
Argumentation, Dialogue, and Decision Making

5.3 On Complexity of DeLP through Game Semantics

On the Complexity of DeLP through Game Semantics∗

Laura A. Cecchi
Depto. Ciencias de la Computación - Fa.E.A.

Universidad Nacional del Comahue
Buenos Aires 1400

(8300) Neuquén - ARGENTINA
lcecchi@uncoma.edu.ar

Pablo R. Fillottrani and Guillermo R. Simari
Depto. de Ciencias e Ingenierı́a de la Computación

Universidad Nacional del Sur
Av. Alem 1253

(8000) Bahı́a Blanca - ARGENTINA
{prf,grs}@cs.uns.edu.ar

Abstract

Defeasible Logic Programming (DeLP) is a general argumen-
tation based system for knowledge representation and reason-
ing. Its proof theory is based on a dialectical analysis where
arguments for and against a literal interact in order to deter-
mine whether this literal is believed by a reasoning agent. The
semantics GS is a declarative trivalued game-based semantics
for DeLP that is sound and complete for DeLP proof theory.
Complexity theory is an important tool for comparing differ-
ent formalism and for helping to improve implementations
whenever it is possible. In this work we address the prob-
lem of studying the complexity of some important decision
problems in DeLP. Thus, we characterize the relevant deci-
sion problems in the context of DeLP and GS, and we define
data and combined complexity for DeLP. Since DeLP com-
putes every argument from a set of defeasible rules, it is of
central importance to analyze the complexity of two decision
problems. The first one can be defined as “Is a set of defea-
sible rules an argument for a literal under a defeasible logic
program?”. We prove that this problem is P-complete. The
second decision problem is “Does there exist an argument for
a literal under a defeasible logic program?”. We prove that
this problem is in NP. Furthermore, we study data complex-
ity of query answering in the context of DeLP. As far as we
know, data complexity has not been introduced in the context
of argumentation systems.

KEYWORDS: Argumentation Systems, Defeasible Rea-
soning, Logic Programming, Game-based Semantics,
Complexity

Introduction
Defeasible Logic Programming (DeLP) is a general argu-
mentation based tool for knowledge representation and rea-
soning (Garcı́a & Simari 2004)1. Its proof theory is based

∗This research was partially supported by the Secretarı́a Gen-
eral de Ciencia y Tecnologı́a of the Universidad Nacional del Sur,
by the Universidad Nacional del Comahue (Proyecto de Investi-
gación 04/E062), by the Agencia Nacional de Promoción Cientı́fica
y Tecnológica (PICT 2002 No. 13096, PICT 2003 15043, PAV
076) and by the National Research Council (CONICET), AR-
GENTINA.

1The interested reader can find an on-line interpreter for DeLP
in http://lidia.cs.uns.edu.ar/DeLP

on a dialectical analysis where arguments for and against
a literal interact in order to determine whether this literal
is believed by a reasoning agent. The semantics GS is a
declarative trivalued game-based semantics for DeLP that
links game-semantics (Abramsky & McCusker 1997) and
model-theory. Soundness and completeness of GS with re-
spect to DeLP proof theory have been proved (Cecchi &
Simari 2004).

Complexity theory is an important tool for comparing dif-
ferent formalism, and for helping to improve implementa-
tions whenever it is possible. For this reason, it is important
to analyze the computational complexity and the expressive
power of DeLP. The former tells us how difficult it is to an-
swer a query, while the latter gives a precise characterization
of the concepts that are definable as queries.

Even thought complexity for nonmonotonic reasoning
systems has been studied in depth for several formalisms
such us default logic, autoepistemic logic, circumscription,
abduction and logic programming (Cadoli & Schaerf 1993;
Dantsin et al. 2001) until recently not many complexity re-
sults for argumentation systems have been reported.

This situation can be explained in part by the fact that,
historically, implementations of argumentation systems have
been limited to areas with no real time response restriction
(see (Verheij 1998; Gordon & Karacapilidis 1997)). Re-
cently, however, several applications have been developed,
and implemented using argumentation systems related, for
instance, with multiagent systems and web search (Atkin-
son, Bench-Capon, & Mc Burney 2004; Chesñevar & Ma-
guitman 2004a; 2004b; Bassiliades, Antoniou, & Vlahavas
2004). Scalability and robustness of such approaches heav-
ily depend on the computational properties of the underly-
ing algorithms. It is hence crucial to study these properties
in order to expand the application fields of argumentation
systems.

Different computational complexity results (Dimopoulos,
Nebel, & Toni 2002; Bench-Capon 2003; Amgoud & Cayrol
2002; Dunne & Bench-Capon 2002) have been presented on
argumentation abstract framework (Bondarenko et al. 1997;
Dung 1995), based on admissibility and preferability seman-
tics. However, those results do not apply directly to DeLP,
because its semantics are quite different. Another notable
study of the computational complexity of defeasible systems

DEPARTMENT OF INFORMATICS 386

11TH NMR WORKSHOP

has been done in (Maher 2001). But, defeasible theory an-
alyzed in this work greatly differs from DeLP in several
points, such as knowledge representation (facts and strict
rule, defeasible and defeaters rules) and their proof theories.

When measuring the complexity of evaluating queries in
a specific language, we distinguish between several kinds
of complexity according to (Vardi 1982; Papadimitriou &
Yannakakis 1997; Dantsin et al. 2001). Data complexity
is the complexity of evaluating a specific query in the lan-
guage, when the query is fixed, and we study the complexity
of applying this query to arbitrary databases; the complex-
ity is thus given as a function of the size of the database.
Program or Expression complexity appears when a specific
database is fixed, and we study the complexity of applying
queries represented by arbitrary expressions in the language;
the complexity is given as a function of the length of the ex-
pression. Combined complexity considers both query and
database instance as input variables.

In this work we are concerned with the study of complex-
ity of some important decision problems of DeLP. The sys-
tem and its asociated game semantics GS are analyzed intro-
ducing relevant decision problems in relation to the possible
query answers.

Since DeLP builds the arguments from a defeasible logic
program results of central importance to consider and eval-
uate two questions: “is a set of defeasible rules an argument
for a literal under a defeasible logic program?” which has
been proved to be P-complete, and does there exit an argu-
ment for a literal under a defeasible logic program? which
has been proved to be in NP.

We define data, expression and combined complexity in
the context of DeLP, in order to evaluate the efficiency of
DeLP implementations. In particular, we study data com-
plexity of query answering to assess DeLP applications over
database technologies. As far as we know data complexity
has not been introduced in the context of argumentation sys-
tems.

The paper is structured as follows. In the following sec-
tion we briefly outline the fundamentals of DeLP, and de-
scribe the declarative game-based semantics GS. Then, we
discuss DeLP through GS semantics pointing out the deci-
sion problems that are of central importance, and we define
data, expression and combined complexity in the context of
DeLP. Afterwards, we give complexity results on the exis-
tence of an argument for a literal L under a defeasible logic
program P , and on the decision problem of whether a sub-
set of defeasible rules is an argument for a literal L under
P . Next, we analyze data complexity for DeLP, and we
present complexity results for two decision problems on en-
tailment. In the last section, we summarize the main con-
tributions of this work, and we present our conclusions and
future research lines.

DeLP and Game Semantics GS
We will start by introducing some of the basic concepts in
DeLP (see (Garcı́a & Simari 2004)). In the language of
DeLP a literal L is a atom A or a negated atom ∼A, where
∼ represents the strong negation in the logic programming
sense. The complement of a literal L, denoted as L, is de-

fined as follows: L =∼A, if L is an atom, otherwise if L is
a negated atom, L = A. Let X be a set of literals, X is the
set of the complement of every member in X .

Definition 1 A strict rule is an ordered pair, denoted
“Head ← Body”, where “Head” is a ground literal, and
“Body” is a finite set of ground literals. A strict rule
with head L0 and body {L1, . . . Ln, n > 0} is written as
L0 ← L1, . . . Ln. If body is the empty set, then we write
L0., and the rule is called a Fact. A defeasible rule is an
ordered pair, denoted “Head —≺ Body”, where “Head” is
a ground literal, and “Body” is a finite, non-empty set of
ground literals. A defeasible rule with head L0 and body
{L1, . . . Ln, n > 0} is written as L0

—≺ L1, . . . Ln.
A defeasible logic program P , abbreviated de.l.p., is a set
of strict rules and defeasible rules. We will distinguish the
subsets ΠF of facts, ΠR of strict rules, Π = ΠF ∪ ΠR and
the subset Δ of defeasible rules.

We denote by Lit the set of all the ground literals that
can be generated considering the underlying signature of a
de.l.p. an we denote by Lit+ the set of all the atoms in Lit.

Intuitively, whereas Π is a set of certain and exception-
free knowledge, Δ is a set of defeasible knowledge, i.e.,
tentative information that could be used, whenever nothing
is posed against it.

By definition a de.l.p. may be an infinite set of strict and
defeasible rules but for complexity analysis we restrict our-
selves to finite defeasible logic programs.

DeLP proof theory is based on developments in non
monotonic argumentation systems (Pollock 1987; Simari &
Loui 1992). An argument for a literal L is a minimal subset
of Δ that together with Π consistently entails L. The no-
tion of entailment corresponds to the usual SLD derivation
used in logic programming, performed by backward chain-
ing on both strict and defeasible rules, where negated atoms
are treated as a new atom in the underlying signature. Thus,
an agent can explain a literal L, throughout this argument.

In order to determine whether a literal L is supported from
a de.l.p. a dialectical tree for L is built. An argument for L
represents the root of the dialectical tree, and every other
node in the tree is a defeater argument against its parent. At
each level, for a given a node we must consider all the argu-
ments against that node. Thus every node has a descendant
for every defeater. A comparison criteria is needed for deter-
mining whether an argument defeats another. Even though
there exist several preference relations considered in the lit-
erature, in this first approach we will abstract away from that
issue.

We will say that a literal L is warranted if there is an ar-
gument for L, and in the dialectical tree each defeater of the
root is itself defeated. Recursively, this leads to a marking
procedure of the tree that begins by considering the fact that
leaves of the dialectical tree are undefeated arguments as a
consequence of having no defeaters. Finally, an agent will
believe in a literal L, if L is a warranted literal.

There exist four possible answers for a query L: YES if L
is warranted, NO if L is warranted (i.e., the complement of L
is warranted), UNDECIDED if neither L nor L are warranted,

387 Technical Report IfI-06-04

Argumentation, Dialogue, and Decision Making

and UNKNOWN if L is not in the underlying signature of the
program.

We have briefly given an intuitive introduction to the
DeLP language and the dialectical procedure for obtain-
ing a warranted conclusion. For complete details on DeLP
see (Garcı́a & Simari 2004).

Games have an analogy with a dispute and, therefore, that
analogy extends to argument-based reasoning. A dispute can
be seen as a game where in an alternating manner, the player
P, the proponent, starts with an argument for a literal. The
player O, the opponent, attacks the previous argument with
a counterargument strong enough to defeat it. The dispute
could continue with a counterargument of the proponent,
and so on. When a player runs out of moves, i.e., that player
can not find a counterargument for any of his adversary’s ar-
guments, the game is over. If the proponent’s argument has
not been defeated then she has won the game.

The semantics GS is a declarative trivalued game-based
semantics for DeLP that links game-semantics (Abramsky
& McCusker 1997) and model theory. Soundness and com-
pleteness of GS with respect to DeLP proof theory have been
proved (Cecchi & Simari 2004). In the following we present
some notions of GS, for more details see (Cecchi & Simari
2000; 2004).

Let X be a set and {x1, . . . , xn} ⊆ X , X∗ is the set of
finite sequences over X and [x1 . . . xn] denotes the sequence
of the elements x1, . . . , xn. We write |s| for the length of a
finite sequence and si for the ith element of s, 1 ≤ i ≤ |s|.
Concatenation of sequences is indicated by juxtaposition. If
t = su for some sequences t, s, u, then we say that s is a
prefix of t. Let Pref(S) be a set of prefix of S, then S is
prefix closed if S = Pref(S).

In order to use a game to capture the dialectical procedure,
we need to define in a declarative way the movements of
such game: the argument. The followings definitions are
based on the notation introduced in (Lifschitz 1996).

Definition 2 Let X be a set of ground literals. The set X
is rigorously closed under a de.l.p. P , if for every strict
rule Head ← Body of P , Head ∈ X whenever Body ⊆
X , and for every defeasible rule Head′ —≺ Body′ of P ,
Head′ ∈ X whenever Body′ ⊆ X .
The set X is consistent if there is no literal L such that
{L,L} ⊆ X . Otherwise, we will say that X is inconsis-
tent.
We say that X is logically closed if it is consistent or it is
equal to Lit.

Intuitively, if the set of knowledge of an agent is rigorously
closed under a de.l.p., the agent will not believe in a literal
that she cannot explain.

Definition 3 Let P be a de.l.p.. The set of rigorous conse-
quences of P , denoted CnR(P), is the least set of literals
w.r.t. inclusion, such that it is logically closed and rigorously
closed under P .

Even though rigorous consequences do not reflect the un-
derlying ideas of strict and defeasible rules, they are very
useful for introducing a declarative definition of argument.

Definition 4 Let P = 〈Π,Δ〉 be a de.l.p.. We say that
〈A, L〉 is an argument structure for a ground literal L, if A
is a set of defeasible rules of Δ, such that:

1. L ∈ CnR(Π ∪ A)

2. CnR(Π ∪ A) �= Lit

3. A is minimal w.r.t. inclusion, i.e., there is no A′ ⊆ A
such that satisfies (1) and (2).

For convenience we will simply speak of argument in-
stead of argument structure whenever this does not lead to
misunderstandings. Let’s introduce game concept and GS
semantics.

Definition 5 Let P = (Π,Δ) be a de.l.p., L a literal and
〈A, L〉 an argument structure for L. A game for 〈A, L〉 with
respect to P , that we denote G(〈A, L〉,P), is a structure

(MG(〈A, L〉, P), JG(〈A, L〉, P), PG(〈A, L〉, P))

where

• MG(〈A, L〉, P) is a set of argument structure.
• JG(〈A, L〉, P) : MG(〈A, L〉, P) × I → {P, O} where I is an

enumerable index;
• PG(〈A, L〉, P) ⊆ M∗

G(〈A, L〉, P), where PG(〈A, L〉, P) is a non-
empty, prefix-closed set.
Each sequences s of PG(〈A, L〉, P) satisfy:

1. s = [〈A, L〉]s′, s′ possibly empty.
2. For all i, 1 < i ≤ |s|

JG(〈A, L〉, P)(s1, 1) = P
JG(〈A, L〉, P)(si, i) = JG(〈A, L〉, P)(si−1, i − 1)

P = O and O = P.
3. If s ∈ PG(〈A, L〉, P), then for each argument structure

〈A2, L2〉 that is a legal move for s|s|, there exists a se-
quence t ∈ PG(〈A, L〉, P), such that t = s[〈A2, L2〉].

4. No other sequence belongs to PG(〈A, L〉, P).

Movements in a game are the introduction of arguments.
A legal move in the game over a sequence s is an argument
A such that strictly defeats s|s| or defeats non strictly s|s|
and s|s| strictly defeats s|s|−1. Furthermore, such legal move
A cannot be part of another argument in s, ie we cannot in-
troduce more than once an argument neither for nor against
the first move. Finally, this move must be consistent with
every move made by the same player in the sequence s.

For every argument A for a literal L we can built a game
whose first move is 〈A, L〉. Thus, a family of games will be
obtained considering all the arguments for L.

Definition 6 Let P be a de.l.p., L a literal un-
der the signature of P , 〈A1, L〉, . . . , 〈An, L〉
all the argument structures of L under P and
G(〈A1, L〉,P), G(〈A2, L〉,P), . . . , G(〈An, L〉,P) the
corresponding games for the arguments of L.

{G(〈A1, L〉,P), G(〈A2, L〉,P), . . . , G(〈An, L〉,P)}

is the game family of L and we denote it as F(L,P).

DEPARTMENT OF INFORMATICS 388

11TH NMR WORKSHOP

Definition 7 Let a be the first proponent movement in the
game. A sequence s is complete if s = [a]s1, with s1 poten-
tially empty, then there is no movement b ∈ MG(〈A, L〉, P)

such that [a]s1[b] ∈ PG(〈A, L〉, P). A sequence s is pre-
ferred if each opponent movement has a proponent answer.
In other words, a sequence s is preferred if |s| is odd.

Definition 8 A strategy over a game G is a set of sequences
S, such that for all sequence s ∈ S, either:
• s is preferred; or
• there exists other sequence s′ ∈ S, such that s′ is pre-

ferred and s and s′ has a prefix t, |t| = n, n is even and
sn+1 �= s′n+1.

Definition 9 Let P be a de.l.p., L ∈ Lit and
G(〈A, L〉,P) ∈ F(L,P). We say that P wins the game
G(〈A, L〉,P) or that G(〈A, L〉,P) is won by P, if the set
of complete sequences of PG(〈A, L〉, P) is an strategy. Other-
wise, we say that O wins the game or that G(〈A, L〉,P) is
won by O.

A player can win a game even though he does not win
every complete sequence in such game. In (Prakken & Sar-
tor 1997) the authors have developed an argument-based ex-
tended logic programming system which differs from DeLP
in its winning rule: a player wins a dialogue tree if and only
if he wins all the branches of the tree.

Definition 10 Let P be a de.l.p.. A game-based interpre-
tation for P , or G-Interpretation for P for short, is a tuple
〈T, F 〉, such that T and F are subsets of atoms of the under-
lying signature of P and T ∩ F = ∅.

In the previous definition T stands for true while F stands
for false. The set of atoms UNDECIDED is defined as the set
U = Lit+ − {T ∪ F}.

Each game can finish in two possible ways: won by the
proponent P or won by the opponent O. There is no possi-
bility for a draw. As the first move is made by the P, we are
interested in those games won by this player.

Definition 11 Let P be a de.l.p., h an atom of the under-
lying signature of P , F(h,P) the game family for h and
F(h,P) the game family for h under a de.l.p. P . A game-
based model for P , that we name G-Model of P , is a G-
interpretation 〈T, F 〉 such that:
• If there exists a game G(〈A, h〉 in the family F(h,P) won

by P, then h belongs to T .
• If there exists a game G(〈A, h〉,P) in the family F(h,P)

won by P, then h belongs to F .

Since we only consider literals under the signature of
de.l.p., the G-model definition does not contemplate the an-
swer UNKNOWN. The minimal G-model defines a sound and
complete semantics GS for DeLP (Cecchi & Simari 2004).
We will say that GS entails a literal L from a de.l.p. P , de-
noted by P |=GS L, whenever L ∈ T or L ∈ F , being
〈T, F 〉 the minimal G-model of P .

The following theorem relates proof theory and game-
based semantics, showing soundness and completeness.

Theorem 1 Let P be a de.l.p. and L a literal. L is warranted
under P if and only if L belongs to the set T or L belongs
to the set F of the minimal G-models 〈T, F 〉 of P under GS
semantics.

We have briefly presented the DeLP language, its proof
theory and its declarative game-based semantics GS. Now,
we will be able to analyze the system and study some com-
plexity properties.

Discussion on GS Complexity
DeLP is a defeasible reasoning system where every conse-
quence of a de.l.p. is analyzed considering all the arguments
for and against it. The trivalued game semantics GS char-
acterizes such reasoning by two sets T and F , since T ∪ F
is the set of all warranted literals. Undecided literals are the
remaining literals L for which there is no warrant for it nor
for its complement. When considering DeLP in relation to
game semantics, there are two relevant computational deci-
sion problems to analyze in the context of a de.l.p. P:

• GAMESAT: Deciding whether there is a game for a literal
α won by the proponent P in the context of a de.l.p. P .

• NOWINGAME: Deciding whether there is no game for a
literal α neither for the complement of α won by the pro-
ponent P in the context of a de.l.p. P .

The former problem involves just finding a game that is
won by the proponent. In order to capture the latter, it is
necessary to find all the games for the literal and for its com-
plement, and to establish that none of them is won by the
proponent.

A positive GAMESAT answer for a given de.l.p. P and a
literal L implies that L ∈ T , being 〈T, F 〉 the minimal G-
model, i.e., P |=GS L. A positive GAMESAT answer for L
means that L ∈ F in the minimal G-model, i.e., P |=GS L.

The NOWINGAME decision problem for a de.l.p. P and a
literal L is equivalent to determining if given the minimal
G-model 〈T, F 〉 of P , L ∈ Lit+ −{T ∪F}, i.e., P �|=GS L
and P �|=GS L.

In this case, three interesting situation can be contem-
plated, and establish the followings decision problems:

• Whether there is no game for a literal L, neither for its
complement L. The game families for a literal L and
for its complement L, F(L,P) and F(L,P) respectively,
are empty. L has no argument neither for nor against it.
Therefore, the agent has no information about such query.

• Whether there is no game for a literal L, and the non
empty set of all games in the family of its complement
L are won by the opponent. The game family for a lit-
eral L, F(L,P), is empty and only games won by the
opponent are in the non empty family F(L,P). L has no
argument for and all the arguments for its complement are
defeated. Therefore, the agent has no information for L,
and he cannot defend its complement. In a similarly way,
we can define the case where the agent cannot defend a
literal L, and has no information about its complement.

389 Technical Report IfI-06-04

Argumentation, Dialogue, and Decision Making

• Whether all games in the non empty families for L and
for its complement L are won by the opponent. F(L,P)
and F(L,P) are non empty set and all the argument are
defeated. The agent cannot defend any argument neither
for nor against the literal L.

In order to determine the computational complexity of the
decision problems introduced above, we will study DeLP
from two approaches: combined and data complexity. Com-
bined complexity of a fragment of logic programming has
been defined and used in (Dantsin et al. 2001):

Complexity of (some fragment of) logic programming:
is the complexity of checking if for variable programs
P and variable ground atoms A, P |= A.

On the other hand, the notion of data complexity is borrowed
from relational database theory (Vardi 1982). Databases are
nowadays the main tool for storing and retrieving very large
sets of data. Data complexity allows us to study DeLP as a
query language measuring its complexity focus on the size
of the databases, and using defeasible and strict rules for
inference purpose. Data complexity is a key measure to de-
termine the efficiency of argumentation system implementa-
tions based on database technologies.

For methodological and complexity issues, it is important
to distinguish in a de.l.p. the input data from the inference
rules. Thus, hereafter, we will denote P = 〈ΠF ,ΠR ∪ Δ〉,
where ΠF is a finite set of ground facts, and ΠR∪Δ is a finite
set of ground strict and defeasible rules. Making an analogy
with database concepts, ΠF represents the input databases,
also called the extensional part, and ΠR ∪ Δ are the infer-
ence rules, called the intensional part of the database. We
define a Boolean query as a finite set of strict and defeasible
rules together with a ground literal L. The intended intuitive
meaning of defining such query is the following: we want
to know whether a literal L is entailed by GS from ΠR ∪ Δ
together with the database ΠF .

Following the principle and notions above, in the context
of DeLP we will define data, program and combined com-
plexity as follows.

Definition 12 Let Ω be any of the decision problems intro-
duced above, P = 〈ΠF ,ΠR ∪Δ〉 and (ΠR ∪Δ, L) a query:

• The data complexity of Ω is the complexity of Ω when the
query is fixed, and the database varies, i.e., parameters
ΠR ∪ Δ and L are fixed.

• The program or expression complexity of Ω is the com-
plexity of Ω when the database instance is fixed, and the
query varies, i.e., the parameter ΠF is fixed.

• The combined complexity of Ω is the complexity where
every parameter ΠF , ΠR ∪ Δ and L vary.

Expression and combined complexity are quite close and
they are rarely differentiated. For this reason we will only
discuss data and combined complexity.

In order to carry out this complexity analysis we will first
focus on the complexity of determining whether there is an
argument A for a literal L. Then we will study if the game
played with initial move A is won by the proponent.

The complexity of computing arguments
Arguments and counterarguments are the movements in
a game, and hence the core of DeLP. Dung’s formal-
ism (Dung 1995) and some extensions that have been devel-
oped (Bench-Capon 2002; 2003; Amgoud & Cayrol 2002),
offer a powerful tool for the abstract analysis of defeasible
reasoning. However, these approaches operate with argu-
ments and their attack and defeat relation at an abstract level,
avoiding to deal with the underlying logical language used to
structure the arguments. On the other hand DeLP does con-
struct the arguments and analyzes the defeater relationship.
Thus, studying the decision problem: “is a given subset of
defeasible rules an argument for a literal under a de.l.p.?” is
of central importance.

Following the definition of argument this problem has
three parts: is L a consequence of Π ∪A?, is Π ∪A consis-
tent?, and is there a subset A′ of A such that it is consistent
with Π and that together with Π derives L?

Let P = 〈ΠF ,ΠR ∪ Δ〉 be a de.l.p., L be a literal and
A ⊆ Δ. The first condition of definition 4, that involves rig-
orous consequences concept is L ∈ CnR(Π ∪ A). In (Cec-
chi & Simari 2000), we have defined the following transfor-
mation Φ from a de.l.p. into a propositional definite logic
program, i.e., a propositional logic program with just Horn
clauses. Let A be an atom. Φ(A) = A, Φ(∼ A) = A′ where
A′ is a new atom not in the signature of the de.l.p. and the
transformation of a conjunction is Φ(A,B) = Φ(A),Φ(B).
Φ(H —≺ B) = Φ(H) ← Φ(B) and all other rules remain
the same Φ(H ← B) = Φ(H) ← Φ(B) . We will use this
transformation, and the following lemma in order to reduce
the rigorous consequences of a de.l.p. into consequences of
propositional Horn clauses.

Lemma 1 Let DP be a definite logic program, and M be
the minimal model of DP , then M = CnR(DP).

We are interested in computing the time complexity of
verifying whether L ∈ CnR(Π ∪ A). We shall construct a
logic program with just Horn clauses, denoted HP(Π,A, L)
such that L ∈ CnR(Π ∪ A) if and only if HP(Π,A, L) |=
yes .

Suppose that A1, . . . , An are all the atoms in Π ∪ A. We
define HP(Π,A, L) as follows:

HP(Π,A, L) = Φ(Π) ∪ Φ(A) ∪ {yes ← Φ(L)}∪
{yes ← Φ(Ai),Φ(Ai) : 1 ≤ i ≤ n}

Even though the SAT decision problem is NP-complete,
both checking whether a definite propositional logic pro-
gram DP satisfies a ground atom A, i.e., DP |= A, and
HORNSAT, i.e., the decision problem whether there is a truth
assignment that satisfies a collection of Horn clauses, are P-
complete (Dantsin et al. 2001; Papadimitriou & Yannakakis
1997).

Lemma 2 HP(Π,A, L) is a transformation from a de.l.p. P
into propositional Horn clauses such that verifying whether
a literal L belongs to CnR(P) is equivalent to verifying

DEPARTMENT OF INFORMATICS 390

11TH NMR WORKSHOP

Algorithm: Minimal
Input: A an argument for a literal L, and Π a set of strict
rules.
Output: true if A is a minimal argument for L, false other-
wise

minimal=true
Aux= A
While minimal and not Aux = ∅ do

select H —≺ B ∈ Aux
A′ = A− {H —≺ B}
if L ∈ CnR(Π∪A′)

then minimal=false
else Aux= Aux - {H —≺ B}

Figure 1: Algorithm for verifying if a set of defeasible rules
is minimal with respect to set inclusion for deriving a literal
L.

whether yes is entailed from the transformed propositional
Horn program. Thus, L ∈ CnR(P) reduces to DP |= yes,
being DP a propositional Horn program.

Proof: In order to prove our claim, we have to establish
that:

1. L ∈ CnR(Π ∪ A) if and only if HP(Π,A, L) |= yes.

We will consider two cases:
• Π ∪ A is consistent.

L ∈ CnR(Π ∪ A) if and only if Φ(L) ∈ Φ(CnR(Π ∪
A)) if and only if Φ(L) ∈ CnR(Φ(Π ∪ A))(see (Cec-
chi & Simari 2000)) if and only if, by lemma 1, Φ(L)
is in the minimal model of Φ(Π ∪ A) if and only
if HP(Π,A, L) |= yes by the definition of minimal
model, the monotonicity property and the use of the
rule yes ← Φ(L).

• Π ∪ A is inconsistent.
L ∈ CnR(Π ∪ A) = Lit if and only if there ex-
ists i, 1 ≤ i ≤ n, such that Φ(Li) and Φ(Li) are in
Φ(CnR(Π ∪ A)) if and only if Φ(Li) and Φ(Li) are
in the minimal model of HP(Π,A, L) if and only if
HP(Π,A, L) |= yes by definition of minimal models,
monotonicity property and the use of the rule yes ←
Φ(Li),Φ(Li).

2. HP is computed in logarithmic space: the transformation
is quite simple, and is feasible in logarithmic space, since
rules can be generated independently of each other except
those of the form yes ← Φ(Li),Φ(Li) which depends on
the literal in the input.

Therefore HP(Π,A, L) is a reduction from L ∈ CnR(Π ∪
A) into propositional Horn clauses. �

Theorem 2 Let P = (ΠF ,ΠR ∪ Δ) a de.l.p., A ⊆ Δ, and
L a literal. Determining whether L ∈ CnR(Π ∪ A) is P-
complete.

Proof: • Membership: Given a definite logic program
P the least fixpoint T∞

P
of the operator TP can be com-

puted in polynomial time (Papadimitriou 1994; Dantsin

et al. 2001) : the number of iterations is bounded by the
number of rules plus one. Each iteration step is feasible
in polynomial time. Thus finding the minimal model of a
logic program with just Horn clauses is in P (Dantsin et
al. 2001).
By lemma 2, L ∈ CnR(Π∪A) has been reduced to propo-
sitional logic programming. Therefore, L ∈ CnR(Π∪A)
is in P.

• Hardness: Horn rules are strict rules in a de.l.p., and the
minimal model of a definite logic program DP is equal to
CnR(DP). Therefore, by applying reduction by general-
ization, we have that DP |= L reduce to L ∈ CnR(DP).
Propositional logic programming is P-complete (Dantsin
et al. 2001). This suffices to complete the proof.

�

Until now we have proved that the first condition of ar-
gumentation definition is P-complete. Now we will analyze
the rest of the issues we need for computing an argument.
We will denote the cardinality of the language by |Lit| and
defeasible rules cardinality by |Δ|.

In Figure 1, we present an algorithm for verifying whether
a set of defeasible rules is minimal with respect to set inclu-
sion for entail a literal L. Worst case of the minimality con-
dition is considered assuming that the argument has at most
|Δ| defeasible rules, i.e., Δ is an argument for some literal.
Computing the minimality condition involves |Δ| loops ver-
ifying that L ∈ CnR(Π ∪ A′), which is in P. Thus, this
problem is solvable in polynomial time, and, therefore, it is
in P.

Finally, to check whether the set of defeasible rules is
consistent under a de.l.p., we verify that there is no atom
such that the atom and its complement are members of
CnR(Π∪A). In the worst case, when CnR(Π∪A) is consis-
tent, this algorithm must control every atom in the signature
of the de.l.p.. Thus, to check if it is consistent is proportional
to the number of atoms |Lit|/2 and therefore it is in P.

Theorem 3 The decision problem “is a given subset of de-
feasible rules an argument for a literal under a de.l.p.?” is
P-complete.

Proof:
Membership: (sketch) From the above development it fol-
lows membership to P.
Hardness: We employ a reduction from DP |= L, being
DP a propositional Horn program. Consider the following
transformation r(DP) = DP ′ = 〈Π,Δ〉, where Π = DP
and Δ is empty. r is a transformation computed in loga-
rithmic space such that whenever a literal L is entailed by a
propositional Horn program DP , the decision problem “is a
given subset of Δ = ∅ an argument for L under DP ′” finish
in an accepting state.

L is in the minimal model of a propositional Horn pro-
gram if and only if L ∈ CnR(DP) if and only if ∅ is an
argument for L, since is minimal and consistent with Π, if
and only if “is a given subset of Δ = ∅ an argument for

391 Technical Report IfI-06-04

Argumentation, Dialogue, and Decision Making

L under DP ′” finish in an accepting state. Thereby estab-
lishing that the decision problem “is a given subset of de-
feasible rules an argument for a literal under a de.l.p.?” is
P-complete. �

Our final aim is to determine the complexity of comput-
ing the set of all the arguments under a de.l.p.. This is moti-
vated in that GAMESAT and NOWINGAME require for play-
ing a game to compute every argument that defeats each ar-
gument introduced in a previous move. A subset A ⊆ Δ
may be a potential argument of different literals in the lan-
guage. Thus, the maximum number of checks for potential
arguments that depends on the size of the set of defeasible
rules and on the size of Lit, is |Lit| ∗ 2|Δ|.

Lemma 3 Let AP be the polynomial time needed for the
decision problem “is a given subset of defeasible rules an
argument for a literal l under a de.l.p.?”. Then, the upper
bound time for computing all the arguments is |Lit| ∗ 2|Δ| ∗
AP .

The result above states an exponential upper bound for
computing X , the set of all the arguments in Dung’s formal-
ism (Dung 1995).

Even though we must verify whether every subset of
Δ is an argument for every literal in the language of the
de.l.p., because the consistency condition in the defini-
tion of argument, A ⊆ Δ cannot be an argument for a
literal and for its complement, so we will consider only
|Lit|

2
∗ 2|Δ| = |Lit| ∗ 2|Δ|−1 potential arguments in order to

play a game or equivalently to build the dialectical tree. This
upper bound could be improved by considering minimality
over the arguments, i.e., no A1 ⊆ Δ would be an argument
for a literal L if A2 is an argument of L and A2 ⊆ A1.

Finally, we consider the argument existence decision
problem.

Corollary 1 (Argument Existence) The decision problem
“whether there is an argument for a literal L under a de.l.p.”
is NP.

Proof: We can guess any subset of Δ, and verify whether
this subset is an argument for a literal L under de.l.p. in poly-
nomial time. This proves membership in NP. �

These results contrast with those of (Parsons, Wooldridge,
& Amgoud 2003), where determining whether there is an ar-
gument for a formula h is ΣP

2 -complete. Even thought there
are some similarities between argument definitions, they dif-
fer in the underlying logic. While in DeLP approach an
argument is a subset of defeasible rules, and the inference
mechanism to obtain it is logic programming based, an ar-
gument in the formalism described in (Parsons, Wooldridge,
& Amgoud 2003) is a subset of formulas of a propositional
language, and � stands for classical inference.

Data Complexity for DeLP
In order to determine the upper bound for the data complex-
ity of the decision problems GAMESAT and NOWINGAME,

we will first analyze the dialectical tree structure over the
size of the facts and the strict and defeasible rules.

The dialectical tree is explored in a complete depth first
way, as minimax does. If the maximum depth of the tree
is m, and there are b legal movements at each point, then
the time complexity will be O(bm)(Russell & Norvig 2003).
If we implement the technique alpha-beta pruning, and we
consider that successors are examined in random order, then
the time complexity will be roughly O(b

3m

4)(Russell &
Norvig 2003). The maximum depth of a dialectical tree for
an argument under a de.l.p. with |Δ| defeasible rules is 2|Δ|,
i.e., we can consider every potential argument in one branch
of the tree. Any argument can appear more than once in the
tree but at most once in every branch, because of the accept-
able argumentation line definition. What about branch fac-
tor: there exists |Lit|/2 literals that can be in conflict with
the last argument. These literals may have at most 2|Δ| po-
tential arguments. So our branching factor is in the worst
case |Lit|/2 ∗ 2|Δ|. Thus, exploring the dialectical tree as
minimax does has an upper bound of O((|Lit|∗2|Δ|−1)2

|Δ|

).
Every time we must insert a neighbour node B of a node

A in the tree structure or equivalently, when a player makes
a move, we must check if it is a legal move in the game, i.e.,
if B attacks and defeats A, and if B does not introduce in-
consistency. In order to determine whether B is a defeater
of A, we must take into account the preference criterion be-
tween arguments. Any preference criterion defined among
arguments could be used in DeLP. For this reason, the com-
plexity class of the following decision problem “whether an
argument can be considered in the tree structure of a game”
will be left parameterized in the class C.

Theorem 4 Let C be the complexity class for the decision
problem:“whether an argument can be considered in the tree
structure of a game”. The upper bound for data complexity
of GAMESAT is NPC .

Proof: For fixed ΠR ∪ Δ, the size of the dialectical tree
for an argument 〈A, L〉 is polynomial in the size of the lit-
erals in ΠF . Furthermore, computing each argument is in
P, and considering each argument in the tree structure is in
C. In order to decide whether a literal L belongs to the set
T of the minimal G-model, we guess for an argument of L
such that the game played from this argument is won by the
Proponent. The number of arguments is polynomial when
ΠR ∪ Δ is fixed, and determining whether the game is won
by the Proponent can be done with a C oracle. This proves
membership in NPC . �

Since NOWINGAME is a conjunction of GAMESAT com-
plements an immediate corollary to the result above follows
naturally.

Corollary 2 Let C be the complexity class for the decision
problem:“whether an argument can be considered in the tree
structure of a game”. The upper bound for data complexity
of NOWINGAME is co-NPC .

DEPARTMENT OF INFORMATICS 392

11TH NMR WORKSHOP

Decision Complexity
Problem

Is L ∈ CnR(Rules)? P-complete
Is 〈A, L〉 an argument? P-complete

Argument Existence NP
GAMESAT Data Complexity NPC

NOWINGAME Data Complexity co − NPC

Table 1: Problems studied, and the main complexity results
obtained.

Even though we have not analyzed in depth the complex-
ity for computing the preference criterion, we illustrate this
concept with two different cases.

In (Chesñevar & Maguitman 2004a; 2004b), the authors
use specificity (Simari & Loui 1992) as a syntax-based cri-
terion among conflicting arguments, preferring those argu-
ments which are more informed or more direct, in order to
assess natural language usage based on the web corpus and
to evaluate and rank search results, respectively. Computing
specificity depends strongly on the set 2|Lit|.

Other DeLP implementations use a static preference re-
lation (Chesñevar et al. 2004). In this case, the preference
criterion is computed by comparing arguments values. Such
values are obtained through different mathematical formulas
applied to the certainty of a formula in the language. Com-
puting such preference criterion involves just a comparison
between two certainty values. However, an extra cost is con-
sidered in the argument construction procedure, since the
certainty value is computed keeping a trace of all uncertain
information used to derive a goal.

Conclusion and Future Work
We have analyzed complexity of DeLP through the GS
semantics, pointing out some relevant decision problems.
In particular, we have analyzed in depth GAMESAT and
NOWINGAME. In order to achieve our aim, we have distin-
guished database and a query from a de.l.p., and we have de-
fined data, expression and combined complexity in the con-
text of DeLP. As far as we know, argumentation systems
have not been studied yet as a query language, and, there-
fore, there is no previous data complexity analysis for de-
feasible reasoning. Table 1 summarizes the problems stud-
ied and the main complexity results obtained.

As DeLP do not assume as input the argument set, the
first results that has been established where related to argu-
ments, the movements of a game. We have focused on the
existence of an argument in order to play a game, and on ver-
ifying whether a set is an argument. We state an exponential
upper bound for the set of all the arguments. Because of the
underpinning logic of DeLP our complexity results are a bit
better than those based on classical logic.

Data complexity results on GAMESAT and NOWINGAME
give a guideline for determining expressive power for DeLP.
Since our results are parameterized, we can state a lower

bound on NP, otherwise known as Σ1
1, which coincides with

the class of properties of finite structures expressible in ex-
istential second-order logic (Fagin 1974).

When analyzing Data complexity we have fixed the query
and we have parametrized the preference criteria. Thus an
interesting topic for future research is to study to what extent
this results can be applied to others rule-based argumenta-
tion systems whose theory proof is rather similar.

As future work we will analyze combined complexity of
the decision problems introduced. We are studying the ex-
pressive power of DeLP in order to compare this system with
other non monotonic formalisms.

References
Abramsky, S., and McCusker, G. 1997. Game Seman-
tics. In Schwichtenberg, H., and Berger, U., eds., Logic
and Computation: Proceedings of the 1997 Marktoberdorf
Summer School. Springer-Verlag.
Amgoud, L., and Cayrol, C. 2002. A reasoning model
based on the production of acceptable arguments. Annals
of Math and Artificial Intelligence 34:197–215.
Atkinson, K.; Bench-Capon, T.; and Mc Burney, P. 2004. A
dialogue game protocol for multi-agent argument over pro-
posals for action. Technical Report ULCS-04-007, Depart-
ment of Computer Science, University of Liverpool, Liver-
pool, U.K.
Bassiliades, N.; Antoniou, G.; and Vlahavas, I. 2004. A
defeasible logic reasoner for the semantic web. In Proc.
of the Workshop on Rules and Rule Markup Languages for
the Semantic Web, 49–64.
Bench-Capon, T. J. M. 2002. Value-based argumentation
frameworks. In NMR 2002, 443–454.
Bench-Capon, T. J. M. 2003. Persuasion in Practical Ar-
gument Using Value Based Argumentation Frameworks.
Journal of Logic and Computation 13(3):429–448.
Bondarenko, A.; Dung, P.; Kowalski, R.; and Toni, F. 1997.
An Abstract, Argumentation-Theoretic Approach to De-
fault Reasoning. Artificial Intelligence 93(1-2):63–101.
Cadoli, M., and Schaerf, M. 1993. A survey of complex-
ity results for nonmonotonic logics. Journal of Logic Pro-
gramming 17:127–160.
Cecchi, L. A., and Simari, G. R. 2000. Sobre la Relación
entre la Definición Declarativa y Procedural de Argumento.
In VI CACiC, 465–476.
Cecchi, L. A., and Simari, G. R. 2004. Sobre la relación
entre la Semántica GS y el Razonamiento Rebatible. In
X CACiC - Universidad Nacional de La Matanza, 1883–
1894.
Chesñevar, C., and Maguitman, A. 2004a. An Argumenta-
tive Approach to Assessing Natural Language Usage based
on the Web Corpus. In Proc. of the European Conference
on Artificial Intelligence (ECAI) 2004, 581–585.
Chesñevar, C., and Maguitman, A. 2004b. ARGUENET:
An Argument-Based Recommender System for Solving
Web Search Queries. In Proc. of the 2nd IEEE Intl. IS-
2004 Conference, 282–287.

393 Technical Report IfI-06-04

Argumentation, Dialogue, and Decision Making

Chesñevar, C.; Simari, G.; Alsinet, T.; and Godo, L. 2004.
A Logic Programming Framework for Possibilistic Argu-
mentation with Vague Knowledge. In Proc. of the UAI-
2004, 76–84.
Dantsin, E.; Eiter, T.; Gottlob, G.; and Voronkov, A. 2001.
Complexity and expressive power of logic programming.
ACM Computing Surveys (CSUR) 33(3):374 – 425.
Dimopoulos, Y.; Nebel, B.; and Toni, F. 2002. On
the Computational Complexity of Assumption-based Ar-
gumentation for Default Reasoning. Artificial Intelligence
141(1):57–78.
Dung, P. M. 1995. On the acceptability of arguments and
its fundamental role in nonmonotonic reasoning and logic
programming and n-person games. Artificial Intelligence
77:321–357.
Dunne, P. E., and Bench-Capon, T. 2002. Coherence in
finite argument systems. Artificial Intelligence 141:187–
203.
Fagin, R. 1974. Generalized first-order spectra and
polynomial-time recognizable sets. In Karp, R., ed.,
Complexity of Computation. SIAM-AMS Proceedings, vol-
ume 7, 43–73.
Garcı́a, A. J., and Simari, G. R. 2004. Defeasible Logic
Programming: An Argumentative Approach. Theory and
Practice of Logic Programming 4(1):95–138.
Gordon, T., and Karacapilidis, N. 1997. The Zeno Argu-
mentation Framework. In ACM., ed., The Sixth Interna-
tional Conference on Artificial Intelligence and Law, 10–
18.
Lifschitz, V. 1996. Foundations of logic programming. In
Brewka, G., ed., Principles of Knowledge Representation.
CSLI Publications. 1–57.
Maher, M. J. 2001. Propositional defeasible logic has lin-

ear complexity. Theory and Practice of Logic Program-
ming 1(6):691–711.
Papadimitriou, C. H., and Yannakakis, M. 1997. On the
complexity of database queries (extended abstract). In
PODS ’97: Proceedings of the sixteenth ACM SIGACT-
SIGMOD-SIGART symposium on Principles of database
systems, 12–19. New York, NY, USA: ACM Press.
Papadimitriou, C. 1994. Computational Complexity.
Addison-Wesley Publishing Company.
Parsons, S.; Wooldridge, M.; and Amgoud, L. 2003. Prop-
erties and complexity of some formal inter-agent dialogue.
Journal of Logic and Computation 13(3):347–376.
Pollock, J. 1987. Defeasible Reasoning. Cognitive Science
11:481–518.
Prakken, H., and Sartor, G. 1997. Argument-based ex-
tended logic programming with defeasible priorties. Jour-
nal of Applied Non-Classical Logics 7:25–75.
Russell, S., and Norvig, P. 2003. Artificial Intelligence:
A modern approach. New Jersey: Prentice Hall, second
edition.
Simari, G. R., and Loui, R. P. 1992. A mathematical treat-
ment of defeasible reasoning and its implementation. Arti-
ficial Intelligence 53:125–157.
Vardi, M. Y. 1982. The complexity of relational query
languages. In Proceedings of the Fourteenth Annual ACM
Symposium on Theory of Computing, STOC82, 137–146.
New York, NY, USA: ACM Press.
Verheij, B. 1998. Argumed - a template-based argu-
ment mediation system for laweyers. In Hage, J.; Bench-
Capon, T. J.; Koers, A.; de Vey Mestdagh, C.; and Grütters,
C., eds., Legal Knowledge Based Systems. JURIX: The
Eleventh Conference, 113–130.

DEPARTMENT OF INFORMATICS 394

