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Abstract. Artificial Intelligence (AI) has long dealt with the issue of finding a
suitable formalization for commonsense reasoning. Defeasible argumentation
has proven to be a successful approach in many respects, proving to be a con-
fluence point for many alternative logical frameworks. Different formalisms
have been developed, most of them sharing the common notions of argument
and warrant. In defeasible argumentation, an argument is a tentative (de-
feasible) proof for reaching a conclusion. An argument is warranted when it
ultimately prevails over other conflicting arguments. In this context, defeasi-
ble consequence relationships for modelling argument and warrant as well as
their logical properties have gained particular attention.

This article analyzes two non-monotonic inference operators Carg and
Cwar intended for modelling argument construction and dialectical analysis
(warrant), respectively. As a basis for such analysis we will use the LDSar

framework, a unifying approach to computational models of argument using
Labelled Deductive Systems (LDS). In the context of this logical framework,
we show how labels can be used to represent arguments as well as argument
trees, facilitating the definition and study of non-monotonic inference op-
erators, whose associated logical properties are studied and contrasted. We
contend that this analysis provides useful comparison criteria that can be
extended and applied to other argumentation frameworks.
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1. Introduction and Motivations

Artificial Intelligence (AI) has long dealt with the issue of finding a suitable for-
malization for commonsense reasoning. Defeasible argumentation has proven to
be a successful approach in many respects, proving to be a confluence point for
many alternative logical frameworks. Different argument-based formalisms have
been developed, most of them sharing the common notions of argument and war-
rant. In defeasible argumentation, an argument is a tentative (defeasible) proof for
reaching a conclusion. An argument is warranted when it ultimately prevails over
other conflicting arguments. In this context, defeasible inference relationships for
modelling argument and warrant as well as their logical properties have gained
particular attention.1 As highlighted in [35, 8] several common elements can be
identified in such frameworks: an underlying logical language, the concept of ar-
gument, etc. However, these elements appear along with a number of particular
features which make it difficult to compare such frameworks with each other from
a logical viewpoint. In this context, the search for a general framework for de-
feasible argumentation in which such common elements could be abstracted away
led to the development of of LDSar [7], an argumentation formalism based on the
labelled deduction methodology [15].

Labelled Deductive Systems (LDS) [15, 16] were developed as a rigorous
but flexible methodology to formalize complex systems as logical frameworks with
labelled deduction capabilities (e.g., temporal logics, database query languages
and defeasible reasoning systems). In labelled deduction, the usual notion of for-
mula is replaced by the notion of labelled formula, expressed as Label :f, where
Label represents a label associated with the wff f. A labelling language LLabel and
knowledge-representation language Lkr can be combined to provide an enriched
object language, in which labels convey additional information also encoded at
object-language level.

The application of Labelled Deductive Systems to the formal analysis of De-
feasible Argumentation establishes a bridge from the logical perspective on de-
duction to the procedure-oriented construction of arguments. In that manner,
LDS constitutes a formalism within the set of tools characterizing the Univer-
sal Logic approach [5] which offers ways of studying the mechanisms by which
arguments are constructed and their validity is studied. The precise definitions of
the basic elements in Argumentation obtained inside the LDS framework helps in
the comparison of the different argumentative systems created in the last three
decades thus bringing the possibility of finding commonalities and differences in
such developments. With that aim, this article analyzes two non-monotonic infer-
ence operators Carg and Cwar intended for modelling argument construction and
dialectical analysis (warrant), respectively. As a basis for such analysis we will use
the LDSar framework, a unifying approach to computational models of argument

1We are aware that the term non-monotonic consequence relationship could be also used in this
context. However, as usually consequence relationships are associated with different (monotonic)
variants of classical logics, we prefer to use the term inference relationship instead.



using Labelled Deductive Systems (LDS). In the context of this logical framework,
we show how labels can be used to represent arguments as well as argument trees,
facilitating the definition and study of consequence operators, whose associated
logical properties are studied and contrasted with Sld-based Horn logic. We con-
tend that this analysis provides useful comparison criteria that can be extended
and applied to other argumentation frameworks.

The rest of the article is structured as follows: Section 2 introduces some fun-
damentals of Labelled Deductive Systems. Section 3 presents the main elements
of the LDSar framework [9], along with a worked example. Section 4 presents an
overview of the basic notions concerning consequence operators, non-monotonic in-
ference and their properties. Section 5 introduces two non-monotonic inference op-
erators C

arg
and C

war
, used for computing arguments and warranted conclusions

in the context of the proposed framework. Logical properties that characterize the
behavior of these operators are discussed and contrasted. Section 6 analyzes some
relevant aspects of of defeasible argumentation that can be analyzed on the basis
of the proposed framework. Section 7 discusses related work. Finally, Section 8
concludes and presents some research lines for future work.

2. Labelled Deductive Systems: Fundamentals

Logic has been traditionally perceived as the study of ’consequence relations’ be-
tween sets of formulæ. The complexity of real-world problems and the associated
formalizations in different application areas (such as Artificial Intelligence, Cog-
nitive Science and Computer Science) have resulted in a plethora of new logical
systems, created to give an account to the variety of reasonings required in such
areas. This situation prompted the development of Universal Logic,2 which is not a
new logic but a general theory of logics, where logics are considered as mathemat-
ical structures [5]. General tools started being developed for a systematic study of
this huge amount of new logics. In this context Dov Gabbay focused on the issue
of how to formally define the differences existing among logics, (which involves
characterizing a way of comparing them). According to Gabbay [15], the answers
to these considerations are to be found in metalevel considerations, which can be
better identified by analyzing those aspects which are uniform in most logics (e.g.,
the structure of inference rules, rules for quantifiers, etc.).

To this end Gabbay developed Labelled Deductive Systems (LDS) [15], a
unifying framework for the study of logics and of their interactions. LDS aim to
characterize a logical system by ‘abstracting away’ the common aspects mentioned
before. As a first approximation, a labelled deductive system is a 3-uple (A,L,M),
where L is a logical language (including connectives and wffs), A is an algebra on
labels (with given operations), and M is a discipline which indicates how to label
formulas in the logic, given the algebra A of labels [15]. Such a discipline will
be formulated using deduction rules. In order to characterize an LDS, a labelled

2This term was coined in [4], as an analogy with the concept of universal algebra in mathematics.



language must be defined including wffs and labels. In such language labels can
be seen as carriers of information which is not present in the wffs themselves.

Why are labels needed? In LDS labels will be used to store information of
different sort of the one encoded in the predicate associated with it. There may
exist different reasons for doing this: it can be the case that the information on the
label is of a different nature or purpose than the one coded in the main predicate,
and therefore it is more convenient to keep it as an annotation or label; or it may
also be the case that the manipulation of this extra information is too complex,
and so we want to keep it apart from the predicate associated with it. Instead of
referring to a formula A, the name of declarative unit is generically used to refer
to labelled formulæ t : A. As Gabbay remarks (op. cit.), there may be many uses
for a label t in such a declarative unit t : A. The value t might correspond to a
confidence value in fuzzy logic (e.g., t could be a real number between 0 and 1),
an indicator of the origin of the wff A (e.g., in a very complex database), or an
annotation of the proof of A (e.g., t can include the set of assumptions that lead
to believe A).

There are several additional constraints imposed on the way we use LDS. The
main ones are the following: a) the only inference rules allowed are the traditional
ones, modus ponens and some form of introduction rule (deduction theorem) for
implication, for example; b) allowable modes of label propagation are fixed for all
logics. They can be adjusted in agreed ways to obtain variations, but in general
the format is the same. This also applies to quantifiers (the quantifier rules are
the same for all logics); and c) Metalevel features are implemented via the la-
belling mechanism, which is the object language. Finally, whereas in traditional
logical systems the consequence is defined using proof rules on formulas, in the
LDS methodology the consequence is defined by using rules on both formulæ and
labels. Thus the traditional notion of consequence between formulæ of the form
A1, . . . , An ` B is replaced by the notion of consequence between labelled formulæ
t1:A1; t2:A2; . . . ; tn:An |∼ s:B. Accordingly, we will have formal rules for ma-
nipulating labels and this will allow for more scope and detailed analysis when
decomposing the various features of the consequence relation. The meta features
can be reflected in the algebra or logic of the labels, and the object features in the
rules of the formulas. An in-depth discussion on LDS is outside the scope of this
paper, and for further details the reader is referred to [15, 16].

3. Modelling Argumentation with LDS: the LDSar Framework

Argumentation frameworks3 are characterized by representing certain features of
informal argumentation using a formal language, along with an inference mech-
anism. Although these frameworks differ in their aims and characterization, the
notion of argument is quite similar, having a strong resemblance to the notion of

3See [35, 8] for a detailed description of relevant logic-based approaches to argumentation.



proof in logic. In fact, the difference between arguments and logical proofs is more
‘pragmatic’ than ‘syntactic’ [26].

Prakken & Vreeswijk [35] have defined a conceptual framework in which most
argumentation systems can be characterized. This conceptual framework involves
five elements, namely:

a) an underlying logical language L;
b) a concept of argument ;
c) a concept of conflict among arguments;
d) a notion of defeat among arguments;
e) a notion of acceptability of arguments according to a well-defined criterion.

We contend that the above elements can be embedded as different parts of
an LDS-based framework for argumentation called LDSar [9], whose salient fea-
tures will be summarized in this section. In our approach the underlying logical
language L will be a labelled language L

Arg
= (L

Labels
,L

KR
), where L

Labels
is a labelling

language (representing epistemic status of knowledge, as well as arguments and
their interrelationships) and L

KR
represents object-level knowledge. Thus, the la-

belling language L
Labels

will encode different information features which correspond
to the elements (a)–(e) in Prakken & Vreeswijk’s conceptualization.

Usually L
KR

will be a distinguished subset of FOL (e.g., the language of Horn
clauses or the language of extended logic programming), together with the symbol
“∼” to denote strict negation [27]. For practical purposes, L

KR
will usually be

restricted to rules and facts, in which the notion of contradictory information can
be expressed in terms of complementary literals p and ∼p. We will also assume an
underlying inference procedure ` associated with L

KR
(e.g., Sld derivation). Given

a set P ⊆ Wffs(L
KR

), and φ ∈ Wffs(L
KR

), we will write that P ` φ to denote that
φ follows from P via `. If two complementary literals can be derived from P via
` we will say that P is contradictory, or just write P ` ⊥. Following [15], labelled
wffs in L

Arg
will be called declarative units, having the form Label:wff.

Definition 3.1 (Labelling Language L
Labels

). The labelling language L
Labels

is a set of
labels { L1, L2, . . . Lk, . . . }, such that every label L ∈ L

Labels
is:

1. The empty set ∅, or any φ ∈ Wffs(L
KR

). These labels are called epistemic
labels.

2. A set Φ ⊆ Wffs(L
KR

). This is a label called argument label.
3. A functor T is a label called dialectical label, defined as follows:

(a) If Φ is an argument label, then TU (Φ), TD(Φ) and T∗(Φ) are dialectical
labels in L

Labels
.4

(b) If T1, . . . , Tk are dialectical labels, then TU
n (T1, . . . ,Tk),

T∗n(T1, . . . ,Tk) and TD
m(T1, . . . ,Tk) will also be dialectical labels in

L
Labels

.
4. Nothing else is a label in L

Labels
.

4For the sake of simplicity, we will just write T1, T2, etc. to denote arbitrary dialectical labels.



Next we introduce the notion of argumentative theory, which will be a set of
‘basic’ declarative units (bdu’s) in our labelled language L

Arg
. Such bdu’s will be

used to encode defeasible and non-defeasible information.

Definition 3.2 (Argumentative Theory). A labelled formula φ:α ∈ Wffs(L) such
that α ∈ Wffs(L

KR
) and either (1) φ = ∅ or (2) φ = {α} will be called a basic

declarative unit (bdu). Cases (1) and (2) correspond to representing non-defeasible
and defeasible knowledge, resp. A finite set Γ = {φ1:α1, . . . φk:αk} where every
φi:αi is a bdu will be called an argumentative theory. We will assume that the set
Strict(Γ) = {∅:αi | ∅:αi ∈ Γ} is non-contradictory wrt `.

3.1. Argument Construction

Given an argumentative theory Γ and a wff φ ∈ L
KR

, we will provide a labelled
inference relationship “|∼

Arg
” to characterize the notion of argument. Our labelled

inference relationship “|∼
Arg

” will be characterized by a number of suitable deduc-
tion rules Intro-NR, Intro-RE, Intro-∧ and Elim-←(Figure 1). Rules Intro-NR and
Intro-RE allow the introduction of non-defeasible and defeasible information when
constructing arguments. Rules Intro-∧ and Elim-← stand for introducing conjunc-
tion and applying modus ponens. Note that in the last three rules a ‘consistency
check’ wrt ` is performed, in order to ensure that the label associated with the
inferred formula does not allow the derivation of complementary literals. Note also
that the label A associated with a formula A:α contains all defeasible information
needed to conclude α from Γ.

Definition 3.3 (Argument). Let Γ be an argumentative theory, let α be a literal in
L

KR
and let A ⊆ Wffs(L

KR
) such that Γ|∼

Arg
A:α. Then A:α will be called an argu-

ment on the basis of Γ. An argument A:h is a subargument of another argument
B:q if A ⊂ B. We will write Args(Γ) to denote the set of all possible arguments
that can be obtained from Γ.

3.2. Attack among Arguments. Dialectical Analysis

Clearly, given an argumentative theory Γ there may exist conflicting arguments
(e.g., A:α and B:α) emerging from it. We will assume that conflict (also counterar-
gument or attack) among arguments is captured using the notion of contradiction
associated with the ` inference relationship used for argument construction. Note
that our notion of conflict is intentionally generic, as different, more concrete for-
malizations are possible.

Definition 3.4 (Counterargument). Let Γ be an argumentative theory, and let A:h
and B:q be arguments based on Γ. Then A:h counter-argues B:q if there exists
a subargument B′:s of B:q such that Strict(Γ) ∪ {h, s} is contradictory. The
argument B′:s will be called disagreement subargument.

Defeat among arguments involves a preference criterion among conflicting
arguments. If Γ is an argumentative theory, a preference order ¹ is any partial or-
der defined on the arguments in Args(Γ). Particular approaches in argumentation



Intro-NR: ∅:α
for any ∅:α

Intro-RE:
Φ:α

for any Φ:α such that Strict(Γ)∪ Φ 6` ⊥
Intro-∧: Φ1:α1 Φ2:α2 . . . Φk:αk

∪i=1...kΦi:α1, α2, . . . , αk

whenever Strict(Γ) ∪ Si=1...k Φi 6` ⊥
Elim-←: Φ1:β←α1, . . . , αk Φ2:α1, . . . , αk

Φ1 ∪ Φ2:β
whenever Strict(Γ) ∪ Φ1 ∪ Φ2 6` ⊥

Figure 1. Inference rules for argument construction

frameworks to characterizing defeat may differ: some argumentation frameworks
will only consider attack relationships [13], others will distinguish between rebut-
ting and undercutting attacks [34], etc.

Definition 3.5 (Defeat). Let Γ be an argumentative theory, such that Γ|∼
Arg
A:h

and Γ|∼
Arg
B:q. We will say that A:h defeats B:q (or equivalently A:h is a defeater

for B:q) if

1. A:h counterargues B:q, with disagreement subargument B′:q′.
2. Either it holds that A:h Â B′:q′, or A:h and B′:q′ are unrelated by the

preference order “¹”.

We will not delve into such differences here, but will rather focus on capturing
the notion of dialectical analysis in terms of natural deduction rules. A usual
approach involves computing (explicitly or implicitly) a so-called dialectical tree.5

A dialectical tree is a dialogue tree between two parties, proponent and opponent.
Branches of the tree correspond to all possible dialogues or exchanges of arguments
between these two parties, starting from the initial argument at issue (root node).
A dialectical tree can be marked as an and-or tree according to the following
procedure: nodes with no defeaters (leaves) are marked as U -nodes (undefeated
nodes). Inner nodes are marked as D-nodes (defeated nodes) iff they have at least
one U -node as a child, and as U -nodes iff they have every child marked as a D-node
(as shown in Figure 3). In the case that the root node of the tree is finally marked
as U -node, then the associated argument is said to be justified or warranted.6

5Also called “argument tree”, “dialogue tree” or “dispute tree” in the literature (see e.g. [34, 40,
3]).
6Both terms are commonly used in the literature [35, 8].



Intro-1D: A:α
T∗(A):α

whenever A is minimal wrt set inclusion

Intro-ND: T∗(A):α T∗1(B1, . . .):β1 T∗k(Bk, . . .):βk

T∗(A,T∗1, . . . ,T
∗
k):α

whenever VSTree(A, T∗i ) holds, i = 1 . . . k.

Mark-Atom: T∗(A):α
TU (A):α

Mark-1D: T∗(A,T∗1, . . . ,T
∗
i , . . . ,Tk):α

TU
i (Bi . . .):βi

TD(A,T∗1, . . . ,T
∗
i−1,T

U
i ,T∗i+1, . . . ,T

∗
k):α

whenever VSTree(A,TU
j ) holds, for some i ∈ {1, . . . , k}

Mark-ND: T∗(A,T∗1, . . . ,T
∗
i , . . . ,T

∗
k):α

TD
1 (B1, . . .):β1 . . .TD

k (Bk, . . .):βk

TU (A,TD
1 , . . . ,TD

i , . . . ,TD
k ):α

whenever VSTree(A,TD
i ), ∀i ∈ {1, . . . , k}

Figure 2. Rules for dialectical analysis characterizing the infer-
ence relation |∼T
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Figure 3. Labelling a dialectical tree with α− β pruning

In the context of LDSar, the construction and marking of dialectical trees
is captured in terms of dialectical labels (Def. 3.1). Special marks (*, U , D) are
associated with a label T(A, . . .) in order to determine whether A corresponds to
an argument which has been (a) not analyzed yet (∗) in the dialectical context



given by the label; or (b) defeated (D) (resp. undefeated (U)) in such context.
In LDSar, the construction of dialectical trees is formalized in terms of an infer-
ence relationship |∼T given by the natural deduction rules shown in Figure 2. Rule
Intro-1D allows to generate a tree with a single argument.7 Rule Intro-ND allows to
expand a given tree T∗ by introducing new subtrees T∗1(B1, . . .):q1 T∗k(Bk, . . .):qk.

It must be remarked that a special condition VSTree(A, T∗i ), i = 1 . . . k
checks that such subtrees are valid. Such checking involves several considerations,
such as determining that the root of every T∗i is a defeater for the root of T∗,
and no fallacious argumentation is present by appending any T∗i as a subtree
rooted in A [39]. An in-depth discussion of such fallacies is outside the scope of
this paper, and details can be found elsewhere [9]. Rules Mark-Atom, Mark-1D and
Mark-ND allow to ‘mark’ the nodes (arguments) in a dialectical tree as defeated or
undefeated. Note that the rules propagate marking from the bottom of the tree up
to the root node, according to the marking criterion discussed before. A labelled
formula TU

i (A, ...):α stands for an argument A:α which has been marked as U -
node according to the arguments introduced in the subtrees associated with the
dialectical label Ti. If the dialectical label Ti cannot be further “expanded” (see
discussion below), then it corresponds to an exhaustive analysis for the argument
associated with the root of that tree. This allows to formalize the notion of warrant
within the LDSar framework as follows.

Definition 3.6 (Warrant – Version 1). Let Ck(Γ) be the set of all formulas that can be
obtained from Γ via |∼

Arg
and |∼T in at most k steps. A literal α is said to be warranted iff

TU
i (A, ...):α ∈ Ck(Γ), and there is no k′ > k, such that TD

j (A, ...):α ∈ (Ck′(Γ) \Ck(Γ)).

In fact, this approach to compute warrant resembles Pollock’s original ideas
of “ultimately justified belief” [33]. Note that Def. 3.6 forces the computation of the
deductive closure under “|∼T ” in order to determine whether a literal is warranted
or not. Fortunately this is not necessarily the case, since warrants can be captured
in terms of a precedence relation “< ” between dialectical labels. Informally, we
will write T < T’ whenever T reflects a state in a dialogue which is previous to T’
(in other words, T’ stands for a dialogue which evolves from T by incorporating
new arguments). A final label is a dialectical label that cannot be extended any
further.

Definition 3.7 (Warrant – Version 2). 8 Let Γ be an argumentative theory, such that

Γ |∼T TU
i (A, . . .):α and TU

i is a final label (i.e., it is not the case that Γ |∼T TD
j (A, . . .):α

and TU
i < TD

j ). Then α is a warranted literal wrt Γ.

In the next Subsection we will present a worked example which illustrates the
main aspects of the LDSar framework for representing knowledge and performing
argumentative inference.

7We require arguments to be minimal wrt set inclusion as it is a common requirement in several
argument frameworks, starting with [40].
8It can be proven that Def. 3.7 and 3.6 are equivalent [9, 7].



∅: ∼f ← pc
∅: sw1 ←
∅: sw2 ←
∅: sw3 ←
∅: h ←

{ pf ← sw1 }: pf ← sw1
{ f ← pf }: f ← pf

{ po ← sw2 }: po ← sw2
{ o ← po }: o ← po
{e ← f , o }: e ← f , o

{∼e ← f , o, h }: ∼e ← f , o, h
{∼o ← h }: ∼o ← h

{pc ← pf , l }: pc ← pf , l
{l ← sw2 }: l ← sw2

{∼l ← sw2 , sw3 }: ∼l ← sw2 , sw3
{f ← sw3 }: f ← sw3

Figure 4. Argumentative theory Γengine

3.3. A Worked Example9

Consider an intelligent agent involved in controlling an engine with three switches
sw1, sw2, and sw3. These switches regulate different features of the engine, such
as the pumping system, speed, etc. Suppose we have defeasible information about
how this engine works.

• If the pump is clogged (pc), then the engine gets no fuel (∼f).
• When sw1 is on, fuel is normally pumped properly (pf).
• When fuel is pumped properly (pf), fuel is usually ok (f).
• When sw2 is on, oil is usually pumped (po).
• When oil is pumped (po), it usually works ok (o).
• When there is oil and fuel (o) ∧ (f), usually the engine works ok (e).
• When there is fuel, oil, and heat (o) ∧ (f) ∧ (h) then the engine is usually not ok

(∼e).
• When there is heat (h), normally there are oil problems (∼o).
• When fuel is pumped (pf) and speed is low (l), then there are reasons to believe

that the pump is clogged (pc).
• When sw2 is on, usually speed is low (l).
• When sw3 is on, usually fuel is ok (f).

Suppose we also know some particular facts: sw1, sw2, and sw3 are on,
and there is heat (h). The knowledge of such an agent can be modeled by the
argumentative theory Γengine shown in Figure 4. From the theory Γengine, the
argument A:e, with

A = { (pf ← sw1 ), (po ← sw2 ), (f ← pf ), (o ← po), (e ← f , o) }

9This example has been adapted from [11]



can be inferred via |∼
Arg

by applying the inference rules Intro-NR twice (inferring
sw1 and sw2), then Intro-RE twice (inferring pf ← sw1 and po ← sw2 ), then
Intro-RE twice again to infer f ← pf and o ← po, and finally Intro-RE once
again to infer e ← f , o. In a similar way, arguments B:∼f , C:∼l, D:f and E :∼e
can be derived via |∼

Arg
, with10

B = { (pf ← sw1 ), (l ← sw2 ), (pc ← pf , l) }
C = { (∼l ← sw2 , sw3 ) }
D = { (∼l ← sw2 , sw3 ) }
E = { (pf ← sw1 ), (po ← sw2 ), (f ← pf ), (o ← po), (∼e ← f , o, h) }
Note that the arguments B:∼f , and E :∼e, are counterarguments for the

original argument A:e, whereas C:∼l and D:f are counterarguments for B:∼f .
In each of these cases, these counterarguments are also defeaters according to
the specificity preference criterion [40]. Assuming such defeat relationship among
arguments, the following formulæ can be inferred via |∼T :

1)T∗1(A):e Intro-1D
2)T∗2(B):∼f Intro-1D
3)T∗3(C):∼l Intro-1D
4)T∗4(D):f Intro-1D
5)T∗5(E):∼e Intro-1D
6)T∗2(B,T∗3(C),T∗4(D)):∼f Intro-ND, 3), 4)
7)T∗1(A,T∗2(B,T∗3(C),T∗4(D)),T∗5(E)):e Intro-ND, 6)
8)TU

5 (E):∼e Mark-Atom
9)TD

1 (A,T∗2(B,T∗3(C),T∗4(D)),TU
5 (E)):e Mark-1D, 8)

Note that the formula obtained in step (7) has a final label associated with
it, since it cannot be ‘expanded’ from previous formulæ. Hence, following Def. 3.7,
we can conclude that e is not warranted.

4. Non-monotonic Inference Relationships: Fundamentals11

In classical logic, inference rules allow us to determine whether a given wff γ
follows via “`” from a set Γ of wffs. In classical logic the “`” relationship is
a consequence relationship (satisfying idempotence, cut and monotonicity). As
non-monotonic and defeasible logics evolved into a valid alternative to formalize
commonsense reasoning, a similar concept was needed to capture consequence
without demanding some of these requirements (e.g. monotonicity). This led to
the definition of a more generic notion of inference, namely inference relationships.
New properties were defined and gained interest in this setting. In this section we
will introduce the definition of (non-monotonic) inference relationship, as well the
definitions some distinguished properties that characterize them.

10For the sake of clarity, we use parentheses to separate different elements (formulas) present in
an argument.
11This section is based on the excellent overview on consequence and inference relationships
given in [2].



4.1. Inference Relationship. Pure Logical Properties

Definition 4.1 (Inference Relationship |∼ . Inference Operator C(Γ)). Let Γ be a
set of wffs in a language L and let γ be a wff in Γ. We will write Γ|∼ γ if γ is a
(non-monotonic) consequence of Γ. We define C(Γ) = {γ | Γ|∼ γ}.

Given an inference relationship “|∼ ” and a set Γ of sentences, the following
are called basic (or pure) properties associated with any inference operator C(Γ):

1. Inclusion: Γ ⊆ C(Γ)
2. Idempotence: C(Γ) = C(C(Γ))
3. Cut: Γ ⊆ Φ ⊆ C(Γ) implies C(Φ) ⊆ C(Γ)
4. Cautious Monotonicity: Γ ⊆ Φ ⊆ C(Γ) implies C(Γ) ⊆ C(Φ).
5. Cummulativity: Γ ⊆ Φ ⊆ C(Γ) implies C(Γ) = C(Φ).
6. Monotonicity: Γ ⊆ Φ implies C(Γ) ⊆ C(Φ)

The intuitive meaning of inclusion and idempotence should be clear with-
out further comments. The cut rule states that expanding the information in Γ
by adding new propositions from C(Γ) does not result in new conclusions being
obtained. Cautious monotonicity constitutes somehow the ‘inverse’ of cut : adding
new lemmas does not decrease inference power, i.e. the set of conclusions that can
be obtained from a given theory. Combining cut and cautious monotonicity we
get cummulativity, which states that intermediate proofs (lemmas) can be used
as part of other (more complex) proofs without affecting the soundness of their
conclusions.

These properties are called pure, since they can be applied to any language
L, and are abstractly defined for an arbitrary inference relationship “|∼ ”. Never-
theless, other properties which link classical inference with an arbitrary inference
relationship can be stated. These properties will be discussed next. In what fol-
lows we will assume that Th stands for an operator that characterizes classical
inference, whereas C corresponds to some (non-monotonic) inference relationship
“|∼ ”.

4.2. Horn and Non-Horn Logical Properties

A common name for cataloging non-pure properties is the distinction between
Horn properties and non-Horn properties. Horn properties have the form “from
the presence of some particular inferences, the presence of some other inferences
can be assured”. Non-Horn properties, on the other hand, have the form “from the
absence of some particular inferences, the absence of some other inferences can be
assured”. Next we summarize the most important non-pure properties:12

Horn Properties.

1. Supraclassicality: Th(A) ⊆ C(A)
2. Left Logical Equivalence: Th(A) = Th(B) implies C(A) = C(B)
3. Right Weakening: If x ⊃ y ∈ Th(A) and x ∈ C(A) then y ∈ C(A).13

12An in-depth discussion of these properties can be found in [2].
13It should be noted that “⊃” stands for material implication, to be distinguished from the
symbol “ ← ” used in a logic programming setting.



4. Conjunction of Conclusions: If x ∈ C(A) and y ∈ C(A) then x ∧ y ∈ C(A).
5. Subclassical Cummulativity: If A ⊆ B ⊆ Th(A) then C(A) = C(B).
6. Left Absorption: Th(C(Γ)) = C(Γ).
7. Right Absorption: C(Th(Γ)) = C(Γ).

Non-Horn Properties.

1. Rationality of Negation: if A|∼ z then either A ∪ {x}|∼ z or A ∪ {¬x}|∼ z.
2. Disjunctive Rationality: if A ∪ {x ∨ y}|∼ z then A ∪ {x}|∼ z or A ∪ {y}|∼ z.
3. Rational Monotonicity: if A|∼ z then either A ∪ {x}|∼ z or A|∼ ¬x.

5. Capturing Argument Construction and Warrant in LDSar

In this Section we will present two non-monotonic inference operators for LDSar

associated with computing arguments and warranted literals, respectively. As dis-
cussed in Section 3, these concepts are based on the two inference relationships
|∼
Arg

and |∼T , characterized by the natural deduction rules shown in Figures 1 and 2,
respectively. Given an argumentative theory Γ, |∼

Arg
is associated with labelled for-

mulas corresponding to those arguments which can be inferred from Γ, whereas
|∼T allows to obtain labelled formulas T(A, . . .):α, where the label T(A, . . .) de-
picts the dialectial analysis carried out to determine the epistemic status of the
literal α. In the case of |∼T , we are particularly interested in those labelled formulas
corresponding to ultimately accepted (or warranted) literals, as characterized in
Def. 3.6.

How can we formalize the notion of theorem in the context of LDSar? In
this respect, there is an important aspect to take into account: LDSar is based
on an extension of logic programming, where literals can be preceded by strong
negation, and some pieces of information can be distinguished (labeled) as ‘defea-
sible’. Consequently, the notion of theorem in such a logic programming setting
will be more restricted than the one used in classical logic, as only literals can
be obtained as conclusions derivable from a given logic program. This leads to
consider a specialized consequence operator for our framework, oriented towards a
logic programming setting [27], where typically Sld resolution is used to model
which literals follow from a given logic program. Formally:

Definition 5.1 (Consequence Operator Th
sld

(Γ)). Given an argumentative theory
Γ, we define Th

sld
(Γ) as the set of all possible empty arguments that can be

obtained form Γ. Formally:

Th
sld

(Γ) = {∅:h | Γ|∼
Arg
∅:h}, for some h ∈ L

KR

According to definition 5.1, ‘classical’ consequences from an argumentative
theory Γ will be arguments whose argument label is the empty set (i.e., arguments
that do not rely on any defeasible information). We want to compare this notion
of derivation with respect to inference relationships |∼

Arg
and |∼T . We will define two

suitable inference operators for capturing those arguments that can be derived



from Γ, and those literals that can be warranted from it. Warranted conclusions
will be represented in terms of of new facts in our labelled language L

Labels
.

Definition 5.2 (Inference Operators Carg (Γ) and Cwar (Γ)). Given an argumenta-
tive theory Γ, we will define two non-monotonic inference operators C

arg
(Γ) and

Cwar (Γ) as follows:

Carg (Γ) = { A:α | Γ|∼
Arg
A:α, where α is a literal in Wffs(L

KR
) }

C
war

(Γ) = { ∅:α | Γ|∼T T(A, . . .):α,
where α is a warranted literal in Wffs(L

KR
) }

In what follows we will analyze the different logical properties discussed in
Section 4 in the context of LDSar.

5.1. Logical Properties of Carg

Inclusion does not hold in general for Carg , since not every piece of defeasible
information can be used as part of an argument. However, it does hold for (non-
defeasible) facts. Therefore we refer to it as restricted inclusion.

Proposition 5.3 (Restricted Inclusion). The operator Carg (Γ) only satisfies inclu-
sion wrt the non-defeasible information present in Γ, i.e. all those labelled formulas
∅:α ∈ Γ

Proof. Let Γ be an argumentative theory, and let ∅:α be a non-defeasible formula in
Γ. Clearly, from rule Intro-NR we can derive ∅:α from Γ, i.e. Γ|∼

Arg
∅:α. Consequently, if

∅:α ∈ Γ then ∅:α ∈ Carg (Γ).

A counterexample suffices to show that inclusion does not hold for defeasible information.
Consider Γ = { {∼α}:∼α, ∅:α }. Then Γ|∼

Arg
∅:α, but Γ 6 |∼

Arg
{∼α}:∼α. �

The logical property of idempotence holds, as once the clogical closure of
Γ under |∼

Arg
has been computed, no new arguments can be obtained by a new

application of |∼
Arg

.

Proposition 5.4 (Idempotence). The operator Carg (Γ) satisfies idempotence, i.e.
Carg (Γ) = Carg (Carg (Γ))

Proof. (⇒) We must show that Carg (Γ) ⊆ Carg (Carg (Γ)). Let Γ be a theory. Clearly,
Carg (Γ) will correspond to a set of arguments

Carg (Γ) = {A1:α1, . . .Ak:αk, }
where every αi is a literal in Wffs(LKR), i = 1 . . . k. Note that by definition of |∼

Arg
, there

are only two inference rules that can be applied on the basis of Carg (Γ), namely Intro-NR
and Intro-RE (as rule Intro-∧ does not derive an argument, and Elim-← requires having
a formula Φ:β ← α ∈ Carg (Γ), which cannot be the case as β ← α is not a literal. Let
us analzye the application of Intro-NR and Intro-RE, which correspond to axioms in the
characterization of |∼

Arg
:



1. Intro-NR applications can only result in new empty arguments being introduced.
Hence, ∅:α1 ∈ Carg (Carg (Γ)) whenever ∅:α1 ∈ Carg (Γ)

2. Intro-RE applications can result in non-empty arguments Φ:α being introduced
whenever Strict(Γ) ∪ Φ 6` ⊥. Clearly, every argument A:α in Carg (Γ) satisfies this
restriction. Consequently, those arguments A:α in Carg (Γ) will be also members in
Carg (Carg (Γ)).

The proof in the other direction (⇐) follows an analogous way of reasoning. �
As the inference operator |∼

Arg
models the construction of defeasible argu-

ments, monotonicity does not hold, as expected.

Proposition 5.5 (Monotonicity). The operator Carg (Γ) does not satisfy monotonic-
ity.

Proof. A counterexample suffices. Consider the argumentative theory Γ = {∅:q,
{p ← q}:p ← q }. Clearly Γ|∼

Arg
A:p, with A = {p ← q}. But Γ′ = Γ ∪ {∅:∼p}

is such that Γ 6 |∼
Arg

A:p. �
Semi-monotonicity is an interesting property suggested by Makinson &

Schlechta [30] for analyzing non-monotonic consequence relationships. It is sat-
isfied if all defeasible consequences from a given theory are preserved when the
theory is augmented with new defeasible information. Next we show that semi-
monotonicity holds for |∼

Arg
.

Proposition 5.6 (Semi-monotonicity). The operator Carg (Γ) satisfy semi-
monotonicity, i.e. Carg (Γ) ⊆ Carg (Γ ∪ Γ′), where Γ′ is a theory involving only
defeasible information.

Proof. Proof is direct from the structure of the inference rules. Assume Γ|∼
Arg

A:α, and

consider Γ ∪ Γ′ as stated in the proof of Prop. 5.5. Clearly, the sequence of steps in the
proof Γ∪Γ′|∼

Arg
A:α is still valid, since all preconditions in inference rules are defined wrt

Strict(Γ) = Strict(Γ ∪ Γ′). Hence Γ ∪ Γ′|∼
Arg

A:α. �
Cummulativity holds for argument construction. The importance of this

property will be discussed later in section 8.

Lemma 5.7 (Cummulativity). 14 Let Γ be an argumentative theory, and let α1

and α2 be literals in Wffs(L
KR

). Then Γ|∼
Arg
A1:α1 implies that

Γ ∪ {A1:α1} |∼
Arg
A2:α2 iff Γ |∼

Arg
A2:α2

The property of supraclassicality needs also a particular characterization in
LDSar, as theorems are restricted to literals supported by empty arguments (as
indicated in Def. 5.1). Therefore we refer to the restricted version of this property
as Horn Supraclassicality.

Proposition 5.8 (Horn Supraclassicality). The operator Carg (Γ) satisfies Horn
supraclassicality wrt Th

sld
, i.e. Th

sld
(Γ) ⊆ Carg (Γ).

14Proof not included for space reasons.



Proof. Proof is direct from Definition 5.1. Every member in Thsld(Γ) is an empty argu-
ment, and as such it is a member in Carg (Γ). Therefore Thsld(Γ) ⊆ Carg (Γ). �
Proposition 5.9 (Left-Logical Equivalence). The operator C

arg
(Γ) satisfies left-

logical equivalence (i.e., given the formulas α, β and γ such that α ←→ β (both
are logically equivalent) if γ ∈ Carg (Γ ∪ {α}) then γ ∈ Carg (Γ ∪ {β}).
Proof. Note that logical equivalence in LDSar is restricted to rules and facts. From
the definition 3.2 therefore α ←→ β iff both α and β correspond to the same fact (i.e.
α = β = ∅:φ, or α = β = φ:φ, where φ is a fact) or both α and β correspond to
logically equivalent rules. In a logic programming setting two rules P ← Q1 ,Q2 , . . . ,Qk

and P ′ ← Q ′
1 ,Q ′

2 , . . . ,Q ′
k will be equivalent iff P and P ′ are the same fact (P ≡

P ′) and the set {Q1, Q2, . . . , Qk} is equal to the set {Q′1, Q′2, . . . , Q′
k} (i.e., rules differ

just in a permutation of the literals present in the antecedent). If γ ∈ Carg (Γ ∪ {α})
(hypothesis), then there exists an argument γ which follows from Carg (Γ ∪ {α}) via
a sequence of applications of natural deduction rules from |∼

Arg
. From the definition of

Intro-∧ and Elim-← it is straightforward to see that if such a proof could be obtained from
Carg (Γ ∪ {α}) and β is logically equivalent to α, then the same proof can be obtained
from Carg (Γ ∪ {β}). �

Note that the property of right weakening cannot be considered (in a strict
sense) in LDSar, since the deductive system associated with Th

sld
does not allow

the application of the deduction theorem [6]. Therefore, wffs of the form “x ← y”
cannot be derived via `sld . On the other hand, conjunction of conclusions does
not hold for argument construction (as shown in Proposition 5.11). Therefore we
will provide an alternative, restricted version of Right weakening considering only
clauses with only one literal in the antecedent. We call such a property Horn Right
Weakening.

Proposition 5.10 (Horn Right Weakening). The operator Carg (Γ) satisfies Horn
right weakening, i.e. if A:y ∈ Carg (Γ) and ∅:x ← y ∈ Γ (where y is a literal in
Wffs(L

KR
)) then A′:x ∈ Carg (Γ).

Proof. Suppose A:y ∈ Carg (Γ). Clearly, Strict(Γ) 6 `sld ⊥ (otherwise it would not have
been possible to infer A:y). However, x ← y ∈ Strict(Γ). Then applying rule Elim-← it
holds that A:x can be derived from Γ, or equivalently A:x ∈ Carg (Γ). �
Proposition 5.11 (Conjunction of Conclusions). 15 The operator Carg (Γ) does not
satisfy conjunction of conclusions, i.e. if x ∈ Carg (Γ) and y ∈ Carg (Γ), then it
does not hold that x ∧ y ∈ Carg (Γ).

Proof. A counterexample suffices. Consider the following theory

Γ = { ({p ← q}:p ← q), ({r ← z}:r ← z )
(∅:q), (∅:z), (∅:w), (∅:∼w ← p, r) }

15Conjunction of conclusions in an argument is not possible as conclusions of arguments are
restricted to literals (see Def. 3.3). However, we consider the general case as it is allowed by the
inference rules in |∼

Arg
.



Then there exists an argument A1:p with A1={ p ← q }, and an argument A2:r with
A2={ r ← z }. However, the formula A3:p, r cannot be derived (nor any other with
conclusion p, r) since Strict(Γ) ∪ {p, r}`sld ⊥. �

Proposition 5.12 (Subclassical Cummulativity). The operator Carg (Γ) satisfies sub-
classical cummulativity, i.e. Γ ⊆ Γ′ ⊆ Th

sld
(Γ) implies C

arg
(Γ) = C

arg
(Γ′)

Proof. Let Γ be an argumentative theory, and assume Γ ⊆ Thsld(Γ). Note that Thsld(Γ)
involves only labelled formulas with an empty label. Consequently, it holds that for
any Φ:α ∈ Γ it is the case that Φ = ∅, and α is a literal. But if this is the case, the
only applicable inference rule on Γ is Intro-NR, which correspond to an axiom schema.
Necessarily it follows that Γ = Thsld(Γ), and consequently Γ′ = Γ, so that Carg (Γ) =
Carg (Γ′), as we wanted to prove. �

Proposition 5.13 (Left Absorption). The operator C
arg

(Γ) does not satisfy left
absorption, i.e. Th

sld
(Carg (Γ)) 6= Carg (Γ).

Proof. Thsld(Carg (Γ)) involves only empty arguments that can be derived from Carg (Γ).
But there can exists non-empty arguments in Carg (Γ). Therefore Thsld(Carg (Γ)) 6=
Carg (Γ). �

Proposition 5.14 (Right Absorption). The operator Carg (Γ) does not satisfy right
absorption, i.e. Carg (Th

sld
(Γ)) 6= Carg (Γ).

Proof. As shown in prop 5.9, when computing Thsld(Γ) all defeasible information that
might originally be present in Γ is lost. However, this information could appear in argu-
ments in Carg (Γ). Then it holds that Carg (Thsld(Γ)) 6= Carg (Γ). �

Proposition 5.15 (Rational Negation). The operator C(Γ) does not satisfy rational
negation.

Proof. A counterexample suffices. Consider the following theory Γ={∅:∼p ← x ,
∅:∼p ← ∼x , ∅:r, {z ← p}:z ← p , {p ← r}:p ← r }. Then Γ|∼

Arg
A:z, with A =

{z ← p, p ← r }. However, Γ∪ {∅:x}6 |∼
Arg

A:z, and Γ∪ {∅:∼x}6 |∼
Arg

A:z (since in both

cases the use of {p ← r}:p ← r is not valid because of consistency constraints). �

Proposition 5.16 (Rational Monotonicity). The operator C(Γ) does not satisfy
rational monotonicity.

Proof. Consider the example given in the proof of Proposition 5.15, where Γ|∼
Arg

A:z, with

A = {z ← p, p ← r }. If we consider now Γ ∪ {∅:x} it holds that Γ ∪ {∅:x}6 |∼
Arg

A:z,

and Γ 6 |∼
Arg

∼x. Therefore rational monotonicity is not satisfied. �

Clearly, the operator Carg does not satisfy disjunctive rationality either, since
disjunctions cannot be expressed as formulas in L

KR
.



5.2. Logical Properties of C
war

Next we will analyze some relevant logical properties of Cwar , the inference oper-
ator for deriving warranted conclusions. Clearly, inclusion cannot be defined for
considering arbitrary labelled formulas, as only formulas of the form ∅:α will be
part of C

war
.

Proposition 5.17 (Restricted Inclusion). The operator Cwar (Γ) only satisfies in-
clusion wrt (non-defeasible) facts in Γ.

Proof. Let Γ be an argumentative theory, and let ∅:α be a labelled formula in Γ. Clearly,
from rule Intro-NR it follows that Γ|∼

Arg
∅:α. The formula ∅:α provides an argument for α.

By rule Intro-1D, the formula T∗(∅):α can be derived. Clearly, rule Intro-1D cannot be
applied, as no defeaters can be found for the empty set. Therefore Γ|∼T TU

∗ (∅):α, and α is

a warranted literal, or equivalently ∅:α ∈ Cwar (Γ).
�

Proposition 5.18 (Idempotence). The operator C
war

(Γ) satisfies idempotence, i.e.
Cwar (Γ) = Cwar (Cwar (Γ))

Proof. (Sketch) If we consider Cwar (Γ) corresponds to a set of labelled formulas of the
form ∅:α, it is clear that all they are warranted wrt Cwar (Γ) and non-conflicting. But
from Proposition 5.17 it follows that every of such formulas in Cwar (Γ) is warranted,
that is Cwar (Γ) ⊆ Cwar (Cwar (Γ)). Besides, applying the Cwar operator on Cwar (Γ) will
return only those labelled formulas of the form ∅:α in Cwar (Γ) which are warranted, that
is Cwar (Cwar (Γ)) ⊆ Cwar (Γ). Therefore Cwar (Cwar (Γ)) = Cwar (Γ). �
Proposition 5.19 (Monotonicity). The operator Cwar (Γ) does not satisfy mono-
tonicity.

Proof. A counterexample suffices. Consider the example given in Prop 5.5. In that case,
Γ|∼T TU ({p ← q}):p and p is warranted. However, in Γ ∪ {∅:∼p} there is no argument

with conclusion p, and consequently p is not warranted. �
In contrast with |∼

Arg
, semi-monotonicity does not hold for |∼T . The reason is

the following: adding new defeasible information cannot invalidate existing argu-
ments, but it can enable building new arguments that were not derivable before.
Hence, dialectical relationships among arguments are different. Arguments that
were warranted may therefore no longer keep that status. Formally:

Proposition 5.20 (Semi-monotonicity). The operator Cwar (Γ) does not satisfy
semi-monotonicity, i.e. Cwar (Γ) 6⊆ Cwar (Γ ∪ Γ′), where Γ′ is an argumentative
theory which involves only defeasible information.

Proof. Consider the following counterexample. Given the theory Γ = { (∅:q), (
{p ← r}:p ← r ), ( {r ← q}:r ← q ) }, it is clear that ∅:p ∈ Cwar (Γ), since there
exists an argument A:p with A={p ← r , r ← q }, such that A:p has no defeaters
(and hence p is warranted).

Consider now Γ′=Γ ∪ {∼p ← q :∼p ← q}. In this case, an argument B:∼p could
be obtained, with B={∼p ← q }, such that B:∼p defeats A:p. Therefore ∅:p 6∈ Cwar (Γ′).

�



Cummulativity does not hold for |∼T ,16 as shown next.

Proposition 5.21 (Cummulativity). The relationship |∼T does not satisfy cummula-
tivity.
Proof. A counterexample suffices. Consider the theory Γ = { (∅:∼s ← q), (∅:p),
(q ← p:q ← p), (s ← p:s ← p), (∼q ← s:∼q ← s) }. Consider the arguments A:q
with A={ q ← p }, and B:∼q with B={ (∼q ← s), (s ← p) }, based on Γ. Note that
s is a warranted literal in Γ. Consider now Γ′ = Γ∪ {∅:s}. Note that ∼q is warranted in
Γ′ but is not warranted wrt Γ (since A:q defeats B:∼q). �

As in the case of |∼
Arg

, we will consider a restricted version of supraclassicality
for analyzing |∼T .

Proposition 5.22 (Horn Supraclassicality). The operator C
war

(Γ) satisfies Horn
supraclassicality wrt Th

sld
, i.e. Th

sld
(Γ) ⊆ Cwar (Γ).

Proof. All literals in Thsld(Γ) have arguments with no defeaters. Therefore they are
warranted, and hence they are members of Cwar (Γ). �
Proposition 5.23 (Left-Logical Equivalence). The operator Cwar (Γ) satisfies left-
logical equivalence (i.e., given the formulas α, β and γ such that α ←→ β (both
are logically equivalent) if γ ∈ Cwar (Γ ∪ {α}) then γ ∈ Cwar (Γ ∪ {β}).
Proof. (Sketch) The reasoning is analogous as in Proposition 5.9. If γ is warranted on
the basis Γ∪{α}, then there exists an argument A:γ, such that Γ∪{α}|∼T TU (A, . . .):γ. If

α was used in the construction of some argument B:φ as part of the dialectical analysis
expressed in TU (A, . . .):γ, clearly every defeater for B:φ will be also a defeater for B′:φ,
where B′:φ was obtained from Γ ∪ {β}, as α and β are logically equivalent. Therefore
the dialectical label in TU (A, . . .):γ will involve the same defeaters as the dialectical

label T′U (A′, . . .):γ, where Γ ∪ {β}|∼T T′U (A′, . . .):γ. But this accounts to saying that

γ ∈ Cwar (Γ ∪ {β}), as we wanted to prove. �
Note that right weakening cannot be considered wrt |∼T , since there is no way

of warranting formulas of the form “x ← y”. However, as in the case of |∼
Arg

, an
alternative version can be provided.

Proposition 5.24 (Horn Right Weakening). The operator Cwar (Γ) satisfies Horn
right weakening, i.e. if ∅:y ∈ Cwar (Γ) and it holds that ∅:x ← y ∈ Γ, where y is
a literal in Wffs(Γ), then ∅:x ∈ Cwar (Γ).
Proof. Suppose ∅:y ∈ Cwar (Γ). That means that there is an argument A:y that can
be obtained from Γ such that y is warranted. But if A:y is an argument for y, and
∅:x ← y ∈ Γ, via Elim-← it can be inferred that A:x is also an argument for x (note
that the consistency constraint associated with the Elim-← rule holds, as otherwise it
would not have been possible to derive A:y). Besides, the possible defeaters for argument
A:y are the same as those for A:x (as the set A of defeasible information involved is
the same in both cases). Therefore if A:y is warranted, then A:x is also warrantd, and
consequently ∅:x ∈ Cwar (Γ), as we wanted to prove. �
16This fact was originally suggested by Vreeswijk in the context of abstract argumentation sys-
tems [43], and further explored in [35]



Proposition 5.25 (Conjunction of Conclusions). The operator C
war

(Γ) does not
satisfy conjunction of conclusions, i.e. if x ∈ Cwar (Γ) and y ∈ Cwar (Γ), then it
does not hold x ∧ y ∈ C

war
(Γ).

Proof. Consider the counterexample shown in proposition 5.11. �
Proposition 5.26 (Subclassical Cummulativity). The operator Cwar (Γ) satisfies
subclassical cummulativity, i.e. Γ ⊆ Γ′ ⊆ Th

sld
(Γ) implies C

war
(Γ) = C

war
(Γ′)

Proof. We can reason as in proposition 5.12. Let Γ be an argumentative theory, and
assume Γ ⊆ Thsld(Γ). Note that Thsld(Γ) involves only labelled formulas with an empty
label. Consequently, it holds that for any Φ:α ∈ Γ it is the case that Φ = ∅, and α
is a literal. But if this is the case, the only applicable inference rule on Γ is Intro-NR,
which correspond to an axiom schema. Necessarily it follows that Γ = Thsld(Γ), and
consequently Γ′ = Γ, so that Cwar (Γ) = Cwar (Γ′), as we wanted to prove. �

The Cwar operator satisfies left absorption, but not right absorption. This
follows from the epistemic status assigned to warranted literals: if they are incor-
porated as new facts into a given theory, clearly they will be also derivable via
Sld inference as in logic programming. The converse is not true, since not every
warranted literal is derivable via Sld.

Proposition 5.27 (Left Absorption). The Cwar (Γ) operator satisfies left absorption,
i.e. Th

sld
(Cwar (Γ)) = Cwar (Γ).

Proof. (=⇒): Suppose h is warranted, and consequently ∅:h ∈ Cwar (Γ). Clearly Γ|∼
Arg

∅:h,

and in particular from Def. 5.1, it follows that ∅:h ∈ Thsld(Cwar (Γ)).
(⇐=): Suppose ∅:h ∈ Thsld(Cwar (Γ)). Then from def. 5.1 there exists an empty argument
∅:h. Therefore h is warranted, or equivalently ∅:h ∈ Cwar (Γ). �
Proposition 5.28 (Right Absorption). The Cwar (Γ) operator does not satisfy right
absorption, i.e. Cwar (Th

sld
(Γ)) 6= Cwar (Γ).

Proof. A counterexample suffices. Consider the theory Γ = {(p ← q :p ← q), (∅:q)
}. Clearly p and q are warranted literals. In particular ∅:p ∈ Cwar (Γ). Note
that Thsld(Γ)={∅:q }, and consequently Cwar (Thsld(Γ)) = Thsld(Γ). But ∅:p 6∈
Cwar (Thsld(Γ)). �
Proposition 5.29 (Rational Negation). The Cwar (Γ) operator does not satisfy ra-
tional negation.

Proof. Consider the example given in Proposition 5.1. In this case there is only one
argument for z, namely Γ|∼

Arg
A:z, and such an argument has no defeaters. Consequently

z is warranted wrt Γ. However, Γ ∪ {∅:x}6 |∼
Arg

A:z, and Γ ∪ {∅:∼x}6 |∼
Arg

A:z (since in

both cases the use of {z ← p}:z ← p is not allowed by the consistency constraints
associated with the deduction rule Elim-←). Therefore z is not warranted in either of
these cases. �
Proposition 5.30 (Rational Monotonicity). The Cwar (Γ) operator does not satisfy
rational monotonicity.



Property |∼
Arg

|∼T C Comments

Inclusion yes yes P Restricted to non-defeasible informa-
tion. Propositions 5.3 and 5.17.

Idempotence yes yes P Propositions 5.4 and 5.18.

Cummulativity yes no P Lemma 5.7 and proposition 5.21.

Monotonicity no no P Propositions 5.5 and 5.19.

Horn Supraclassicality yes yes H Supraclassicality restricted to Horn-
like formulas (Prop. 5.8 and 5.22)

Left-logical equivalence yes yes H Prop. 5.9 and 5.23

Horn Right Weakening yes yes H Weakening restricted to clauses with
one literal in the antecedent
(Propositions 5.10 and 5.24)

Conjunction of conclusions no no H Propositions 5.11 and 5.25.

Subclassical cummulativity yes yes H Propositions 5.12 and 5.26.

Left absorption no yes H Propositions 5.13 and 5.27.

Right absorption no no H Propositions 5.14 and 5.28.

Rational Negation no no NH Propositions 5.15 and 5.29.

Disjunctive Rationality no no NH Not considered due to object language
constraints.

Rational monotonicity no no NH Propositions 5.16 and 5.30.

Note: Column C denotes the kind of property (P=pure; H=Horn; N=non-Horn)

Figure 5. Logical properties in LDSar: summary

Proof. Consider again the example given in the Proposition 5.1, where Γ|∼
Arg

A:z, with

A = {z ← p, p ← r }. If we consider now Γ ∪ {∅:x} it holds that Γ ∪ {∅:x}6 |∼
Arg

A:z,

and Γ 6 |∼
Arg

∼x. Therefore rational monotonicity does not hold. �
Finally, note that the Cwar operator does not satisfy disjunctive rationality.

The reasons are the same as those discussed for the Carg operator.

5.3. Logical Properties of Carg and Cwar : Discussion

As we have shown in this paper, LDSar provides a useful framework for analyzing
different logical properties of defeasible argumentation, providing a better under-
standing of how argument construction and warrant behave. Figure 5 provides a
summary of the logical properties discussed before.

Let us next analyze the implications of some of the properties presented be-
fore in the context of |∼

Arg
. When formalizing argument construction (operator

Carg ), restricted inclusion ensures that non-defeasible facts (labelled formulas of
the form ∅:α, where α is a literal) can be ontologically understood as empty argu-
ments. Cummulativity allows to keep any argument obtained from a theory Γ as
an ‘intermediate proof’ (lemma) to be used in building more complex arguments.
Horn supraclassicality indicates that every conclusion that follows via Sld can be
considered as a special form of argument (namely, an empty argument), whereas



Horn right weakening tells us that strong rules in LDSar preserve the intuitive
semantics of a Horn rule(the existence of a strong rule ∅:y ← x makes every ar-
gument A for x be also an argument for y). Finally, subclassical cummulativity
indicates that two argumentative theories Γ and Γ′ whose information is a subset
of those literals that can be derived via Sld from Γ (or Γ′) are equivalent when
considering the arguments that can be obtained from them.

Computing warrant, on the other hand, can also be better understood in
the light of some logical properties of Cwar . Restricted inclusion ensures that any
non-defeasible fact in a theory Γ can be considered as warranted. Idempotence
indicates that successive applications of C

war
on a the set S of warranted literals

returns exactly the same set. This makes sense as the formalization of warrant is
intended to capture the ultimate acceptance of a piece of information, given the
defeasible information at hand. Consequently, once the process of computing war-
rant has been performed, no additional conclusions can be obtained by repeating
applications of the inference rules provided by |∼T . From Horn supraclassicality it
follows that every conclusion obtained via Sld is a particular case of warranted
literal, whereas Horn right weakening indicates that non-defeasible rules behave
as such in the meta-level (a strong rule ∅:y ← x ensures that every warrant A for
a literal x is also a warrant for y).

From subclassical cummulativity it follows that two theories Γ and Γ′, whose
information is a subset of the conclusions that can be obtained from Γ (or Γ′) are
equivalent when considering the set of literals that can be warranted from them.
Finally, left absorption in Cwar wrt Carg indicates that once a set of warranted
literals have been obtained, Sld derivation does not add any inferential power.17

In [28, 25, 29] five properties are considered as characterizing the core of so-
called Cummulative Nonmonotonic Logics, namely Reflexivity, Left Logical Equiv-
alence, Right Weakening, Cut and Cautious Monotonicity. As the authors put it
in [25], these are “rockbottom properties without which a system should not be
considered a logical system”. In particular, in [25] several families of cummulative
logics were defined and characterized, starting by the C system, the weakest sys-
tem in this family of cummulative logics satisfying the above properties. We will
focus on the analysis of three particular systems which deserve particular atten-
tion, namely C (for cummulative), P (for preferential), and CM (for cummulative
monotonic). Clearly, a direct comparison with these families of cummulative logics
is not straightforward, as we have seen that LDSar involves two separate aspects:
argument construction (which satisfies cummulativity) and warrant computation
(which does not satisfy cummulativity). In our framework, the above properties do
hold for the construction of arguments, but not for modelling the computation of
warranted conclusions (e.g. cummulativity is not satisfied). This emphasizes the
fact that warranted literals have a particular epistemic status which cannot be
analyzed at the same representation level as the context provided by the original

17This is due to the limitations of our formalism, in the sense that only literals can be warranted.



argumentative theory. The system P, which occupies a central position in the hi-
erarchy of non-monotonic systems for preferential reasoning cannot be analyzed in
our context, as this system assumes the existence of disjunction in the language
of formulas (whereas our framework is restricted to rules and facts). Finally, the
system CM (which is not comparable with the system P) is monotonic, differing
thus from our approach for both the |∼

Arg
and |∼T inference relationships (as both

of them are non-monotonic).
As stated previously, we have restricted the conventional version of Right

Weakening to clauses in which the antecedent Y of the rule X ← Y is formed by
only one literal. In the case that Y were formed by more than one literal (i.e. Y
is a conjunction of literals φ1, φ2, . . . φk) and assuming that we consider Y to hold
whenever every φi holds, Right Weakening does not apply (neither for argument
construction nor for warrant). This situation can be seen the counterexample used
in the proof of Proposition 5.11 where there are arguments A1:p and A2:r and a
rule ∅:∼w ← p, r . In that case there are arguments for r and for p (and both p
and r are warranted), but there is no argument with conclusion ∼w (and hence
∼w is not warranted).

6. The Power of Labels for Modelling Argumentation

Labelled Deduction Systems offer a wide range of possibilities for formalizing dif-
ferent aspects of computational models of natural argument. Next we will focus on
those which we consider to be particularly relevant (along with the ones presented
in the previous sections), namely detecting fallacies, formalizing argumentation in
social contexts, and weighing arguments in dialectical trees.

6.1. Detecting Fallacies

According to Hamblin, the classical definition of a fallacy is “an argument that
appears to be valid, but is not” [20, p.12]. In more general terms, a fallacy is a
general type of appeal (or category of argument) that resembles good reasoning,
but some of their inference steps are not truth-preserving.18 As pointed out in [41],
while we may say that an argument is “fallacious”, or “commits a fallacy”, the
term “fallacy” does not refer to an argument, but to an error of some identifiable
kind. All of the arguments that are guilty of committing that error may be said
to be instances of that fallacy, so fallacies are strictly and classically considered
to be types of arguments.

Detecting logical fallacies plays an important role in computational models
of argument. In this context the most basic fallacy involves “circular reasoning”,
or repetition of arguments in a dialogue (as this leads to infinite branches in di-
alectical trees). Such situation is explicitly avoided in most formal approaches to

18Some authors (e.g., Johnson [23]) suggest that a fallacy should occur “with sufficient frequency
in discourse to warrant being baptized.”. An in-depth treatment of fallacies is outside the scope
of this paper.



defeasible argumentation (e.g., [17, 22]) by imposing this as a constraint in the
definition of argument trees. Other approaches (e.g., [17]) consider avoiding those
dialogue lines whenever conflict arises among arguments advanced by the pro-
ponent (resp. opponent) in a given dialogue line. In that context, the advanced
argument provoking such conflict is considered fallacious. In other cases (such as
[24]), analogous situations are obtained as a by-product of the framework un-
der certain constraints (e.g., when characterizing well-founded semantics using an
argument-based approach to logic programming, all proponent arguments in an
argument tree turn out to be non-conflictive).

In our approach to argumentation using LDS, constraints upon formation of
dialogue lines are given by the special condition VSTree(A, T∗i ), which takes into
account if a given dialectical label T∗i can be used as a sub-tree in a more complex
dialectical label rooted in set A of wffs, corresponding to the main argument at
issue. Cycle detection as well as ill-formed dialogue lines (as defined in [17]) are
captured by this condition VSTree. Formal results concerning which dialectical
trees are valid in a given argumentative framework can also be better analyzed by
different characterizations of this condition.

6.2. Formalizing Arguments in Social Contexts

LDS also provide a sound framework for modelling multiagent societies. As Gab-
bay points out [15, p.311], a label could be the name of a person (source) who put
some proposition forward, along with some indicator of the reliability of that per-
son as a source of data. In this context, LDS play a role in formalizing source-based
arguments [45], i.e. arguments whose evaluation depends not only on the structure
of the inference used, but also on some assessment of the sources of the premises.
Evaluation of source-based arguments is clearly important in the context of com-
putational models of argumentation for multiagent systems. In a very interesting
paper [46] Walton shows how LDS and multi-agent systems can be combined to
evaluate argumentation that is source-based and depends on a credibility function.
He also remarks that two of the most common forms of source-based arguments
are appeal to expert opinion (or ad verecundiam argument) and personal attacks
(or ad hominem argument). Although such types of argumentation have been ac-
knowledged as informal fallacies, Walton states that both of them can be “quite
reasonable in many cases”, particularly in legal argumentation contexts. As Walton
points out [46, p.66] “LDS is a big step forward in the evaluation of ad hominem
and ad verecundiam arguments, because it enables us to base our evaluation of
such arguments on a label indicating a comparative assessment of the source of the
propositions that were put forward”.

The LDSar framework can be naturally extended to formalize Walton’s pro-
posal, keeping at the same time the expressivity to capture the information in-
volved in the dialectical analysis performed by a single agent. The labelled lan-
guage L

Arg
in LDSar can in turn be labelled (e.g., with a label (Agi, ci) denoting

an agent’s name Agi and some associated credibility degree ci), defining a new



labelling language L
Ag

. Thus a labelled formula in the new language (L
Ag

,L
Arg

)
could be as follows:

(john, 0.7):(TU
i (A, . . .):α)

denoting that agent john with a credibility degree of 0.7 has performed some
dialectical analysis concluding that α is currently assumed as warranted belief, on
the basis of a dialectical analysis stored in the label TU

i (A, . . .). Suitable deduction
rules could be defined in order to characterize conflicts among several agents in
which their credibility could be a factor to consider in assessing the final outcome
of a dialogue among them.

In [1] it was underscored the importance of having a formal model of inter-
agent dialogues for argument exchange by providing a precisely defined protocol
for interaction. In [36] it was also emphasized that an important challenge facing
future research is the understanding of ‘social’ aspects of argument-based negotia-
tion in agent societies, as “there is still no generic formal theory that establishes a
precise relationship between normative social behavior and the outcomes of commu-
nication processes.” Given its expressive power, we think that LDS could provide
an adequate formal tool in the context of formalizing protocols and norm adoption,
helping to achieve the above goals.

6.3. Pruning and Weighing Arguments in Dialectical Trees

Dialectical trees provide a way of exhaustively analyzing arguments and counter-
arguments. A problem with this setting is that dialectical trees can often be “too
big” [22] so that the use of some kind of pruning strategy is in order. There are
several approaches to pruning the search space in dialectical trees. The most basic
approach consists in applying α − β pruning, as illustrated in Figure 3. When
analyzing a given argument, instead of computing all possible defeaters (?) only
a part of the dialectical tree needs to be explored in order to determine whether
the root node (main argument at issue) is defeated or not. It must be noted that
the rules that characterize the “|∼T ” relationship (Figure 2) are also based on this
strategy, used when propagating marking in labels in a bottom-up fashion.

Recent research [22] has been focused on analyzing the impact of argumen-
tation. Such an impact depends on what an agent regards as important, which
allows to characterize the resonance and cost of producing arguments and argu-
ment trees. To measure resonance in argument trees, the sum of the resonance
of the arguments in the tree is taken into account, scaled by a discount function
which increases going down the tree, so that arguments at a greater depth have
a reduced net effect on the resonance of the tree. The first ideas underlying this
approach can be found in [3], where the notion of categoriser is introduced. A
categoriser is a mapping from dialectical trees to numbers. The resulting number
is intended to capture the relative strength of an argument taking into account its
defeaters, the defeaters for those defeaters, and so on. An example of categoriser
provided in [3] is the following:

h(N) =
1

1 + h(N1) + . . . + h(Nl)

where N1, . . . , Nl are the children nodes for l (if l = 0, h(N1) + . . . + h(Nl) = 0).



In the context of LDSar, assessing a weight to an argument on the basis
of its defeaters can be performed in a natural way by suitably extending the
criteria for labelling propagation. A function f could be defined to assign numbers
to dialectical labels according to some particular criterion. Given a dialectical
label, if A corresponds to an argument without defeaters it would be assigned
a particular value f(A). Otherwise, if A is the root node in a dialectical tree
with label T(A, T1, . . . , Tk), having as defeaters arguments B1 . . . , Bk, then f
could be recursively defined as f(A)=f(f(T1), ...f(Tk)) where T1, . . . , Tk are the
immediate subtrees (dialectical labels) associated with T. In other words, numbers
assigned to dialectical labels would be propagated bottom-up. Computing f can
be thus defined in several ways (e.g., as suggested in [3]). Such a setting allows
to model a number of typical problems in defeasible argumentation, such as the
the notion of accrual of arguments [44, 42], where arguments with many defeaters
would be deemed weaker as those which have only one defeater.

7. Related Work

Research in logical properties for defeasible argumentation was started by
G.Vreeswijk [43] and H.Prakken [35]. In particular, the work of S. Sardiña [38]
focused on logical properties of the original Simari-Loui framework [40] and of de-
feasible logic programming [17]. This research is partly motivated by these results.

Early work which used some of the principles present in LDS (but not as for-
mally) was Cohen’s theory of endorsements [12]. Endorsements are symbolic repre-
sentations of different items of evidence, the questions on which they bear, and the
relations between them. Endorsements can operate on each other and hence lead to
the retraction of conclusions previously reached. Research concerning aggregating
arguments by incorporating numerical and symbolic features can be traced back
to the work of Krause et al. [14, 26], where a uniform framework for reasoning with
different kinds of strength in arguments is described. In particular, a characteri-
zation of defeasible reasoning using LDS is due to Hunter [21], who showed how
different non-monotonic logics can be characterized in terms of labelling strate-
gies, algebras for labels, proof rules, and preference criteria. In contrast with our
approach, Hunter had as a key aim to analyze the notion of preference among dif-
ferent non-monotonic logics. His approach, however, is also argument-based. In [31]
a credulous logical system based on LDS is defined, partially based on cummula-
tive default logics. In some respects this approach is related to the one presented
in this paper, although does not aim at modelling argumentative reasoning as in
our proposal.

Multicontext systems [18] have also been proposed as an alternative frame-
work to LDS to provide contextual reasoning for agents. A context is a triple
C = 〈L, ω,∆〉, where L is a language (e.g., first order logic), ω is the set of
axioms for the context and ∆ is the set of inference rules associated with the
context C. A multicontext system is a pair 〈C,B〉, where C = {c1, . . . , cn} is
the set of all contexts, and B is the set of bridge rules which have the form



c1 : φ1 . . . , ck : φk → ci : φi standing for “if the wffs φ1 . . . , φk are known to hold
in contexts c1 . . . , ck, then the wff φi will hold in context ci. In [32] a multicontext
approach to modelling argumentation among agents is presented. Different con-
texts represent different components in the agent architecture, and interactions
between such components is specified by means of bridge rules between contexts.
In [19] an interesting approach to modelling rhetorical argument is presented, in
which mental states in an arguer are characterized as a multicontext system 〈B, R〉,
where B is a set of attitude contexts and R is a set of bridge rules among them.
We contend that similar approaches to the ones mentioned above can be achieved
in terms of the logical machinery provided by LDS. It must be noted that contexts
themselves can be recast as elements in the labelling language. Thus, the context
notation BA : X suggested in [19] to denote “agent A believes X” can be seen as
a labelled sentence, with BA as associated label. Nesting beliefs is also possible
in the LDS ontology, as suitable functors of the form BA(BB) could be defined
in the labelling language to denote situations like “agent A believes that agent B
believes that...”, which in [19] are defined by nesting contexts.

8. Conclusions and Future Work

LDS offer a powerful tool for formalizing different aspects of computational models
of argument. In particular, as we have outlined in this paper, LDSar provides a
sound formal framework for modelling argument-based dialectical reasoning. The
underlying argumentative logic can be formally analyzed from the natural de-
duction rules that characterize it, providing a way of studying formal properties
associated with such logics. We think that a formal analysis of defeasible conse-
quence is mandatory in order to get an in-depth understanding of the behavior of
argumentation frameworks. The logical properties discussed in this paper provide
a natural tool for characterizing that behavior, as well as useful comparison crite-
ria when developing new argumentation frameworks, or assessing their expressive
power.

We also showed that such framework can be parametrized with respect to a
number of features (knowledge representation language, preconditions in natural
deduction rules, etc.) which are unified in a single logical system. We have also
shown why labels are a good alternative for coping with several issues relevant
in modelling argumentation: detecting fallacies, considering arguments in social
contexts, analyzing dialectical trees, and formalizing consequence operators.

We contend that several other issues related to computational models of nat-
ural argument which have not been explored in this article (e.g., argumentation
protocols, resource-bounded reasoning, rhetorical capabilities, etc.) can be suitably
modelled in terms of LDS by providing an appropriate ontology in which such no-
tions can be ‘abstracted away’ as labels. We think that labels are also a good tool
in the context of Semantic Web applications, as they can be naturally stored as
pieces of structured XML code. On the other hand, the semantic annotation of web
content may be stored as labels by means of an appropriate LDS. Different levels



of granularity can also be better identified (e.g., abstracting away particular sub-
labels), which might be useful for identifying argumentation schemes [47] as well
as for integrating LDS-based knowledge into salient software tools for argument
analysis (such as Araucaria [37]). In our opinion, exploiting such integration can
offer promising results that can help in solving several open problems in making
formal models of argument computationally attractive. Research in this direction
is currently being pursued.
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