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Abstract

Abstract argumentation frameworks have played a major role
as a way of understanding argument-based inference, result-
ing in different argument-based semantics. The goal of such
semantics is to characterize which are the rationally justi-
fied (or warranted) beliefs associated with a given argumen-
tative theory. In order to make such semantics computa-
tionally attractive, suitable argument-based proof procedures
are required, in which a search space of arguments is exam-
ined looking for possible candidates that warrant those be-
liefs. This paper introduces an abstract approach to model the
computation of warrant in a skeptical abstract argumentation
framework. We show that such search space can be defined
as a lattice, and illustrate how the so-called dialectical con-
straints can play a role for guiding the efficient computation
of warranted arguments.

Keywords: Argumentation, Defeasible Reasoning, Non-
monnotonic Reasoning.

Introduction and Motivations
Over the last ten years, interest in argumentation has ex-
panded dramatically, driven in part by theoretical advances
but also by successful demonstrations of a wide range of
practical applications. In this context, abstract argumenta-
tion frameworks have played a major role as a way of un-
derstanding argument-based inference, resulting in different
argument-based semantics. In order to compute such seman-
tics, efficient argument-based proof procedures are required
for determining when a given argumentA is warranted. This
involves the analysis of a potentially large search space of
candidate arguments related toA by means of an attack re-
lationship.

This paper presents a novel approach to model such
search space for warrant computation in a skeptical abstract
argumentation framework. We show that such search space
can be defined as a lattice, and illustrate how some con-
straints (called dialectical constraints) can play a role for
guiding the efficient computation of warranted arguments.

The rest of this paper is structured as follows. The next
Section presents the basic ideas of an abstract argumentation
framework with dialectical constraints, which includes sev-
eral concepts common to most argument-based formalisms.
The notion of argumentation line is presented, highlighting
its role for modeling so-called dialectical trees as relevant

useful data structures for computing warrant. After these
preliminaries, the following Section shows how dialectical
trees can be used to analyze the search space associated
with computing warrants in an argumentation framework.
We show that such search space can be represented as a lat-
tice. Subsequently, we devote a Section to go into different
criteria which can lead to compute warrant more efficiently
on the basis of this lattice characterization. Finally, we dis-
cuss some related work and present the main conclusions
that have been obtained.

An Abstract Argumentation Framework with
Dialectical Constraints

Abstract argumentation frameworks (Dung 1993; Vreeswijk
1997; Jakobovits 1999; Jakobovits & Vermeir 1999) are for-
malisms for modelling defeasible argumentation in which
some components remain unspecified. In such abstract
frameworks usually the underlying knowledge representa-
tion language, the actual structure of an argument and the
notion of attack among arguments are abstracted away, as
the emphasis is put on differentargument-based semantics
which are associated with identifying sets of ultimately ac-
cepted arguments.

In this paper we are concerned with the study of war-
rant computation in argumentation systems, with focus on
skeptical semantics for argumentation. As a basis for our
analysis we will use an abstract argumentation framework
(following Dung’s seminal approach to abstract argumenta-
tion (Dung 1995; 1993)) enriched with the notion ofdialec-
tical constraint, which will allow us to model distinguished
sequences of arguments. The resulting, extended framework
will be called anargumentation theory.

Definition 1 (Dung 1995; 1993) An argumentation frame-
work Φ is a pair〈Args, R〉, whereArgs is a finite set of ar-
guments andR is a binary relation between arguments such
thatR ⊆ Args× Args. The notation(A,B) ∈ R (or equiv-
alentlyARB) means thatA attacksB.

Thus defined, an Argumentation FrameworkΦ can be
seen as a collection of directed graphs (di-graphs) in which
nodes correspond to arguments, and an edge between two
nodes corresponds to an attack. We will writeLinesΦ

to denote the set of all possible sequences of arguments
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[A0,A1,A2, . . . ,Ak] in Φ where for any pair of arguments
Ai, Ai+1 it holds thatAi R Ai+1, with 0 ≤ i ≤ k − 1.
Argumentation lines define a domain onto which different
kinds ofconstraintscan be defined. As such constraints are
related to sequences which resemble an argumentation di-
alogue between two parties, we call themdialectical con-
straints. Formally:

Definition 2 Let Φ = 〈Args, R〉 be an argumentation
framework. Adialectical constraintC in the context ofΦ
is any functionC : LinesΦ → {True, False}.

A dialectical constraint imposes a restriction characteriz-
ing when a given argument sequenceλ is valid in a frame-
work Φ (i.e., C(λ) = True). An argumentation theory is
defined by combining an argumentation framework with a
particular set of dialectical constraints. Formally:

Definition 3 An argumentation theoryT (or just atheory
T ) is a pair(Φ,DC), whereΦ is an argumentation frame-
work, andDC = {C1,C2, . . . ,Ck} is a finite (possibly
empty) set ofdialectical constraints.

Given a theoryT = (Φ,DC), the intended role ofDC
is to avoidfallaciousreasoning (Aristotle ; Hamblin 1970;
Rescher 1977; Walton 1995) by imposing appropriate con-
straints on argumentation lines to be considered rationally
acceptable. Such constraints are usually defined on dis-
allowing certain moves which might lead to fallacious sit-
uations. Typical constraints to be found inDC are non-
circularity (repeating the same argument twice in an argu-
mentation line is forbidden),commitment(parties cannnot
contradict themselves when advancing arguments), etc. It
must be noted that a full formalization for dialectical con-
straints is outside the scope of this work. We do not claim
to be able to identify every one of such constraints either,
as they may vary from one particular argumentation frame-
work to another; that is the reason whyDC is included as a
parameter inT . In this respect a similar approach is adopted
in (Kakas & Toni 1999), where different characterizations of
constraints give rise to different logic programming seman-
tics.

Argumentation Lines

As already discussed before, argument games provide a use-
ful form to characterize proof procedures for argumentation
logics.1 Such games model defeasible reasoning as a dispute
between two parties (ProponentandOpponentof a claim),
who exchange arguments and counterarguments, generat-
ing dialogues. A propositionQ is provably justified on the
basis of a set of arguments if its proponent has awinning
strategyfor an argument supportingQ, i.e. every counter-
argument (defeater) advanced by the Opponent can be ul-
timately defeated by the Proponent. We believe that such
argument game was first used in a computational setting

1See an in-depth discussion in (Prakken 2005).

in (Simari, Ches̃nevar, & Garćıa 1994a), and similar formal-
izations have been also applied in other argument-based ap-
proaches, e.g. in Prakken-Sartor’s framework for argumen-
tation based on logic programming (Prakken & Sartor 1997)
and in Defeasible Logic Programming (DeLP) (Garcı́a &
Simari 2004) and its extensions, notably P-DeLP (Chesñevar
et al. 2004). Dialogues in such argument games have been
given different names (dialogue lines, argumentation lines,
dispute lines, etc.). A discussion on such aspects of differ-
ent logical models of argument can be found in (Chesñevar,
Maguitman, & Loui 2000; Prakken & Vreeswijk 2002).
In what follows we will borrow some basic terminology
from (Ches̃nevar, Simari, & Godo 2005) for our formaliza-
tion, which will provide the necessary elements for the in-
tended analysis.

Definition 4 Let T = (Φ,DC) be an argumentation the-
ory. An argumentation lineλ in T is any finite sequence
of arguments[A0, A1, . . . ,An] as defined before. We will
say thatλ is rooted inA0, and that thelengthof λ is n + 1,
writing | λ | = s to denote thatλ hass arguments. We will
also writeLinesA to denote the set of all argumentation lines
rooted inA in the theoryT .

Definition 5 Let T be an argumentation theory and letλ =
[A0,A1, . . . ,An] be an argumentation line in T. Thenλ′ =
[A0,A1,A2, . . . ,Ak], k ≤ n, will be called aninitial argu-
mentation segmentin λ of lengthk, denotedbλck. When
k < n we will say thatλ′ is a proper initial argumentation
segment inλ. We will use the terminitial segmentto refer
to initial argumentation segments when no confusion arises.

Example 1 Consider a theoryT = (Φ,DC), with DC =
∅, where the setArgs is {A0,A1,A2,A3,A4 }, and assume
that the following relationships hold:A1 defeatsA0, A2

defeatsA0, A3 defeatsA0, A4 defeatsA1. Three different
argumentation lines rooted inA0 can be obtained, namely:

λ1 = [A0,A1,A4]
λ2 = [A0,A1,A2]
λ3 = [A0,A3]

In particular,bλ1c2 = [A0,A1] is an initial argumentation
segment inλ1.

Example 2 Consider a theoryT ′ = (Φ,DC) where the set
Args is {A0, A1 }, and assume that the following relation-
ships hold:A0 defeatsA1, andA1 defeatsA0. An infinite
number of argumentation lines rooted inA0 can be obtained
(e.g.λ1 = [A0 ], λ2 = [A0,A1 ], λ3 = [A0,A1 ,A0 ], λ4 =
[A0,A1 ,A0,A1 ], etc.).

Remark 1 Note that from Def. 4, given an argumen-
tation line [A0, A1, A2, . . . , An] every subsequence
[Ai,Ai+1, . . .Ai+k] with 0 ≤ i, i + k ≤ n is also an ar-
gumentation line. In particular, every initial argumentation
segment is also an argumentation line.
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Intuitively, an argumentation lineλ is acceptable iff it sat-
isfies every dialectical constraint of the theory it belongs to.
Formally:

Definition 6 Given an argumentation theoryT = (Φ,DC),
an argumentation lineλ is acceptablewrt T iff Ci(λ) =
True, for everyCi ∈DC.

In what follows, we will assume without loss of gener-
ality that the notion of acceptability imposed by dialecti-
cal constraints is such that ifλ is acceptable wrt a theory
T = (Φ,DC), then any subsequence ofλ is also accept-
able.

Assumption 1 If λ is an acceptable argumentation line wrt
a theoryT = (Φ,DC), then any subsequence ofλ is also
acceptable wrtT .

Example 3 Consider the theoryT ′ in Ex. 2, and assume that
DC={ Repetition of arguments is not allowed}. Thenλ1

andλ2 are acceptable argumentation lines inT ′, butλ3 and
λ4 are not.

Definition 7 Let T be an argumentation theory, and letλ
andλ′ be two acceptable argumentation lines inT . We will
say thatλ′ extendsλ in T iff λ = bλ′ck, for somek < | λ′ |,
that is,λ′ extendsλ iff λ is a proper initial argumentation
segment ofλ′.

Definition 8 Let T be an argumentation theory, and letλ be
an acceptable argumentation line inT . We will say thatλ
is exhaustiveif there is no acceptable argumentation lineλ′
in T such that| λ | < | λ′ |, and for somek, λ = bλ′ck, that
is, there is noλ′ such that extendsλ. Non-exhaustive argu-
mentation lines will be referred to aspartial argumentation
lines.

Example 4 Consider the theoryT presented in Ex. 1. Then
λ1, λ2 andλ3 are exhaustive argumentation lines whereas
bλ1c2 is a partial argumentation line. In the case of the the-
ory T ′ in Ex. 2, the argumentation lineλ2 extendsλ1. Ar-
gumentation lineλ2 is exhaustive, as it cannot be further
extended on the basis ofT ′ with the dialectical constraint
introduced in Ex. 3.

We will distinguish the setS = {λ1, λ2, . . . , λk} of ar-
gumentation lines rooted in the same initial argument and
with the property of not containing lines that are initial sub-
sequences of other lines in the set.

Definition 9 Given a theoryT , a setS = {λ1, λ2, . . . , λn}
of argumentation lines rooted in a given argumentA, de-
notedSA, is called abundle setwrt T iff there is no pair
λi, λj ∈ SA such thatλi extendsλj .

Example 5 Consider the theoryT = (Φ,DC) from Ex. 1,
and the argumentation linesλ1, λ2, andλ3. ThenSA0 =
{λ1, λ2, λ3} is a bundle set of argumentation lines wrtT .

As we will see next, a bundle set of argumentation lines
rooted in a given argumentA provides the basis for concep-
tualizing a tree structure calleddialectical tree.

Dialectical Trees
A bundle setSA consists of argumentation lines rooted in
a given argumentA which can be “put” together in a tree
structure. Formally:

Definition 10 Let T be a theory, and letA be an argument
in T , and letSA = {λ1, λ2, . . . , λn} be a bundle set of
argumentation lines rooted inA. Then, thedialectical tree
rooted inA based onSA, denotedTA, is a tree structure
defined as follows:

1. The root node ofTA isA.
2. Let F={tail(λ), for everyλ ∈ SA}, andH={head(λ),

for everyλ ∈ F}.2
If H = ∅ thenTA has no subtrees.
Otherwise, ifH = {B1, . . . ,Bk}, then for everyBi ∈ H,
we define

getBundle(Bi) = {λ ∈ F | head(λ) = Bi}
We putTBi as an immediate subtree ofA, whereTBi is a
dialectical tree based ongetBundle(Bi).

We will write TreeA to denote the family of all possible di-
alectical trees based onA. We will represent asTreeT the
family of all possible dialectical trees in the theoryT .

Example 6 Consider the theoryT = (Φ,DC) from Ex. 1.
In that theory it holds thatSA0 = {λ1, λ2, λ3} is a bundle
set. Fig. 1(a) shows an associated dialectical treeTA0 .

The above definition shows how to build a dialectical tree
from a bundle set of argumentation lines rooted in a given
argument. It is important to note that the “shape” of the re-
sulting tree will depend on the order in which the subtrees
are attached. Each possible order will produce a tree with
a different geometric configuration. All the differently con-
formed trees are nevertheless “equivalent” in the sense that
they will contain exactly the same argumentation lines as
branches from its root to its leaves. This observation is for-
malized by introducing the following relation which can be
trivially shown to be an equivalence relation.

Definition 11 Let T be a theory, and letTreeA be the set
of all possible dialectical trees rooted in an argumentA in
theoryT . We will say thatTA is equivalent toT ′A, denoted
TA ≡τ T ′A iff they are obtained from the the same bundle
setSA of argumentation lines rooted inA.

Given an argumentA, there is a one-to-one correspon-
dence between a bundle setSA of argumentation lines
rooted inA and the corresponding equivalence class of di-
alectical trees that share the same bundle set as their origin
(as specified in Def. 10). In fact, a dialectical treeTA based

2The functionshead(·) and tail(·) have the usual meaning in
list processing.
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on SA is justan alternative wayof expressing the same in-
formation already present inSA. Each member of an equiv-
alence class represents a different way in which a tree could
be built. Each particular computational method used to gen-
erate the tree from the bundle set will produce one particular
member on the equivalence class. In that manner, the equiv-
alence relation will represent a tool for exploring the com-
putational process of warrant and as we will see later, trees
provide a powerful way of conceptualize the computation of
warranted arguments. Next, we will define mappings which
allow to re-formulate a bundle setSA as a dialectical tree
TA and viceversa.

Definition 12 Let T be an argumentative theory, and letSA
be a bundle set of argumentation lines rooted in an argument
A of T . We define the mapping

T : ℘(LinesA) \ {∅} 7→ TreeA

asT(SA) =def TA, whereTreeA is the quotient set ofTreeA
by≡τ , andTA denotes the equivalence class ofTA.

Proposition 1 For any argumentA in an argumentative the-
ory T , the mappingT is a bijection.3

As the mappingT is a bijection, we can also define the
inverse mappingS =def T−1 which allow us to determine the
associated bundle set of argumentation lines corresponding
to an arbitrary class of dialectical trees rooted in an argument
A.

In what follows, we will use indistinctly aset notation
(a bundle set of argumentation lines rooted in an argument
A) or a tree notation(a dialectical tree rooted inA), as the
former mappingsS andT allow us to go from any of these
notation to the other.

The following proposition shows that dialectical trees can
be thought of as structures in which any subtreeT ′A of a
dialectical treeTA is also a dialectical tree.

Proposition 2 Let T be a theory, andTA a dialectical tree
in T . Then it holds that any subtreeT ′A of TA, rooted inA,
is also a dialectical tree wrtT .

Acceptable dialectical trees
The notion of acceptable argumentation line will be used to
characterize acceptable dialectical trees, which will be fun-
damental as a basis for formalizing the computation of war-
rant in our setting.

Definition 13 Let T be a theory, a dialectical treeTA in T
is acceptable iff every argumentation line in the associated
bundle setS(TA) is acceptable. We will distinguish the sub-
setATreeA (resp.ATreeT ) of all acceptable dialectical trees
in TreeA (resp.TreeT ).

As acceptable dialectical trees are a subclass of dialectical
trees, all the properties previously shown apply also to them.
In the sequel, we will just write “dialectical trees” to refer to
acceptable dialectical trees, unless stated otherwise.

3Proofs not included for space reasons.

0

1

4

3

2 (a)

D

0

1

4

3

2
U U

U

D

(b)

Figure 1: (a) Dialectical tree and (b) marked dialectical tree
for Example 6

Definition 14 A dialectical treeTA will be calledexhaus-
tive iff it is constructed from the setSA of all possible ex-
haustive argumentation lines rooted inA, otherwiseTA will
be calledpartial.

Besides, the exhaustive dialectical tree for any argument
A can be proven to be unique.

Proposition 3 Let T be a theory, and letA be an argument
in T . Then there exists a unique exhaustive dialectical tree
TA in T (up to an equivalence wrt≡τ as defined in Def. 11)

Acceptable dialectical trees allow to determine whether
the root node of the tree is to be accepted (ultimatelyunde-
feated) or rejected (ultimatelydefeated) as a rationally justi-
fied belief. Amarking functionprovides a definition of such
acceptance criterion. Formally:

Definition 15 Let T be a theory. A marking criterion for
T is a functionMark : Tree

T
→ {D, U}. We will write

Mark(Ti) = U (resp.Mark(Ti) = D) to denote that the root
node ofTi is marked asU -node (resp.D-node).

Several marking criteria can be defined for capturing
skeptical semantics for argumentation. A particular crite-
rion (which we will later use in our analysis for strategies
for computing warrant) is theAND-OR marking of a dialec-
tical tree (Simari, Ches̃nevar, & Garćıa 1994a), which cor-
responds to Dung’s grounded semantics (Dung 1995).

Definition 16 Let T be a theory, and letTA be a dialectical
tree. The and-or marking ofTA is defined as follows:

1. If TA has no subtrees, thenMark(TA) = U .
2. If TA has subtreesT1, . . . ,Tk then
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(a) Mark(TA) = U iff Mark(Ti) = D, for all i = 1 . . . k.
(b) Mark(TA) = D iff there exists Ti such that

Mark(Ti) = U , for somei = 1 . . . k.

Proposition 4 Let T be a theory, and letTA be a dialectical
tree. The and-or marking defined in Def. 16 assigns the same
mark to all the members ofTA.

Remark 2 As a design criterion, it would be sensible to re-
quire that a particular marking criterion would respect that
every member of a given equivalence class will be marked
in the same way. This will provide an “invariance” of mark-
ing with respect to the particular way the algorithm intro-
duced in Def. 10 builds the tree. In such manner, that in-
variance will allow to work with the bundle set disregard-
ing the circumstantial element of the equivalence class at
hand. Each marking procedure is affected by the geomet-
ric properties of the tree. For instance, the classical and-or
tree traversal will work best with trees that have their short-
est branches to the left (Simari, Chesñevar, & Garćıa 1994a;
Simari, Ches̃nevar, & Garćıa 1994b; Ches̃nevar, Simari, &
Godo 2005), but other procedures could work better on dif-
ferent configurations. Working with the bundle set, and
transforming it in abundle listby using some preprocess-
ing algorithm could result in significant speed-ups. Pur-
suing these observations is outside the scope and length
restrictions of this paper, but has been addressed else-
where (Ches̃nevar & Simari 2005).

Definition 17 Let T be an argumentative theory andMark
a marking criterion forT . An argumentA is a warranted
argument(or justwarrant) in T iff the exhaustive dialectical
treeTA is such thatMark(TA) = U .

Example 7 Consider the exhaustive dialectical treeTA0

in Ex. 6 shown in Fig. 1(a). Fig. 1(b) shows the corre-
sponding marking by applying Def. 16, showing thatA0

–the root ofTA0– is an ultimately defeated argument, i.e.
Mark(TA0) = D. HenceA0 is not a warranted argument.
In Fig. 2 the and-or marking from deep-first, left to right,
in (a) will have to traverse the whole tree, meanwhile in (b)
only visits two modes. Both trees belong to same equivalent
class.

Warrant Computation via Dialectical Trees
As stated in the introduction, our main concern is to model
warrant computation in skeptical argumentation frame-
works. Fix-point definitions are very expressive declara-
tively, but tree structures lend themselves naturally to im-
plementation. In fact, some implementations of skeptical
argumentation systems (e.g. DeLP (Garcı́a & Simari 2004))
rely on tree structures (such as dialectical trees) which can
be computed by performing backward chaining at two lev-
els. On the one hand, arguments are computed by backward
chaining from a query (goal) using a logic programming ap-
proach (e.g. SLD resolution). On the other hand, dialectical
trees can be computed by recursively analyzing defeaters for

1
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Figure 2: (a) Dialectical tree and (b) Symmetric dialectical
tree for Example 6

a given argument, defeaters for those defeaters, and so on.
In particular, in more complex and general settings (such as
admissibility semantics) dialectical proof procedures have
been developed (Dung, Kowalski, & Toni 2006) using a sim-
ilar strategy to compute warranted belief.

In our abstract model we will use dialectical trees to for-
malize warrant computation. As indicated in (Chesñevar,
Simari, & Godo 2005), the process of building an arbitrary
dialectical treeTA0 can be thought of as acomputationstart-
ing from an initial tree (consisting of a single node) and
evolving into more complex trees by adding new arguments
(nodes) stepwise. Elementary steps in this computation can
be related by means of a precedence relationship “v” among
trees:

Definition 18 Let T be a theory,A an argument and letTA,
T ′A be acceptable dialectical trees rooted inA. We define a
relationshipv ⊆ TreeA × TreeA . We will write TA @ T ′A
wheneverT ′A can be obtained fromTA by extending some
argumentation lineλ in TA by exactly one argument. As
usual, we will writeTAvT ′A iff TA = T ′A or TA@T ′A. We
will also write TAv∗T ′A iff there exists a (possibly empty)
sequenceT1, T2, . . . ,Tk such thatTA = T1v . . .vTk = T ′A.

From Def. 18 the notion of exhaustive dialectical tree can
be recast as follows: A dialectical treeTi is exhaustive iff
there is noTj 6= Ti such thatTi @ Tj . Every dialectical tree
Ti can be seen as a ‘snapshot’ of the status of a disputation
between two parties (proponent and opponent), and the rela-
tionship “v” allows to capture the evolution of such dispu-
tation.4In particular, note that for any argumentative theory

4Note however thatTi v Tj does not imply that one party has
advanced some argument inTi and the other party has replied in
Tj . Thus our framework provides a setup to defineunique-and
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Figure 3:Lattice for all possible dialectical trees rooted in an ar-
gumentA0 (Example 8)

T , given an argumentA the ordered set(TreeA ,v∗) is a
poset, where the least element isA and the greatest element
is the exhaustive dialectical treeTA.

We are now concerned with the following question:can
we enumerate all possible ways of computing the exhaustive
dialectical treeTA rooted in a given initial argumentA?
The answer is yes. In fact, as we will see in the next defini-
tions, we can provide a lattice characterization for the space
of all possible dialectical trees rooted in a given argument
A. In order to characterize a lattice for dialectical trees we
will provide two operations:

• Joinof dialectical trees (∨), which given two dialectical treesT1

andT2 will compute the “union” ofT1 andT2, in the sense that
it will contain all defeaters present either inT1 or in T2.

• Meetof dialectical trees (∧), which given two dialectical trees
T1 andT2 will compute the “intersection” ofT1 andT2, in the
sense that it will contain all defeaters present only inT1 and in
T2.

Definition 19 Let T be an argumentative theory, and letT1

andT2 be dialectical trees rooted inA. We define themeet
and join of T1 andT2, (written T1 ∧ T2 andT1 ∨ T2) as
follows:

• λ is an argumentation line inT1 ∨ T2 iff

1. λ ∈ T1 and there is noλ′ ∈ T2 such thatλ′ extends λ,
or

2. λ ∈ T2 and there is noλ′ ∈ T1 such thatλ′ extends λ

• λ is an argumentation line inT1 ∧ T2 iff λ = bλ1ck =
bλ2ck, for somek > 0 such thatλ1 ∈ T1 andλ2 ∈ T2

and there is noλ′ that extendsλ satisfying this situation.

The next two results follow naturally from the previous
definition.

Proposition 5 The operations∧ and∨ are well-defined, i.e.
for any dialectical treesT1 andT2 rooted in a given argument

multi-move protocolsas defined by Prakken (Prakken 2005).

A, T1 ∧ T2 andT1 ∨ T2 are also dialectical trees rooted in
A.

Proposition 6 Let T be an argumentation theory, andλ an
acceptable argumentation line inT . Then it holds that

1. λ ∈ T1∨T2 iff λ ∈ T1 or λ ∈ T2

2. λ ∈ T1∧T2 iff λ ∈ T1 and λ ∈ T2

3. λ 6∈ T1∧T2 iff λ 6∈ T1 or λ 6∈ T2

The next lemma shows that for any argumentation theory
T the set of all possible acceptable dialectical trees rooted in
a particular argument can be conceptualized as a lattice.

Lemma 1 Let A be an argument in a theoryT , and let
(ATreeA,v∗) be the associated poset. Then(ATreeA,∨,∧)
is a lattice.

Given the lattice(ATreeA,∨,∧), we will write T ⊥A to de-
note the bottom element of the lattice (i.e., the dialectical
tree involving onlyA as root node) andT >A to denote the top
element of the lattice (i.e., the exhaustive dialectical tree).

Example 8 Consider the theoryT from Ex. 1, and the ex-
haustive dialectical tree rooted inA0 shown in Ex. 6. The
complete lattice associated withA0 is shown in Fig. 3.

Computing Warrant Efficiently
In the preceding Section we have shown that given an argu-
mentative theoryT , for any argumentA in T there is a lat-
tice (ATreeA,∨,∧) whose bottom element is a dialectical
tree with a single node (the argumentA itself) and whose
top element is the exhaustive dialectical treeTA. In that lat-
tice, wheneverTk = Ti∨Tj it is the case thatTivTk and
TjvTk.

In Fig. 3 corresponding to Example 8 we can see that
for dialectical treesT2 and T3, it holds thatMark(T2) =
Mark(T3) = D (assuming thatMark is defined as in Def. 16).
Clearly, it is the case that any treeTi whereT2vTi or T3vTi

satisfies thatMark(Ti) = D. In other words, whichever
is the way the treeT2 (or T3) evolves into a new tree in
(ATreeA0 ,∨,∧) it turns out that the associated marking re-
mains unchanged. We formalize that situation as follows:

Definition 20 Let T be an argumentation theory, and letTA
be a dialectical tree, such that for everyT ′A evolving from
TA (i.e., TA v∗T ′A) it holds thatMark(TA) = Mark(T ′A).
ThenTA is asettled dialectical treein T .

Now we have a natural, alternative way of characterizing
warrant.

Proposition 7 Let T be a theory, and letA be an argument
in T . ThenA is a warrant wrtT iff Mark(TA) = U , where
TA is a settled dialectical tree.

Clearly, computing settled dialectical trees is less expen-
sive than computing exhaustive dialectical trees, as fewer
nodes (arguments) are involved in the former case. Follow-
ing Hunter’s approach (Hunter 2004), in what follows we
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A

TA

Optimal
A

Optimally settled 

dialectical tree

Minimal
A

Minimally settled 

dialectical tree

Settled
A

Settled dialectical trees

Exhaustive dialectical tree

Figure 4: Search space for computing dialectical trees rooted
in A

will formalize thecostof computing a dialectical tree as a
functioncost : Tree

T
→ <. As explained in (Hunter 2004),

several issues can be considered when computing such cost.
The next definition refines the class of settled dialectical

trees by distinguishing those trees involvingas few argu-
ments as possiblein order to determine whether the root of
the tree is ultimately a warranted argument according to the
marking procedure. From the many possible minimally set-
tled dialectical trees rooted in a given argumentA, a dialec-
tical treeT is optimally settledif there is noT ′ that is less
expensive thanT.

Definition 21 A dialectical treeT is aminimally settled di-
alectical treeiff there is noT ′@T such thatT ′ is a settled
dialectical tree. A dialectical treeT is anoptimally settled
dialectical treeiff T is minimally settled, and for any other
settled treeT ′, cost(T) ≤ cost(T ′).

Example 9 Consider the theoryT from Ex. 1, and the com-
plete lattice(ATreeA0 ,∨,∧) shown in Fig. 3. ThenT2 and
T3 are minimally settled dialectical trees.

Let SettledA, MinimalA andOptimalA be the sets of all
settled, minimally settled and optimally settled dialectical
trees for an argumentA, resp. Clearly, it holds that

OptimalA ⊆ MinimalA ⊆ SettledA ⊆ ATreeA.

The setsSettledA, MinimalA andOptimalA can be iden-
tified in any lattice(ATreeA,∨,∧), as shown in Figure 4.
The borderline on top of the lattice denotes all possible min-
imally settled dialectical treesT1, . . . ,Tk rooted inA. Some
of such trees in that set may be optimal. Any dialectical tree
that evolves from settled dialectical treesT1, . . . ,Tk will be
also a settled dialectical tree. In particular, the exhaustive
dialectical tree is also settled.

Dialectical Constraints (Revisited)
As we have analyzed in the previous Section, the lattice as-
sociated with any argumentA accounts for the whole search
space for detecting ifA is warranted. To do so it is not nec-
essary to compute the exhaustive dialectical tree rooted in
A; rather, it suffices to focus search on settled dialectical
trees, as they involve less nodes and are consequently more
efficient.

When determining whether a conclusion is warranted,
argument-based inference engines are supposed to compute
a sequence of dialectical treesT1, T2, . . . ,Tk such thatTk is a
settled dialectical tree. For skeptical argumentation seman-
tics, argument-based engines like DeLP (Garcı́a & Simari
2004; Ches̃nevaret al. 2003; Simari, Ches̃nevar, & Garćıa
1994a) usedepth-first searchto generate dialectical trees for
queries and determine if a given literal is warranted. Such
search can be improved by applyingα − β pruning, so that
not every node (argument) is computed. In other words,
depth-first search favors naturally the computation of settled
dialectical trees.

The natural question that arises next is how to compute
minimally settled trees. Given a theoryT = (Φ,DC), it
turns out that the set of dialectical constraintsDC can help
to provide a way of approximating such minimally settled
trees, based on the fact that in depth-first search theorder in
which branches are generated is important: should shorter
branches be computed before longer ones, then the result-
ing search space can be proven to be smaller on an aver-
age search tree (Chesñevar, Simari, & Godo 2005). Usu-
ally heuristics are required to anticipate which branches are
likely to be shorter than the average.

Constraints inDC can help provide such kind of heuris-
tics. Thus, for example, in Defeasible Logic Program-
ming (Garćıa & Simari 2004; Ches̃nevaret al. 2003) and
Possibilistic Defeasible Logic Programming (Chesñevaret
al. 2004) the setDC includes as a constraint thatargu-
ments advanced by the proponent (resp. opponent) should
not be contradictoryin any argumentation line. The fol-
lowing heuristics (Ches̃nevar, Simari, & Godo 2005) can
be shown to favor the computation of shorter argumenta-
tion lines when applying depth-first search in the context of
Possibilistic Defeasible Logic Programming:if the current
argumentA0 is a leaf node in a dialectical treeT, and has
different candidate defeatersA1, A2, . . . ,Ak, then theAi

which shares as many literals as possible withA0 should be
chosen when performing the depth-first computation ofTA0 .

By applying the above heuristics it can be shown that the
branching factor for arguments belowA0 is reduced. In
other words, depth-first computation of dialectical trees fa-
vors naturally the construction of minimally settled dialec-
tical trees, whereas by applying the above heuristics an ap-
proximation to optimally settled dialectical trees is obtained.

Relevance in Dialectical Trees
In (Prakken 2000) the notion ofrelevancewas introduced in
the context of argument games and the characterization of
protocols for liberal disputes. According to (Prakken 2000),
a move is relevant in a disputeD iff it changes the disputa-
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tional status ofD’s initial move.5 In our context, dialectical
trees correspond to such disputes. In the setting presented
in (Prakken 2000), moves are performed by both parties in-
volved in a dispute (Proponent and Opponent).

Interestingly, there is a clear relation between minimally
settled dialectical trees and this notion of relevance, as the
notion of extending an argumentation line by one argument
(as introduced in Def. 18) can be recast as performing a
move.

Definition 22 Let T = (Φ,DC) be an argumentation the-
ory, and letTA1 , T ′A1

be acceptable dialectical trees. We
will say that there is amoveM from TA to T ′A, denoted as
Move(TA, T ′A), iff TA @T ′A.

It must be remarked that a proper conceptualization of
move in argumentation demands more parameters, such as
identifying the argumentation line in which a argument is in-
troduced, who is the player (Proponent or Opponent) mak-
ing the move, etc. Such an approach has been formalized
by (Prakken 2000; 2005). Our approach in this case is inten-
tionally over-simplified, as it just aims to relate the notion
of relevance and the notion of minimally settled dialectical
trees. In fact, note that Def. 22 allows us to formalize the
computation of an acceptable dialectical treeTk rooted in
A0 as a sequence of movesMove(T0, T1), Move(T1, T2),
. . . , Move(Tk−1, Tk), whereT0 is a dialectical tree with a
single nodeT ⊥A0

. Following Prakken’s notion of relevance,
we can express this concept in our setting as follows:

Definition 23 A move M = Move(TA, T ′A) is relevant iff
Mark(TA) 6= Mark(T ′A).

The following proposition shows that minimally settled
trees are only those obtained by performing a sequence of
relevant moves ending in a settled dialectical tree.

Proposition 8 LetT be an argumentation theory, and letTA
be a dialectical tree. ThenTA is minimally settled iff there is
a sequence of movesM1, M2, . . . ,Mk such that every move
Mi is relevant, andMk results in a settled dialectical tree.

Related Work
Dialectical constraints have motivated research in argu-
mentation theory in different directions. As stated be-
fore, the main role of such constraints is to avoidfalla-
cious reasoning (Aristotle ; Hamblin 1970; Rescher 1977;
Walton 1995). In our proposal dialectical constraint are
left as a particular parameter to be included in the argu-
mentation theory. It must be remarked that different for-
malizations of argument-based dialectical proof procedures
have included particular dialectical constraints as part of
their specification. In (Simari, Chesñevar, & Garćıa 1994a;
Simari, Ches̃nevar, & Garćıa 1994b), an approach to model

5The notion of relevance as well as some interesting properties
were further studied and refined (Prakken 2005).

different dialectical constraints was presented. These con-
straints were applied as part of the procedure used for con-
structing dialectical trees by discarding “ill-formed” argu-
mentation lines. In (Besnard & Hunter 2001) the authors
present a logic of argumentation which disallows repetition
of arguments in argument trees (Besnard & Hunter 2001,
p.215):

For no node (φ, β) with ancestor nodes(φ1, β1),
(φ2, β2), . . . ,(φk, βk) isφ a subset ofφ1∪φ2∪. . .∪φk.

In a similar manner, other approaches (like (Kakas & Toni
1999)) compute different semantics for logic programming
on the basis of an argumentative approach formalized in
terms of trees. Some properties can be used to render the
construction of such trees more efficient. Thus, in the case of
computing well-founded semantics via trees, defense nodes
(which account for Proponent’s argument in an argumenta-
tion line) cannot attack any other defense node in the tree.
Similarly, in (Dung, Kowalski, & Toni 2006) the notion of
dispute tree is used to compute assumption-based, admissi-
ble argumentation. As the authors indicate, in order for an
abstract dispute tree to beadmissible, there is a further re-
quirement that “the proponent does not attack itself”. Such
kind of restrictions can be seen as particular dialectical con-
straint in the context of our proposal.

Recently there have been other research oriented towards
formalizing dialectical proof procedures for argumentation.
To the best of our knowledge, none of such works formalizes
the dialectical search space through a lattice as presented in
this paper. Our work complements previous research con-
cerning the dynamics of argumentation, notably (Prakken
2001) and (Brewka 2001). In particular, Prakken (Prakken
2001) has analyzed the exchange of arguments in the context
of dynamic disputes. Our approach can also be understood
in the light of his characterization of dialectical proof theo-
ries (Prakken 2005). However, although Prakken develops a
very comprehensive general framework, in our understand-
ing some important computational issues (e.g. search space
considerations) are not taken into account. Hunter (Hunter
2004) analyzes the search space associated with dialectical
trees taking into account novel features such as thereso-
nanceof arguments. His interesting formalization combines
a number of features that allow to assess the impact of di-
alectical trees, contrasting shallow vs. deep trees. However,
search space considerations as modeled in this paper are out-
side the scope of his approach. In (Kakas & Toni 1999) a
throughout analysis of various argumentation semantics for
logic programming is presented on the basis of parametric
variations of derivation trees. In contrast with that approach,
our aim in this paper was not to characterize different emerg-
ing semantics, but rather to focus on the role of dialectical
trees as a way of modeling the search space when comput-
ing warrants. Besides, in (Kakas & Toni 1999) the authors
concentrate in normal logic programming, whereas our ap-
proach is more generic.

Conclusions. Future Work
In this paper we have presented a novel approach to model
the search space associated with warrant computation in an
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abstract argumentation framework. We have shown how the
notion of dialectical tree can be used constructively to model
different stages in the process of computing warranted argu-
ments. We have shown how the process of computing war-
rant can be recast into computing dialectical trees within a
lattice, illustrating how dialectical constraints can play a role
for guiding an efficient computation of warranted literals.

Part of our future work is related to studying theoretical
properties of the proposed framework, analyzing their inci-
dence for developing efficient argument-based inference en-
gines. In this context we think that the notion of equivalence
classes associated with dialectical trees can be specially use-
ful as discussed in Remark 2. Research in this direction is
currently being pursued.
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