avoids generating and storing many arguments
which are structurally identical, only differing in the
constant names being used to build the corresponding
derivations. The dialectical database is also defined
independently from the observation set Ψ, so it does
not have to be changed if the set of observations is
updated with new perceptions. Next we introduce a
set of auxiliary notions that will be used to formally
define dialectical databases.

Definition 4.1. Let A be a set of defeasible rules. A
set B formed by ground instances of the defeasible
rules in A is an instance of A iff every instance of a
defeasible rule in B is an instance of a defeasible rule
in A.

Example 4.1. If A ={ s(X) –≺∼r(X);
∼r(X) –≺p(X)} then B = { s(t) –≺∼r(t);
∼r(a) –≺p(a)} is an instance of A.

Definition 4.2. Let ∆ be a set of defeasible rules. A
subset A of ∆ is a potential argument for a literal Q,
noted as 〈〈A, Q〉〉, if there exists a non-contradictory

set of literals Φ and an instance B of the rules in A
such that 〈B, Q〉 is an argument wrt 〈Φ,∆〉.

In the definition above the set Φ stands for a state of
the world (set of observations) in which we can obtain
the instance B from the set A of defeasible rules such
that 〈B, Q〉 is an argument (as stated in Def.3.4). Note
that the set Φ must necessarily be non-contradictory
to model a coherent scenario.

Precompiled knowledge associated with an ODeLP
program P = 〈Ψ,∆〉 will involve the set of all poten-
tial arguments that can be built from P as well as the
defeat relation among them. Then, instead of comput-
ing a query for a given ground literal Q, the ODeLP in-
terpreter will search for a potential argument A for Q
such that a particular instance B of A is an argument
for Q wrt P .

To speed-up inference, the defeat relations among
potential arguments must also be recorded, as we
will see later on. To do this, we extend the con-
cepts of counterargument and defeat for potential ar-
guments. A potential argument 〈〈A1, Q1〉〉 counter-
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Figure 4: Dialectical database corresponding to Example 4.2.

argues 〈〈A2, Q2〉〉 at a literal Q if and only if there is
a potential sub-argument 〈〈A, Q〉〉 of 〈〈A2, Q2〉〉 such
that Q1 and Q are contradictory literals.2 Note that
potential counter-arguments may or may not result in
a real conflict between the instances (arguments) as-
sociated with the corresponding potential arguments.
In some cases instances of these arguments cannot
co-exist in any scenario (e.g., consider two poten-
tial arguments based on contradictory observations).
The notion of defeat is also extended to potential ar-
guments, redefining the preference criterion accord-
ingly.

Finally, using potential arguments and their associ-
ated defeat relation, we can formally define the no-
tion of dialectical databases associated with a given

ODeLP program P .

Definition 4.3. Let P = 〈Ψ,∆〉 be an ODeLP pro-
gram. The dialectical database of P , denoted as
DB∆, is a 3-tuple (PotArg(∆), Dp, Db) such that:

1. PotArg(∆) is the set {〈〈A1, Q1〉〉, . . . ,
〈〈Ak, Qk〉〉} of all the potential arguments that
can be built from ∆.

2. Dp and Db are relations over the ele-
ments of PotArg(∆) such that for every
(〈〈A1, Q1〉〉, 〈〈A2, Q2〉〉) in Dp (respectively Db)
it holds that 〈〈A2, Q2〉〉 is a proper (respectively
blocking) defeater of 〈〈A1, Q1〉〉.

Example 4.2. Consider the program in example 3.1.
The dialectical database of P is composed by the fol-
lowing potential arguments:

• 〈〈A1,climbs tree(X)〉〉,
A1 = {climbs tree(X) –≺feline(X)}.

• 〈〈A2,climbs tree(X)〉〉,
A2 = {climbs tree(X) –≺feline(X),
feline(X) –≺lion(X)}.

• 〈〈A3,climbs tree(X)〉〉,
A3 = {climbs tree(X) –≺lion(X), puppy(X)}.

• 〈〈A4,∼climbs tree(X)〉〉,
A4 = {∼climbs tree(X) –≺lion(X)}.

• 〈〈A5,∼climbs tree(X)〉〉,
A5 = {∼climbs tree(X) –≺sick(X)}.

• 〈〈A6,feline(X)〉〉,
A6 = {feline(X) –≺lion(X)}.

and the defeat relations:

• Dp = {(A2, A4), (A4, A3)}

• Db = {(A1, A4), (A4, A1), (A1, A5), (A5, A1),
(A2, A5), (A5, A2), (A3, A5), (A5, A3)}.

The relations are also depicted in figure , where
proper defeat is indicated with a normal arrow and
blocking defeat is distinguished with a dotted arrow.

5 Algorithms for building dialec-
tical databases

Given an ODeLP program P , its dialectical database
DB∆ can be understood as a graph from which all
possible dialectical trees computable from P can be
obtained. In previous work [3], it was already ad-
dressed how to use precompiled knowledge for com-
puting warrants with respect to a given program. In
this section we address how to build this graph for a
given set of defeasible rules ∆.

2Note that P (X) and ∼P (X) are contradictory literals although they are non-grounded. The same idea is applied to identify contradiction in
potential arguments.
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To build the dialectical database for a given program
we need to obtain every potential argument and record
the defeat relation among them. This is done by algo-
rithm BuildDialecticalDatabase. Briefly speaking, it
first uses the algorithm ObtainPotentialArgs to select
a of candidates that may be potential arguments for
the set ∆ in the set Candidates. Every member of this
set is later analyzed to verify if it complies with the
conditions present in definition 4.2. To do that, Cre-
ateInstance consistently replaces variables in a given
potential argument for a set of literals. Then the ar-
gument obtained in 〈A, Q1〉 must be consistent and
minimal (requirements present in definition 4.2) to be
finally added in the set of PotArgs.

If the answer is positive, then it is selected as a poten-
tial arguments and its defeaters are found using the
algorithm FindDefeaters that compares the potential
argument to be added into the set with the potential
arguments already considered to update the defeat re-
lations Db and Dp.

Algorithm 1. BuildDialecticalDatabase

input: ∆
output: PArgs,Dp,Db

//(a dialectical database)

PArgs := ∅
ObtainPotentialArgs(∆, Candidates)

For every 〈〈A, Q〉〉 in Candidates

CreateInstance(〈〈A, Q〉〉, A, Q1)

Ψ := G(〈A, Q1〉)
//Calculates the ground for A, that

// is the literals in A that do not

// appear in the head of a rule

If Literals(A) is not contradictory

and G(A) ∪ A |∼Q1 and

no A′ ⊂ A is such that G(A′) ∪ A′ |∼Q1

then

FindDefeaters(PArgs,〈〈A, Q〉〉,Dp,Db)

PArgs := PArgs ∪{〈〈A, Q〉〉}

Next, we analyze the auxiliary algorithms used by
BuildDialecticalDatabase. The algorithm ObtainPo-
tentialArgs finds the set of potential arguments using
backward chaining from every rule in ∆. This is an
smart way to build this set, that results in computa-
tional gains with respect to finding all the set of rules
that can be obtained from ∆. First, it chooses a rule
to guide the backward chaining. Then, it uses the al-
gorithm FindCandidates that recursively considers
every potential argument that can be found starting
with that rule. This algorithm also marks rules that
have been already used to avoid re-computing poten-
tial arguments that have been already added into the

set of candidates.

Algorithm 2. Obtain Potential Arguments

input: ∆
output: Candidates

Candidates := ∅
Marked := ∅
For every rule such that r ∈ ∆ and

r 6∈ Marked

FindCandidates(r, NewCand)

Candidates := Candidates ∪ NewCand

Algorithm 3. FindCandidates

input: r = α –≺β //uninstanciated rule
output: Cand //candidates found from r

Cand := {〈〈{α –≺β}, α〉〉}
For every literal p ∈ β such that

there is a rule with p in the head, p –≺γ

FindCandidates(p –≺γ, C)

For every Ci ⊂ C, Ci <> ∅
Cand := Cand ∪{〈〈{α –≺β} ∪ Ci, α〉〉}

Marked := Marked ∪{α –≺β}

Finally, CreateInstance consistently replaces vari-
ables in a given potential argument for a set of literals.
It uses backward chaining and composes substitutions
to build the instance, if any exists. This algorithm re-
quires defeasible rules in the set A to be standarized
apart so that they do not contain common variables.
That is, for any pair of rules r1, r2 in A it must hold
that the intersection between the set of variables in r1

and the set of variables in r2 is empty.
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Algorithm 4. CreateInstance

input: 〈〈A, Q〉〉
//a candidate potential argument

output: A, Q1

CreateStack(S)
Instanciate(Q, Q1)

//Sets as goal an instance of Q
push(Q1,S)
θ:= {}
While S is not empty

goal := pop(S)
If there exists a rule r in A and

a substitution σ

such that head(r)σ = goal

then

new body := apply σ body(r)

θ := compose θ and σ

push(new body,S)
else

r := pop(S)
If there exists a substitution σ

and an observation α

such that rσ = α

then θ := compose θ and σ

else fail

//It is not possible to find

//an instance

A := apply θ to every rule in A

5.1 Complexity results

In this section we analyze the complexity of algo-
rithm BuildDialecticalDatabase since this algorithm
resumes the construction process of ODeLP’s precom-
piled knowledge.

To do this, we first consider the complexity of aux-
iliary algorithms. Note that the analysis presented
here holds for ODeLP programs with a finite Herbrand
base. We plan to extend this analysis in future work
to full ODeLP programs.

CreateInstance consistently replaces variables in a
given potential argument for a set of literals. This task
is analogous to the following decision problem: is a
given subset of defeasible rules an argument for a lit-
eral from a given program P?. In [4] this is shown to
be a P-complete problem for the DeLP system. This
result is an upper bound for ODeLP, where there is
no strict knowledge and thus complexity is clearly re-

duced.

ObtainPotentialArguments returns every set of rules
that may be a potential argument for ∆. A rough
upper bound for the number of potential arguments
is 2|∆|. Therefore, Obtain potential arguments is in
O(2|∆|).

Algorithm FindDefeaters must compare the poten-
tial argument to be added with every potential argu-
ment that is already in the set PArgs. This is also in
O(2|∆|).

Finally, we analyze algorithm BuildDialectical-
Database. It first calls ObtainPotentialArguments.
Then, for every argument in the set Candidates, it
does following four tasks:

1. Calls algorithm CreateInstance.

2. Checks consistency: this check depends on the
number of literals in the argument, that can be
bounded by the number of literals in the signa-
ture of the program, noted by |Lit|. Thus, this
task is in P .

3. Checks minimality: a simple algorithm for ver-
ifying whether a set of defeasible rules is mini-
mal with respect to set inclusion (for entailing a
given literal l) would delete every rule at a time
and verify if the remaining set of rules can en-
tail l. Worst case of the minimality condition is
considered when we assume that the argument
has |∆| defeasible rules. In this case computing
minimality condition takes |∆| to verify that l
cannot be entailed for a subset of the rules in
the potential argument. Then every loop is in
P and the problem of checking minimality is
solvable in polynomial time.

4. Calls algorithm FindDefeaters.

Therefore the cost of the loop is in O(2|∆|) and the
number of times it is executed is bounded by 2|∆|.
Then algorithm BuildDialecticalDatabase is in Σ2

p,
that is, the second level of the polynomial hierarchy.3

6 Conclusions and future work

The notion of dialectical databases was proposed in
[3] to comply with real time requirements needed to
model agent reasoning in dynamic environments. In

3The interested reader may consult [1] for more information on the polynomial hierarchy.
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this paper we have devised a set of algorithms for the
construction of the precompiled knowledge compo-
nent in ODeLP.

We have also analyzed the complexity of these algo-
rithms from a theoretical standpoint. Even though the
algorithms are computationally expensive we must re-
call that the task of building precompiled knowledge
is performed only once, after codifying the program.
Moreover, the dialectical database is not affected by
changes in the program’s observations and the set of
rules is not expected to change in applications using
ODeLP.

As future work, we will analyze how the use of pre-
compiled knowledge in the inference process reduces
complexity in ODeLP. We also plan to extend the com-
plexity analysis, currently valid for programs with a
finite Herbrand base, to full ODeLP programs.
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