
Incorporating Defeasible Knowledge and Argumentative Reasoning
in Web-based Forms

Sergio Alejandro Gómez†, Carlos Iván Ches̃nevar†‡, Guillermo Ricardo Simari †
†Artificial Intelligence Research and Development Laboratory – Department of Computer Science and Engineering

Universidad Nacional del Sur – Av. Alem 1253, (8000) Bahı́a Blanca,ARGENTINA – EMAIL : {sag,grs }@cs.uns.edu.ar
‡Artificial Intelligence Research Group – Department of Computer Science

Universitat de Lleida – Campus Cappont – C/Jaume II, 69 – E-25001 Lleida,SPAIN – EMAIL : cic@eps.udl.es

Abstract

The notion of forms as a way of organizing and pre-
senting data has long been used since the beginning
of the WWW. Web-based forms have evolved to-
gether with the development of new markup lan-
guages (e.g., XML), in which it is possible to pro-
vide validation scripts as part of the form code in
order to test whether the intended meaning of the
form is correct. However, for the form designer,
part of this intended meaning involves frequently
other features which are not constraints themselves,
but ratherattributesemerging from the form, which
provide plausible conclusions in the context of in-
complete and potentially inconsistent information.
As the value of such attributes may change in pres-
ence of new knowledge, we call themdefeasible
attributes. In this paper we propose extending tra-
ditional web-based forms to incorporate defeasible
attributes as part of the knowledge that can be en-
coded in a form. The proposed extension allows
the specification of scripts for reasoning about form
fields using a defeasible knowledge base, expressed
in terms of a Defeasible Logic Program.

1 Introduction and Motivations
The notion of form as a way of organizing and presenting
data is a well-known structural abstraction for data collection,
storage, and information retrieval. Forms are an important
means to designing and developing user-oriented information
systems, and have long been used since the very beginning
of the World Wide Web. Web-based forms have evolved to-
gether with the development of new markup languages (e.g.,
XML), in which it is possible to provide validation scripts as
part of the form code in order to test whether the intensional
meaning of the form is correct[Wu et al., 2004].

Fulfilling the goals of the Semantic Web program[Berners-
Leeet al., 2001] requires having tools capable of dealing with
the potential inconsistencies and incompleteness of web data
sources. One particularly important application domain is e-
commerce technologies, which typically demand validation
of user data (e.g., credit card numbers) against a set of criteria
for determining if a given user is eligible for certain prospec-
tive transaction. Performing validations on field values allows

to determine whether the intended meaning of such fields is
coherent according to some criteria established by the form
designer. Such validations usually consist of a number of
hard-coded decision criteria as a portion of imperative code
in a script language. However, in many cases there are some
emerging features which can be inferred as part of the “in-
tended meaning” of the form without being field values them-
selves. Thus, in the case of a bank loan application, the notion
of “reliable client” may be inferred as plausible from knowing
the annual income and banking records of a particular cus-
tomer. Such features (orattributes) of the form are difficult
to model in terms of pieces of imperative code, particularly
in presence of incomplete and potentially contradictory infor-
mation. The associated conclusions turn out to bedefeasible,
as they may change in the light of new information.

In this paper, we propose extending traditional web-based
forms to incorporate additional attributes as part of the declar-
ative knowledge that can be encoded in a form. As the value
of such attributes may change in presence of new informa-
tion, we call themdefeasible attributes. The proposed exten-
sion allows the specification of scripts for handling defeasible
attributes on the basis of a defeasible knowledge base associ-
ated with the form, expressed in terms ofDefeasible Logic
Programming(DeLP)[Garćıa and Simari, 2004], a particular
formalization of defeasible argumentation[Ches̃nevaret al.,
2000] based on logic programming. We will show how this
extension can be easily integrated with existing client-based
approaches for handling forms, such as the use of JavaScript
validation codes. The rest of this paper is structured as fol-
lows. In Section 2, we present the fundamentals of DeLP
along with an example that will be used later for explain-
ing our proposal. Section 3 describes generic issues about
web-based forms as well as the importance of characteriz-
ing defeasible attributes. Section 4 introduces the notion of
web-based form with defeasible attributes, ord-forms. We
show how to encode d-forms using XDeLP, a script-like vari-
ant of DeLP oriented towards XHTML standards. Section 5
presents the notion of program redefinition. Section 6 dis-
cusses related work and finally Section 7 concludes.

2 Modelling Argumentation in DeLP
Defeasible argumentation has evolved in the last decade
as a successful approach to formalize defeasible reason-
ing [Ches̃nevar et al., 2000]. The growing success of



argumentation-based approaches has caused a rich cross-
breeding with other disciplines, providing interesting results
in different areas such as knowledge engineering, multiagent
systems, and decision support systems, among others[Par-
sonset al., 1998; Ches̃nevaret al., 2000]. Defeasible logic
programming(DeLP) [Garćıa and Simari, 2004] is a par-
ticular formalization of defeasible argumentation based on
logic programming, which has proven to be particularly at-
tractive in the context of real-world applications, such as
clustering [Gómez and Ches̃nevar, 2004], intelligent web
search[Ches̃nevar and Maguitman, 2004b], knowledge man-
agement[Brenaet al., 2005] and natural language process-
ing [Ches̃nevar and Maguitman, 2004a]. To make this paper
self-contained, we will summarize next the fundamentals of
DeLP.1

2.1 Knowledge Representation in DeLP
Next we will introduce the basic definitions to represent
knowledge in DeLP.

Definition 1 (DeLP program P) A defeasible logic pro-
gram (delp) is a setP = (Π, ∆) of Horn-like clauses, where
Π and ∆ stand for sets ofstrict and defeasibleknowledge,
resp. The setΠ of strict knowledge involvesstrict rulesof the
form P ← Q1, . . . , Qk and facts (strict rules with empty
body), and it is assumed to benon-contradictory.2 The set
∆ of defeasible knowledge involvesdefeasible rulesof the
formP −≺ Q1, . . . , Qk, which stands for “Q1, . . . Qk provide
a tentative reason to believeP .” Strict and defeasible rules in
DeLP are defined in terms ofliteralsP , Q1, Q2, . . . . A literal
is an atom or the strict negation (∼) of an atom.

The underlying logical language is that of extended logic
programming, enriched with a special symbol “−≺ ” to de-
note defeasible rules. Both default and classical negation
are allowed (denotednot and∼ , resp.). Syntactically, the
symbol “−≺ ” is all what distinguishes adefeasiblerule
P −≺ Q1, . . . Qk from a strict (non-defeasible) ruleP ←
Q1, . . . , Qk. DeLP rules are thus Horn-like clauses to be
thought of asinference rulesrather than implications in the
object language. Analogously as in traditional logic program-
ming, thedefinitionof a predicateP in P, denotedPP , is
given by the set of all those (strict and defeasible) rules with
headP and arityn in P. If P is a predicate inP, then
name(P ) andarity(P ) will denote the predicate name and
arity, resp. We will writePred(P) to denote the set of all
predicate names defined in a programP.

Next we will present an example in the banking domain
which will be used to illustrate our proposal.

Example 1 An international bank keeps track of its clients
in order to determine whether to concede loans. For every
client the bank keeps name, country of origin, profession,
average income per month, and family status of the client.
The account manager of the bank has a number of crite-
ria for conceding loans. Loans are given if the person has

1For an in-depth treatment, the interested reader is referred
to [Garćıa and Simari, 2004].

2Contradiction stands for deriving two complementary literals
wrt strict negation (P and∼P ) or default negation (P andnot P ).

a reasonable “profile,” according to his personal records.
Figure 1 shows a DeLP programPbank for assessing the
status of such a loan application. Facts (1–3) of the form
info(Name, Country, Profession, IncomePerMonth)
describe information about the customers—fact (1) says that
John is a PhD student from a country named Krakosia and
has an average income of$400 a month; fact (2) says that
Ajax is also a PhD student but from Greece and has an aver-
age income of$350 a month, and fact (3) says that Danae is
from Greece with an income of$10, 000 a month and with no
information regarding her profession. Facts (4–6) describe
how much money has been requested by each customer to
the bank, whereas facts (7–9) summarize the family records
of the customers. Facts (10–11) establish that Krakosia and
Greece are considered as trustworthhy countries by the bank
authorities. Defeasible rules (12–13) express that a person
P is candidate for a loan usually if the personP has the
right profile or if the requested loan is reasonable for the in-
come in 10 months andP comes from a trustworthy coun-
try. Rule (14) says that a right profile is defined in terms
of monthly income and country. Rule (15) establishes that
usually all countries are trustworthy. Rule (16) says that a
personP has a reasonable income if it is typically$300 a
month or higher. Rule (17) expresses that usually a person
P who is not economically solvent does not have a reason-
able income. Rules (18–19) say that usually PhD students
are not solvent people unless they come from rich families.
Finally, rule (20) says that people assessed by the bank with
a family status “rich” are expected to be from rich families.
Note that in this particular example we havePred(Pbank)
= {info/4, family record/2, req loan/2, credible/1,
candidate/1, profile ok/1, trustctry/2, goodincome/1,
solvent/1, richfamily/1 }.

2.2 Argument, Counterargument, and Defeat in
DeLP

Deriving literals in DeLP results in the construction ofargu-
ments. An argumentA is a (possibly empty) set of ground
defeasible rules that together with the setΠ provide a logical
proof for a given literalQ, satisfying the additional require-
ments ofnon-contradictionandminimality. Formally:

Definition 2 (Argument) Given a DeLP programP, an ar-
gumentA for a query Q, denoted〈A, Q〉, is a subset of
ground instances of defeasible rules inP, such that:

1. there exists adefeasible derivationfor Q fromΠ ∪ A;

2. Π ∪ A is non-contradictory (i.e., Π ∪ A does not en-
tail two complementary literalsP and∼ P (or P and
notP )), and,

3. A is minimal with respect to set inclusion (i.e., there is
noA′ ⊆ A such that there exists a defeasible derivation
for Q fromΠ ∪ A′).

An argument〈A1, Q1〉 is a sub-argumentof another argu-
ment 〈A2, Q2〉 if A1 ⊆ A2. Given a DeLP programP,
Args(P) denotes the set of all possible arguments that can
be derived fromP.



Facts (user-provided information):
(1) info(john, krakosia, phdstudent, 400).
(2) info(ajax, greece, phdstudent, 350).
(3) info(danae, greece, none, 10000).
(4) req loan(john, 2000).
(5) req loan(ajax, 4500).
(6) req loan(danae, 1000).

Facts (bank information):
(7) family record(john, rich).
(8) family record(ajax, unknown).
(9) family record(danae, unknown).
(10) credible(krakosia).
(11) credible(greece).

Defeasible rules:
(12) candidate(P ) −≺ profile ok(P ).
(13) candidate(P ) −≺

info(P, , , Income), req loan(P, Amount),
Amount < Income ∗ 10, trustctry(P, Ctry).

(14)profile ok(P ) −≺ goodincome(P ), trustctry(P, Ctry).
(15) trustctry(P, Ctry) −≺ info(P, Ctry, , ), credible(Ctry).
(16)goodincome(P ) −≺ info(P, , , Income), Income > 300.
(17)∼goodincome(P ) −≺ ∼solvent(P ).
(18)∼solvent(P ) −≺ info(P, , phdstudent, ).
(19)solvent(P ) −≺ info( , , phdstudent, ), richfamily(P ).
(20)richfamily(P ) −≺ family record(P, rich).

Figure 1: Defeasible logic programPbankwith bank criteria
for granting a loan application

The notion of defeasible derivation corresponds to the
usual query-driven SLD derivation used in logic program-
ming, performed by backward chaining on both strict and de-
feasible rules; in this context a negated literal∼P is treated
just as a new predicate nameno P . Minimality imposes a
kind of ‘Occam’s razor principle’[Simari and Loui, 1992] on
argument construction. The non-contradiction requirement
forbids the use of (ground instances of) defeasible rules in
an argumentA wheneverΠ ∪ A entails two complementary
literals. It should be noted that non-contradiction captures
the two usual approaches to negation in logic programming
(viz., default negation and classical negation), both of which
are present in DeLP and related to the notion of counterargu-
ment, as shown next.

Definition 3 (Counterargument. Defeat) An argument
〈A1, Q1〉 is acounterargumentfor an argument〈A2, Q2〉 iff

• Subargument attack: there is an subargument〈A, Q〉 of
〈A2, Q2〉 (called disagreement subargument) such that
the setΠ ∪ {Q1, Q} is contradictory, or

• Default negation attack: a literal notQ1 is present in
the body of some rule inA2.

We will assume apreference criterionon conflicting argu-
ments defined as a partial order¹⊆ Args(P) × Args(P).
We distinguish betweenproperand blocking defeatersas a
refinement of the notion of counterargument as follows:

An argument〈A1, Q1〉 is a proper defeaterfor an argu-
ment 〈A2, Q2〉 if 〈A1, Q1〉 counterargues〈A2, Q2〉 with a
disagreement subargument〈A, Q〉 (subargument attack) and
〈A1, Q1〉 is strictly preferred over〈A, Q〉 wrt ¹.

An argument〈A1, Q1〉 is a blocking defeaterfor an argu-
ment〈A2, Q2〉 if 〈A1, Q1〉 counterargues〈A2, Q2〉 and one
of the following situations holds: (a) There is a disagreement
subargument〈A, Q〉 for 〈A2, Q2〉, and〈A1, Q1〉 and〈A, Q〉
are unrelated to each other wrt¹; or (b) 〈A1, Q1〉 is a default
negation attack on some literalnotQ1 in 〈A2, Q2〉.

Generalized specificity[Simari and Loui, 1992] is typi-
cally used as a syntax-based criterion among conflicting argu-
ments, preferring those arguments which aremore informed
or more direct[Simari and Loui, 1992; Stolzenburget al.,
2003].3 However, it must be remarked that other alternative
partial orders could also be valid, such us defining argument
comparison using rule priorities[Garćıa and Simari, 2004].

Example 2 Consider the DeLP program shown in Exam-
ple 1. There exists an argumentA supporting the defea-
sible conclusion that John is a candidate for a loan,i.e.,
〈A1, candidate(john)〉, where:4

A1 = {(candidate(john) −≺ profile ok(john));

(profile ok(john) −≺ goodincome(john),

trustctry(john, krakosia));

(trustctry(john, krakosia) −≺
info(john, krakosia, , ), credible(krakosia));

(goodincome(john) −≺ info(john, , , 400),

400 > 300)};
Another argument〈A2,∼ goodincome(john)〉 can be de-
rived fromPbank, supporting the conclusion thatJohn does
not have a reasonable income, with:

A2 = {(∼goodincome(john) −≺ ∼solvent(john));

(∼solvent(john) −≺ info(john, , phdstudent, )};
Using generalized specificity[Simari and Loui, 1992] as the
preference criterion among conflicting arguments, the argu-
ment〈A2,∼goodincome(john)〉 turns out to be ablocking
defeater for argument〈A1, candidate(john)〉.
2.3 Computing Warrant through Dialectical

Analysis
An argumentation linestarting in an argument〈A0, Q0〉
(denotedλ〈A0,Q0〉 ) is a sequence [〈A0, Q0〉, 〈A1, Q1〉,
〈A2, Q2〉, . . . , 〈An, Qn〉 . . . ] that can be thought of as an
exchange of arguments between two parties, aproponent
(evenly-indexed arguments) and anopponent(oddly-indexed
arguments). Each〈Ai, Qi〉 is a defeater for the previous ar-
gument〈Ai−1, Qi−1〉 in the sequence,i > 0. In order to
avoidfallaciousreasoning, dialectics imposes additional con-
straints on such an argument exchange to be considered ra-
tionally acceptable. Given a DeLP programP and an ini-

3When using generalized specificity as the comparison crite-
rion between arguments, the argument〈{a −≺ b, c}, a〉 is preferred
over the argument〈{∼ a −≺ b},∼ a〉 as it is consideredmore in-
formed (i.e., it relies on more premises). However, the argument
〈{∼a −≺ b},∼a〉 is preferred over〈{(a −≺ b); (b −≺ c}), a〉 as it is
regarded asmore direct(i.e., it is a shorter derivation).

4For the sake of clarity, we use parentheses to enclose defeasible
rules in arguments, separated by semicolons,i.e. A = {(rule1) ;
(rule2) ; . . . ; (rulek)}.



tial argument〈A0, Q0〉, the set of all acceptable argumenta-
tion lines starting in〈A0, Q0〉 accounts for a whole dialec-
tical analysis for〈A0, Q0〉 (i.e., all possible dialogues about
〈A0, Q0〉 between proponent and opponent), formalized as a
dialectical tree.

Nodes in a dialectical treeT〈A0,Q0〉 can be marked asun-
defeatedanddefeatednodes (U-nodes and D-nodes, resp.).
A dialectical tree will be marked as anAND-OR tree: all
leaves inT〈A0,Q0〉 will be marked U-nodes (as they have no
defeaters), and every inner node is to be marked asD-node
iff it has at least one U-node as a child, and asU-nodeother-
wise. An argument〈A0, Q0〉 is ultimately accepted as valid
(or warranted) wrt a DeLP programP iff the root of its asso-
ciated dialectical treeT〈A0,Q0〉 is labelled asU-node.

Given a DeLP programP, solving a queryQ wrt P ac-
counts for determining whetherQ is supported by (at least)
one warranted argument. Different doxastic attitudes can be
distinguished as follows:

1. Y es: accounts for believingQ iff there is at least one war-
ranted argument supportingQ on the basis ofP .

2. No: accounts for believing∼Q iff there is at least one war-
ranted argument supporting∼Q on the basis ofP.

3. Undecided: neitherQ nor∼Q are warranted wrtP.

4. Unknown: Q does not belong to the signature ofP .

Thus, according to DeLP semantics, given a programP,
solving a queryQ —for any Q ∈ Pred(P)— will result in
a value belonging to the setAns= {Y es, No, Undecided,
Unknown}.
Example 3 Consider the query candidate(john)
solved wrt the programPbank(Fig. 1). As shown in
Example 1, this query would start a search for ar-
guments supportingcandidate(john), and argument
〈A1, candidate(john)〉 will be found. In order to determine
whether this argument is warranted, its dialectical tree
will be computed: as shown in Example 1, there is only
one (blocking) defeater for 〈A1, candidate(john)〉,
namely. 〈A2,∼ goodincome(john)〉. This de-
feater, on its turn, has another (proper) defeater
〈A3, solvent(john)〉, with A3 = { (solvent(john)
−≺ info(john, , phdstudent, ), richfamily(john));
(richfamily(john) −≺ family record(john, rich)) } The
resulting (marked) dialectical tree is depicted in Fig. 2(i). As
the root note of the resulting dialectical tree is aU -node, the
answer tocandidate(john) is Y es.

Consider now the querycandidate(ajax). As in John’s
case, we can find the argument〈B1, candidate(ajax)〉,
which is defeated by〈B2,∼goodincome(ajax)〉, with
B1 = {(candidate(ajax) −≺ profile ok(ajax));

(profile ok(ajax) −≺ goodincome(ajax),

trustctry(ajax, greece));

(trustctry(ajax, greece)−≺info(ajax, greece, , ),

credible(greece));

(goodincome(ajax) −≺ info(ajax, , , 350),

350 > 300)};
B2 = {(∼goodincome(john) −≺ ∼solvent(john));

(∼solvent(john) −≺ info(john, , phdstudent, )};

AU
1

AD
2

AU
3

6

6
BD

1

BU
2

6
CU
1 A′D1

AD
2 AU

4

AU
3

6

¢
¢̧

A
AK

(i) (ii) (iii) (iv)

Figure 2: Dialectical trees for queries: (i)candidate(john)
wrt Pbank; (ii) candidate(ajax) wrt Pbank; (iii)
candidate(danae) wrt Pbank; and (iv) candidate(john)
wrt Pbank/Psec

Hence the associated dialectical tree forcandidate(ajax)
has two nodes, with the root labelled asD-node (Fig. 2(i)).
The original argument forcandidate(ajax) is therefore not
warranted. Finally consider the querycandidate(danae).
There is an argument without defeaters (and hence war-
ranted) for this query, as Danae has the right profile for the
bank:5

C1 = {(candidate(danae) −≺ profile ok(danae));

(profile ok(danae) −≺ goodincome(danae),

trustctry(danae, greece));

(goodincome(danae) −≺ info(danae, , , 10000),

10000 > 300)}

None of these arguments has defeaters. Following the same
reasoning as above, both of them are warranted. The result-
ing dialectical tree will have a unique node, as depicted in
Fig. 2(iii).

3 Web-based Forms: From HTML to XForms
The notion of form has been a central structural abstraction
for data collection, storage, and retrieval in information man-
agement systems. Forms provide a standard way of allowing
the Web user to send information back to the server by means
of different technologies to verify and validate data (e.g., CGI
scripting). A number of programming technologies were de-
veloped, enabling the creation of interactive Web applications
which outperformed static Web pages. The growing popular-
ity of e-commerce technologies as well as the envisioning of
the Semantic Web motivated the specification of sophisticated
standards for web-based forms, notably XForms[Dubinkoet
al., 2003].

As we stated in the introduction, in this paper we extend
the traditional approach to web-based forms by including de-
feasible reasoning capabilities encoded in DeLP. In order to

5Note that there is also a second argument with-
out defeaters supporting the querycandidate(danae),
namely 〈C2, candidate(danae)〉, with C2 = {
(candidate(danae)−≺info(danae, , , 10000),req loan(danae,
1000),1000<10000*10, trustctry(danae, greece));
(trustctry(danae, greece) −≺info(danae, greece, , ),
credible(greece))}.



Name: John

Profession: PhDStudent

Income: 400

Amount requested: 2000

Country: Krakosia

Submit Validate

Figure 3: Form view for the loan application

do this, we will first provide a rather generic definition that
captures the notion of form schema and form instance, which
will prove useful for presenting our approach.

Definition 4 (Form Schema. Form Instance)A form sche-
ma is a 2-upleF=〈F, T 〉, whereF = [f1, f2, . . . , fn] is a list
of form fieldsand T = [T1, . . . , Tn] is a list of types(each
of them consisting of a set of values).Given a form schema
F=〈F, T 〉 defined as above, aform instancebased onF with
valueV (denotedFV ) is a 2-upleFV = 〈F, V 〉, whereV =
[v1, . . . , vn] is a list of values such that everyvi ∈ Ti is the
associated value forfi ∈ F .

Example 4 Let F = [ name, profession, income,
amountreq, country] and T = [ string, string, real,
integer, string], wherestring, real, andinteger are type
names with the usual meaning. ThenF = 〈F, T 〉 is a form
schema. LetV = [ john, phdstudent, 400, 2000, krakosia].
ThenFV = 〈F, V 〉 is a form instance based onF .

Figure 3 shows the typical graphical appearance of a web-
based form according to the form schema given in Ex. 4. Note
that control actions associated with the form (e.g., submit,
clear, etc.) are not considered in Def. 4.

In spite of the evolution of web-based form technologies,
most form designers perform validation of form fields by en-
forcing constraints (e.g., numeric ranges) encoded as pieces
of imperative code in a scripting language (e.g., JavaScript).
Thus, validation of data is done client-side, and the form data
is finally processed by a program located in a remote server
(usually accessing some sort of database). However, in many
cases there are some emerging features which can be inferred
as part of the “intended meaning” of the form without be-
ing field values themselves. Thus, in the case of a bank loan
application discussed in the previous sections, a concept like
reliable client, modelled on the basis of the field values for
a particular customer, could prove useful for the form de-
signer in order to codify decision making issues associated
with form processing. To identify every relevant attributes
needed to infer a concept like “reliable customer” using only
imperative code may be a difficult task, as in complex situ-
ations such conclusions are defeasible (particularly in pres-
ence of incomplete and potentially inconsistent information).
Forms can be suitably extended to formalize such situations
on the basis of DeLP by means of so-calleddefeasible at-
tributes, as we will see in the next section.

4 Forms with Defeasible Attributes
In this section, we will outline an approach to extending tradi-
tional web-based forms to incorporate defeasible knowledge
expressed in terms of a defeasible logic program, character-
izing the notion of forms with defeasible attributes.

4.1 Integrating Forms with DeLP
Given a form instanceFV , the notion ofemerging factsfrom
FV captures the knowledge present in field values as DeLP
facts, introducing new predicate names associated with those
field names in a formF .

Definition 5 (Emerging factsfacts(FV )) Let F= 〈F, T 〉
be a form schema, withF = [f1, . . . , fn], and letFV be
a form instance. We define the setfacts(FV ) of emerging
facts from FV as facts(FV ) = {f1(F , v1), f2(F , v2), . . . ,
fn(F , vn)}.
Example 5 Given the form instanceFV in Example 4,
the corresponding setfacts(FV ) of emerging facts
is {name(F , john), profession(F , phdstudent),
income(F , 400), amountreq(F , 2000), country(F ,
krakosia)}.

Next we will show how field values can be integrated with
an arbitrary DeLP programP, characterizing so-calledd-
forms. Formally:

Definition 6 (Form schema with defeasible attributes. D-
form instance) Let F = 〈F, T 〉 be a form schema, and
P = (Π,∆) a DeLP program. Aform schema with defea-
sible attributes(or d-form schema) D is a 2-uple〈F ,P〉. If
V is a set of values for the formF , a d-form instanceDV is
the 2-uple〈FV ,P〉. The set ofdefeasible attributesforDV is
defined as the set of predicatesPred(Π ∪ facts(FV ),∆).

Given a d-form instance〈FV ,P〉, the above definition
aims at identifying features or attributes encoded by the
form designer as predicates in the programP. Such at-
tributes are defeasible, as their associated value will be de-
termined by DeLP queries solved wrt the DeLP program
(Π ∪ facts(FV ), ∆). Hence, changing the field values in
the formF or changing the underlying DeLP programP will
result in changing the value for these attributes. Defeasible at-
tributes will represent relevant features for the form designer,
whose value depends on both the DeLP program encoding
relevant domain knowledge and the particular field values for
a given form instance.

Example 6 LetF = 〈F, T 〉 be the form given in Example 4,
and consider the programPbank ’ = Pbank\{(1), . . . , (6)}
∪ { info(N,C, P, I) ← name(F , N), country(F , C),
profession(F , P ), income(F , I)} ∪ { req loan(N,A) ←
name(F , N), amountreq(F , A) }; i.e., the program given
in Fig. 1 excluding user-provided information, as well as two
additional strict rules linking the form schemaF with the
DeLP program rules.

Let D = 〈F ,Pbank
′〉 be a d-form. According to the

DeLP programPbank
′, one defeasible attribute inD is

candidate/1 ∈ Pred(Pbank
′). Suppose now that three users

John, Ajax, and Danae fill in this d-form as described in
Example 4. For every user a particular d-form instance



Duser would be obtained. Thus, when analyzing, for ex-
ample, the query “candidate(john)”, the d-form instance
Djohn would involve providing all his particular user de-
tails, which will be present as emerging facts. Along with
the two additional strict rules given above, reasoning from
Pbank

′ ∪ facts(Djohn) would result in the dialectical anal-
ysis shown in Example 3, determining thatcandidate(john)
is warranted. The same applies for the other two users with
respect tocandidate(ajax) andcandidate(danae), resp.

4.2 Characterizing D-forms as DeLP Scripts in
XML

In order to use d-forms in the context of web applications,
we propose codifying a defeasible logic program as a web
document. For doing this, we have definedXDeLP, a script-
ing language that combines features from markup languages
and DeLP. XDeLP supports the representation of defeasible
knowledge bases by aumenting XHTML with tags that allow
to represent defeasible logic programs. XDeLP can be em-
bedded directly in XHTML documents or used in XML doc-
uments. This decision provides several advantages as noted
by [Heflin et al., 2003] in the context of SHOE—(1) web
authors are more confortable with XML syntax as there are
many commercial applications to edit it, (2) its knowledge
contents can be used in other XML aware applications, and
(3) the XSLT style sheet standard[Clark, 1999] can be used
to render it for human consumption.

In XDeLP syntax, a defeasible knowledge base or defeasi-
ble logic program appears between the tags<delp id=“. . . ”
version=“. . . ” > and</delp> and is identified by the com-
bination ofid andversion. A defeasible knowledge base can
define facts, strict rules, and defeasible rules by including spe-
cial tags for these purposes. Figure 4 shows rules for defining
a schema for facts of the formreq loan(Name, Amount),
wherereq loan(john, 2000) is a particular instance. Also,
it shows a schema definition for the rule (15) of Ex. 1, and
a ground instance of this rule that says that Krakosia is not a
trustworthy democracy because it is at war.

As mentioned before, programmers usually validate form
data by attaching some imperative JavaScript code to but-
tons. Our proposal for forms with defeasible attributes in-
volves definining a XML-based tag language for codifying
DeLP programs defeasible knowledge base attached to a d-
form, as an integrated part in a web-based form, integrating
the DeLP inference engine to a web browser and extending
the JavaScript programming language with primitives for in-
voking the DeLP engine. The architecture for the approach
is depicted in Fig. 5. The extension to JavaScript consists
of primitives for calling the DeLP engine services. This is
implemented through specialized built-in boolean functions
like warranted(formid, h) that determinee.g. if there ex-
ists a warranted literalh wrt form formid. Similar func-
tions are implemented for other possible values for defeasi-
ble attributes (e.g., undecided). Next we show an example of
how the proposed approach works in a JavaScript client-side
script.

Example 7 SupposeP is a d-form as described in Ex. 4,
which in turn is written in XForms and hasform1 as its
identifier. Then, a JavaScript programmer would be capable

<delp id="progbank" version="1.0">

<!-- EXAMPLE OF ATOM DEFINITION: req_loan(Name, Amount)-->
<def-atom name="req_loan" arity="2">

<def-arg pos="1" param="Name" type="string" />
<def-arg pos="2" param="Amount" type="float" />

</def-atom>
...
<!-- EXAMPLE OF FACT: req_loan(john, 2000) -->
<fact-instance negated ="no" name="req_loan">

<arg pos="1" value="john" />
<arg pos="2" value="2000" />

</fact>
...
<!-- EXAMPLE OF DEFEASIBLE RULE:

A democracy at war usually is not a credible country -->
<def-drule id="15">

<def-head name="credible" negated="yes">
<arg pos="1" param="Ctry" type="string" />

</def-head>
<def-body>

<def-body-atom negated="no" name="country">
<arg pos="1" param="Ctry" type="string" />
<arg pos="2" param="Status" type="string"

value="democracy" />
</def-body-atom>
<def-body-atom negated="no" name="country">

<arg pos="1" param="Ctry" type="string" />
<arg pos="2" param="Status" type="string"

value="atwar" />
</def-body-atom>

</def-body>
</def-drule>

<!-- EXAMPLE OF GROUND RULE: Krakosia is not a trustworthy
democracy because it is at war. -->

<drule-instance id="15">
<subst param="Ctry" value="krakosia" />

</drule-instance>
</delp>

Figure 4: XML syntax for XDeLP

of writing the following code embedded in a handler function
for theValidatebutton such as in:
<script language="JavaScript">
function validate()
{

if( form1.warranted(p, candidate(form1.name.value)) )
alert( "The requested loan will be probably conceded."

+ "We will contact you in a week." );
else

alert( "Your case will be analyzed and " +
"we will contact you in a month." );

}
</script>

5 Redefining DeLP Programs
As stated in Section 2, a DeLP programP (Def. 1) can also
be thought of as a set of predicate definitions,i.e. P =def

{PP1 , . . . , PPk }. Thus, in our example concerning bank loans,
the programPbank (Fig. 1) provides the definition of a num-
ber of predicates (candidate, trustctry, etc.). This alterna-
tive conceptualization will allow us to define the notion of
redefinition. A redefinition of a programP1 wrt another pro-
gramP2 is a new DeLP programP that includes all predicate
definitions inP1 andP2, except for those predicates inP1

which are also defined inP2. Formally:

Definition 7 (Redefinition) Let P1,P2 be two DeLP pro-
grams, such thatP1 defines the predicatesR1, R2, . . . , Rn,



&%

'$

W e b

6
?

DeLP
engine

6?

JavaScript
interpreter

Defeasible KB

<form>

Name:
. . .
<. . . Validate . . .>
</form>

-¾

-¾

?
¾

Figure 5: A framework for embedding the DeLP inference
engine in a browser application

andP2 defines the predicatesS1, . . . , Sm. Theredefinition
of P1 wrt P2, denotedP1/ P2, is a new programP ′ defined
as follows:
P ′ = P1/ P2 =def {RP1

1 , . . . , RP1
n } ∪ {SP2

1 , . . . , SP2
m } \

{ RP1
i | ∃SP2

j in P2, with name(Ri) = name(Sj), and
arity(Ri)=arity(Sj)}.

Redefining a DeLP program basically involves providing
new predicate definitions, which supersede already existing
ones (if any). Let us suppose that the bank gets a number
of basic criteria from the Homeland Security Office (HSO)
concerning how to assess trustworthiness of countries. Such
criteria could be encoded by HSO programmers in DeLP as
shown in Fig. 6. Assuming that the bank wants to merge
this knowledge base with theirs, the resulting redefined pro-
gramPbank/Psec would consider a more detailed analysis for
countries, as factors such as political system, political situa-
tion, etc. would be taken into account when conceding loans,
as shown in the following example.

Example 8 Consider the DeLP programsPbank={(1), . . . ,
(20)} and Psec={(1′), . . . , (6′)} from Fig. 1 and 6, resp.
ComputingPbank/Psec gives as a result a new DeLP pro-
gramP ′ = {(1), . . . , (20)} ∪ {(1’), . . . , (6’)} \ {(10),(11)},
in which the definition ofcredible provided byPbank is
replaced by the new definition given inPsec. Solving
the query “candidate(john)” wrt P ′ involves a search
for arguments similar to the one perfomed in Example 3:
an argument 〈A′1, candidate(john)〉 supports the query
candidate(john),6 with
A′1 = { (candidate(john) −≺ profile ok(john));

(profile ok(john) −≺ goodincome(john),
trustctry(john, krakosia));
(trustctry(krakosia) −≺ info(john, krakosia, , ),
credible(krakosia));
(credible(krakosia) −≺ country(krakosia, democracy));
(goodincome(john) −≺ info(john, , , 400), 400 > 300) }.
6Note that argument〈A′1, candidate(john)〉 involves defeasi-

ble information about Krakosia coming fromPsec, in contrast with
the original argument〈A1, candidate(john)〉.

(1′) country(greece, democracy)
(2′) country(krakosia, democracy)
(3′) country(krakosia, atwar)
(4′) credible(Ctry) −≺ country(Ctry, democracy).
(5′) ∼credible(Ctry) −≺

country(Ctry, democracy),
country(Ctry, atwar).

(6′) ∼credible(Ctry) −≺
country(Ctry, democracy),
country(Ctry, corruptgovt).

Figure 6: Defeasible logic programPsec from the HSO

As in Example 3, this argument is defeated by another
argument〈A2,∼ goodincome(john)〉, which on its turn
is defeated by another argument〈A3, solvent(john)〉.
In all these arguments, however, the redefined pro-
gram allows a fourth argument to be inferred,
namely 〈A4,∼ credible(krakosia)〉 with A4={
∼ credible(krakosia) −≺country(krakosia, democracy),
country(krakosia, atwar) }, which is a proper defeater
for 〈A′1, candidate(john)〉. As a result, the root of the
dialectical tree for the query “candidate(john)” is marked
asD-node, as shown in Fig. 2(iv).

Note that redefining a program will usually result in provid-
ing more specificinformation associated with particular pred-
icates. Thus, arguments in a programP1 which had a partic-
ular epistemic status (e.g. warranted) may no longer keep it
in a redefined versionP1/P2.

6 Implementation Issues and Related Work
Performing defeasible argumentation is a computationally
complex task. An abstract machine for an efficient implemen-
tation of DeLP has been developed, based on an extension of
the WAM (Warren’s Abstract Machine) for Prolog[Garćıa
and Simari, 2004]. On the basis of this abstract machine
a Java-based integrated development environment was then
implemented, which was used for our experiments as a pro-
totype of the embedded DeLP engine in a web browser.

To the best of our knowledge there are no other works in
the area of introducing defeasible knowledge in web-based
forms as done in this paper. Recent research[Wu et al., 2004]
has been focused on developing a methodology for design-
ing form-based decision support systems, which uses factor-
ing and synthesis to process knowledge involved in forms.
The resulting framework allows flexible creation and modifi-
cation of computer-generated forms useful for decision mak-
ing and suited for simplifying the process of report genera-
tion. However, even though this approach exploits the se-
mantics of the knowledge involved in forms, it does not pro-
vide any connection with web-based systems nor with han-
dling defeasible knowledge. In similar direction to our work,
rule-based defeasible reasoning in the context of the Semantic
Web has been motivated the development of alternative sys-
tems such as DR-DEVICE[Bassiliadeset al., 2004], which is
capable of reasoning about RDF metadata over multiple Web
sources using defeasible logic rules[Antoniou et al., 2001;
2004]. In contrast with our approach, this system is imple-
mented on top of CLIPS production rule system, whereas



our proposal relies on the computation of warrant performed
by the DeLP inference engine using backward reasoning and
depth-first search. Furthermore, comparison among rules in
defeasible logic is performed on the basis of a superiority re-
lationship, whereas our proposal relies on a modular compari-
son criterion among arguments. Besides, DeLP does not need
to be supplied with defeater rules because the system will find
all possible counterarguments automatically on the basis of
the arguments it is able to build, and will decide on the defeat
relation using the DeLP comparison criterion. Thus, a DeLP
programmer does not need to encode exceptions explicitly.

7 Conclusions and Future Work
We have presented a novel argument-based approach for en-
riching traditional forms for web-based environments, which
can be suitably adapted to existing markup language tech-
nologies like XHTML. As discussed in the introduction, our
proposal involves providing the possibility of modelling in-
ferences based on concepts which are part of the intended
meaning of a form, which we have formalized as defeasible
attributes.

We have shown that the use of an embedded DeLP in-
terpreter on the client side allows the form designer to de-
velop richer form schemas, in which the interaction of defea-
sible attributes is taken into account as part of the “behav-
ior” of the form. Knowledge bases for forms are expressed
in a declarative way, making easier to enrich a form by e.g.
merging two existing knowledge bases. Implementing pro-
gram redefinition as described in Section 5 is quite straight-
forward, and offers an attractive possibility for integrating
defeasible knowledge bases from different sources (asPbank

andPsec). Clearly, additional ontological considerations (e.g.
unique name assumption, etc.) are required for such merging
operations; extending our formalization to handle such con-
siderations is part of our current research work. The sam-
ple problem presented in this paper was encoded using a
Java-based DeLP interpreter and solved successfully under
the methodology we have described. However, our experi-
ments regarding this approach only account as a “proof of
concept” prototype, as we have not been able yet to carry
out thorough evaluations in the context of real-world applica-
tions. Research in this direction is currently being pursued.

Acknowledgments
The authors would like to thank anonymous reviewers for their sug-
gestions to improve the original version of this paper. This re-
search was funded by Agencia Nacional de Promoción Cient́ıfica y
Tecnoĺogica (PICT 2002 No. 13.096), by CONICET (Argentina),
by projects TIC2003-00950 and TIN2004-07933-C03-03 (MCyT,
Spain) and by Raḿon y Cajal Program (MCyT, Spain).

References
[Antoniouet al., 2001] G. Antoniou, D. Billington, G. Gov-

ernatori, and M. Maher. Representation results for defea-
sible logic. ACM Trans. on Comp. Logic, 2(2):255–287,
2001.

[Antoniouet al., 2004] G. Antoniou, A. Bikakis, and
G. Wagner. A system for nonmonotonic rules on the web.
LNCS 3323 (Proc. of RuleML2004), pages 23–26, 2004.

[Bassiliadeset al., 2004] N. Bassiliades, G. Antoniou, and
I. Vlahavas. A defeasible logic reasoner for the semantic
web. InProc. of the Workshop on Rules and Rule Markup
Languages for the Semantic Web, pages 49–64, 2004.

[Berners-Leeet al., 2001] T. Berners-Lee, J. Hendler, and
O. Lassila. The Semantic Web.Scient. American, 2001.

[Brenaet al., 2005] R. Brena, C. Ches̃nevar, and J. Aguirre.
Argumentation-supported information distribution in a
multiagent system for knowledge management. InProc.
2nd. Intl. Workshop on Argumentation in Multiagent Sys-
tems (ArgMAS). 4th Intl. AAMAS Conf., Utrecht, Holland
(in press), July 2005.

[Ches̃nevar and Maguitman, 2004a] C. Ches̃nevar and
A. Maguitman. An Argumentative Approach to Assessing
Natural Language Usage based on the Web Corpus. In
Proc. of the 16th ECAI Conf., Valencia, Spain, pages
581–585, August 2004.

[Ches̃nevar and Maguitman, 2004b] C. Ches̃nevar and
A. Maguitman. ARGUENET: An Argument-Based
Recommender System for Solving Web Search Queries.
In Proc. of the 2nd IEEE Intl. IS-2004 Conference. Varna,
Bulgaria, pages 282–287, June 2004.

[Ches̃nevaret al., 2000] C. Ches̃nevar, A. Maguitman, and
R. Loui. Logical Models of Argument.ACM Computing
Surveys, 32(4):337–383, December 2000.

[Clark, 1999] J. Clark. XSL Transformations (XSLT) Ver-
sion 1.0. W3C Recommendation 16 Nov. 1999, 1999.

[Dubinkoet al., 2003] M. Dubinko, L. Klotz, R. Merrick,
and T.V. Raman. XForms 1.0 - W3C Recomm. 14 Oct.
2003, 2003.

[Garćıa and Simari, 2004] A. Garćıa and G. Simari. Defeasi-
ble Logic Programming an Argumentative Approach.The-
ory and Prac. of Logic Program., 4(1):95–138, 2004.

[Gómez and Ches̃nevar, 2004] S. Gómez and C. Chesñevar.
A Hybrid Approach to Pattern Classification Using Neural
Networks and Defeasible Argumentation. InProc. of 17th
Intl. FLAIRS Conference. Miami, Florida, USA, pages
393–398. American Assoc. for Art. Intel., May 2004.

[Heflin et al., 2003] J. Heflin, J. Hendler, and S. Luke.
SHOE: A Blueprint for the Semantic Web. pages 29–63,
2003.

[Parsonset al., 1998] S. Parsons, C. Sierrra, and N. Jennings.
Agents that Reason and Negotiate by Arguing.Journal of
Logic and Computation, 8:261–292, 1998.

[Simari and Loui, 1992] G. Simari and R. Loui. A Mathe-
matical Treatment of Defeasible Reasoning and its Imple-
mentation.Artificial Intelligence, 53:125–157, 1992.

[Stolzenburget al., 2003] F. Stolzenburg, A. Garcı́a,
C. Ches̃nevar, and G. Simari. Computing Generalized
Specificity.J. of N.Classical Logics, 13(1):87–113, 2003.

[Wu et al., 2004] J. Wu, H. Doong, C. Lee, T. Hsia, and
T. Liang. A methodology for designing form-based
decision support systems.Decision Support Systems,
(36):313–335, 2004.


