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Abstract. Possibilistic Defeasible Logic Programming (P-DeLP) is a logic pro-
gramming language which combines features from argumentation theory and logic
programming, incorporating as well the treatment of possibilistic uncertainty and
fuzzy knowledge at object-language level. Defeasible argumentation in general and
P-DeLP in particular provide a way of modelling non-monotonic inference. From
a logical viewpoint, capturing defeasible inference relationships for modelling ar-
gument and warrant is particularly important, as well as the study of their logical
properties. This paper analyzes a non-monotonic operator for P-DeLP which mod-
els the expansion of a given programP by adding new weighed facts associated
with warranted literals. Different logical properties are studied and contrasted with
a traditional SLD-based Horn logic, providing useful comparison criteria that can
be extended and applied to other argumentation frameworks.
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1. Introduction and motivations

Possibilistic Defeasible Logic Programming (P-DeLP) [10] is a logic programming lan-
guage which combines features from argumentation theory and logic programming, in-
corporating as well the treatment of possibilistic uncertainty and fuzzy knowledge at
object-language level. These knowledge representation features are formalized on the
basis of PGL [1,2], a possibilistic logic based on Gödel fuzzy logic. In PGL formulas are
built over fuzzy propositional variables and the certainty degree of formulas is expressed
with a necessity measure. In a logic programming setting, the proof method for PGL
is based on a complete calculus for determining the maximum degree of possibilistic
entailment of a fuzzy goal. The top-down proof procedure of P-DeLP has already been
integrated in a number of real-world applications such as intelligent web search [8] and
natural language processing [6], among others.

Formalizing argument-based reasoning by means of suitable inference operators of-
fers a useful tool. On the one hand, from a theoretical viewpoint logical properties of
defeasible argumentation can be easier studied with such operators at hand. On the other

1This paper extends previous research on argument-based inference operators presented in [9].
2Correspondence to: C. Chesñevar. Department of Computer Science, University of Lleida. C/Jaume II, 69.
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hand, actual implementations of argumentation systems could benefit from such logical
properties for more efficient computation in the context of real-world applications. This
paper analyzes a non-monotonicexpansion operatorfor P-DeLP, intended for modelling
the effect of expanding a given program by introducing new facts, associated with war-
ranted literals. The associated logical properties are studied and contrasted with a tra-
ditional SLD-based Horn logic. We contend that this analysis provides useful compari-
son criteria that can be extended and applied to other argumentation frameworks. As we
will show in this paper, expansion operators in an argumentative framework like P-DeLP
provide an interesting counterpart to traditional consequence operators in logic program-
ming [13]. Our approach differs from such consequence operators as we want to ana-
lyze the role of warranted literals when represented as new weighed facts in the context
of object-level program clauses. For the sake of simplicity we will restrict our analysis
to the fragment of P-DeLP built over classical propositions, hence based onclassical
possibilistic logic [11] and not on PGL itself (which involves fuzzy propositions).

2. The P-DeLP programming language

The classical fragment of P-DeLP languageL is defined from a set of ground atoms
(propositional variables){p, q, . . .} together with the connectives {∼, ∧,← }. The sym-
bol∼ stands fornegation. A literal L ∈ L is a ground (fuzzy) atomq or a negated ground
(fuzzy) atom∼q, whereq is a ground (fuzzy) propositional variable. Arule in L is a
formula of the formQ ← L1 ∧ . . . ∧ Ln, whereQ,L1, . . . , Ln are literals inL. When
n = 0, the formulaQ ← is called afact and simply written asQ. The termgoal will be
used to refer to any literalQ ∈ L.1 In the following, capital and lower case letters will
denote literals and atoms inL, resp.

Definition 1 (P-DeLP formulas) The set Wffs(L) of wffs inL are facts, rulesandgoalsbuilt
over the literals ofL. A certainty-weightedclause inL, or simplyweighted clause, is a pair of the
form (ϕ, α), whereϕ ∈ Wffs(L) andα ∈ [0, 1] expresses a lower bound for the certainty ofϕ in
terms of a necessity measure.

The original P-DeLP language [10] is based on Possibilistic Gödel Logic or PGL [1],
which is able to model both uncertainty and fuzziness and allows for a partial matching
mechanism between fuzzy propositional variables. In this paper for simplicity and space
reasons we will restrict ourselves to fragment of P-DeLP built on non-fuzzy propositions,
and hence based on the necessity-valued classical propositional Possibilistic logic [11].
As a consequence, possibilistic models are defined by possibility distributions on the set
of classical interpretations2 and the proof method for our P-DeLP formulas, written`,
is defined by derivation based on the following generalized modus ponens rule (GMP):

(L0 ← L1 ∧ · · · ∧ Lk, γ)
(L1, β1), . . . , (Lk, βk)

(L0, min(γ, β1, . . . , βk))

1Note that a conjunction of literals is not a valid goal.
2Although the connective← in logic programming is different form the material implication, e.g.p ← q

is not the same as∼ q ← ∼ p, regarding the possibilistic semantics we assume here they share the same set
interpretations.



which is a particular instance of the well-known possibilistic resolution rule, and
which provides thenon-fuzzyfragment of P-DeLP with a complete calculus for deter-
mining the maximum degree of possibilistic entailment for weighted literals.

In P-DeLP we distinguish betweencertain anduncertainclauses. A clause(ϕ, α)
will be referred as certain ifα = 1 and uncertain, otherwise. Moreover, a set of clauses
Γ will be deemed ascontradictory, denotedΓ ` ⊥, if Γ ` (q, α) andΓ ` (∼q, β), with
α > 0 andβ > 0, for some atomq in L3. A P-DeLP program is a set of weighted rules
and facts inL in which we distinguish certain from uncertain information. As additional
requirement, certain knowledge is required to be non-contradictory. Formally:

Definition 2 (Program) A P-DeLP programP (or just programP) is a pair (Π, ∆), whereΠ
is a non-contradictory finite set of certain clauses, and∆ is a finite set of uncertain clauses. If
P = (Π, ∆) is a program, we will also writePΠ (resp.P∆) to identify the set of certain (resp.
uncertain) clauses inP.

The following notion of argument is based on the one presented in [17] (and sim-
ilar to [4,3]), and considers the necessity degree with which the argument supports a
conclusion. The procedural mechanism for computing arguments can be found in [9].

Definition 3 (Argument. Subargument) Given a programP = (Π, ∆), a setA ⊆ ∆ of
uncertain clauses is anargumentfor a goalQ with necessity degreeα > 0, denoted〈A, Q, α〉,
iff: (1) Π ∪ A ` (Q, α); (2) Π ∪ A is non contradictory; and (3) There is noA1 ⊂ A such
that Π ∪ A1 ` (Q, β), β > 0. Let 〈A, Q, α〉 and 〈S, R, β〉 be two arguments. We will say that
〈S, R, β〉 is a subargumentof 〈A, Q, α〉 iff S ⊆ A. Notice that the goalR may be a subgoal
associated with the goalQ in the argumentA.4

As in most argumentation formalisms (see e.g. [16,7]), in P-DeLP it can be the case
that there existconflictingarguments. Defeat among conflicting arguments involves a
preference criteriondefined on the basis of necessity measures associated with argu-
ments.

Definition 4 (Counterargument) LetP be a program, and let〈A1, Q1, α1〉 and〈A2, Q2, α2〉
be two arguments wrtP . We will say that〈A1, Q1, α1〉 counterargues〈A2, Q2, α2〉 iff there
exists a subargument (calleddisagreement subargument) 〈S, Q, β〉 of 〈A2, Q2, α2〉 such that
Π ∪ {(Q1, α1), (Q, β)} is contradictory.

Definition 5 (Preference criterionº) LetP be a P-DeLP program, and let〈A1, Q1, α1〉 be
a counterargument for〈A2, Q2, α2〉. We will say that〈A1, Q1, α1〉 is preferredover〈A2, Q2, α2〉
(denoted〈A1, Q1, α1〉 º 〈A2, Q2, α2〉) iff α1 ≥ α2. If it is the case thatα1 > α2, then we will say
that 〈A1, Q1, α1〉 is strictly preferredover〈A2, Q2, α2〉, denoted〈A2, Q2, α2〉 Â 〈A1, Q1, α1〉.
Otherwise, ifα1 = α2 we will say that both arguments areequi-preferred, denoted〈A2, Q2, α2〉
≈ 〈A1, Q1, α1〉.

Definition 6 (Defeat) LetP be a program, and let〈A1, Q1, α1〉 and〈A2, Q2, α2〉 be two argu-
ments inP. We will say that〈A1, Q1, α1〉 defeats〈A2, Q2, α2〉 (or equivalently〈A1, Q1, α1〉 is

3Notice that this notion of contradiction corresponds to the case when the inconsistency degree ofΓ is
strictly positive as defined in possibilistic logic.

4Note that from the definition of argument, it follows that on the basis of a P-DeLP programP there may
exist different arguments〈A1, Q, α1〉, 〈A2, Q, α2〉, . . . , 〈Ak, Q, αk〉 supporting a given goalQ, with (pos-
sibly) different necessity degreesα1, α2, . . . , αk.



a defeaterfor 〈A2, Q2, α2〉) iff (1) Argument〈A1, Q1, α1〉 counterargues argument〈A2, Q2, α2〉
with disagreement subargument〈A, Q, α〉; and (2) Either it holds that〈A1, Q1, α1〉 Â 〈A, Q, α〉,
in which case〈A1, Q1, α1〉 will be called aproper defeaterfor 〈A2, Q2, α2〉, or 〈A1, Q1, α1〉 ≈
〈A, Q, α〉, in which case〈A1, Q1, α1〉 will be called ablocking defeaterfor 〈A2, Q2, α2〉.

As in most argumentation systems [7,16], P-DeLP relies on an exhaustive dialectical
analysis which allows to determine if a given argument isultimatelyundefeated (orwar-
ranted) wrt a programP. An argumentation linestarting in an argument〈A0, Q0, α0〉 is
a sequence [〈A0, Q0, α0〉, 〈A1, Q1, α1〉, . . . ,〈An, Qn, αn〉, . . . ] that can be thought of as
an exchange of arguments between two parties, aproponent(evenly-indexed arguments)
and anopponent(oddly-indexed arguments). In order to avoidfallaciousreasoning, ar-
gumentation theory imposes additional constraints on such an argument exchange to be
considered rationally acceptable wrt a P-DeLP programP, namely:

1. Non-contradiction: given an argumentation lineλ, the set of arguments of the proponent (resp. op-
ponent) should benon-contradictorywrt P. Non-contradiction for a set of arguments is defined as
follows: a setS =

⋃n

i=1
{〈Ai, Qi, αi〉} is contradictorywrt P iff Π ∪

⋃n

i=1
Ai is contradictory.

2. No circular argumentation: no argument〈Aj , Qj , αj〉 in λ is a sub-argument of an argument
〈Ai, Qi, αi〉 in λ, i < j.

3. Progressive argumentation:every blocking defeater〈Ai, Qi, αi〉 in λ is defeated by a proper de-
feater〈Ai+1, Qi+1, αi+1〉 in λ.

An argumentation line satisfying the above restrictions is calledacceptable, and can
be proven to be finite. Given a programP and an argument〈A0, Q0, α0〉, the set of all
acceptable argumentation lines starting in〈A0, Q0, α0〉 accounts for a whole dialectical
analysis for〈A0, Q0, α0〉 (i.e. all possible dialogues rooted in〈A0, Q0, α0〉, formalized
as adialectical tree, denotedT〈A0, Q0, α0〉). Nodes in a dialectical treeT〈A0, Q0, α0〉 can
be marked asundefeatedanddefeatednodes (U-nodes and D-nodes, resp.). A dialectical
tree will be marked as anAND-OR tree: all leaves inT〈A0, Q0, α0〉 will be marked U-
nodes (as they have no defeaters), and every inner node is to be marked asD-nodeiff it
has at least one U-node as a child, and asU-nodeotherwise. An argument〈A0, Q0, α0〉
is ultimately accepted aswarrantediff the root ofT〈A0, Q0, α0〉 is aU-node.

Definition 7 (Warrant) Given a programP, and a goalQ, we will say thatQ is warranted
wrt P with a necessity degreeα iff there exists a warranted argument〈A, Q, α〉. We will writeP
|∼
w
〈A, Q, α〉 to denote that〈A, Q, α〉 is a warranted argument on the basis ofP.

3. Logical properties of warrant in P-DeLP

Our aim is to study the behavior of P-DeLP programs in the context of non-monotonic in-
ference relationships. In order to do this, we will define an inference operator associated
with warranted goals. Formally:

Definition 8 (Expansion operatorsC` and Cw ) Let P be a P-DeLP program. We define
the operatorsC` andCw associated withP as follows: (1)C`(P) = P ∪ { (Q, 1) | P ` (Q, 1)
}; (2) Cw (P) = P ∪ { (Q, α) | P |∼

w
〈A, Q, α〉, for some argumentA for a goalQ with necessity

degreeα }.



OperatorC` computes the expansion ofP by adding new certain facts(Q, 1) when-
ever such facts can be derived inP via `.5 OperatorC

w
computes the expansion ofP

including all new facts which correspond to conclusions of warranted arguments inP.

Proposition 9 OperatorsC` andCw are well-defined (ie, given a P-DeLP programP as input,
the associated output is also a P-DeLP programP ’). Besides, they satisfy the following relation-
ship:C`(P) ⊆ Cw (P).6

Next we will summarize the main properties for non-monotonic inference relation-
ships for a given inference relationship “|∼ ” and a setΓ of sentences. We will writeTh
to denote a classical inference operator. For an in-depth treatment see [14].

1. Inclusion (IN) : Γ ⊆ C(Γ)
2. Idempotence (ID): C(Γ) = C(C(Γ))
3. Cumulativity (CU) : γ ∈ C(Γ) impliesφ ∈ C(Γ ∪ {γ}) iff φ ∈ C(Γ), for any wffsγ, φ ∈ L.
4. Monotonicity (MO) : Γ ⊆ Φ impliesC(Γ) ⊆ C(Φ)
5. Supraclassicality: Th(A) ⊆ C(A)
6. Left logical equivalence (LL): Th(A) = Th(B) impliesC(A) = C(B)
7. Right weakening (RW): If x ⊃ y ∈ Th(A) andx ∈ C(A) theny ∈ C(A).7

8. Conjunction of conclusions (CC): If x ∈ C(A) andy ∈ C(A) thenx ∧ y ∈ C(A).
9. Subclassical cumulativity (SC): If A ⊆ B ⊆ Th(A) thenC(A) = C(B).

10. Left absorption (LA) : Th(C(Γ)) = C(Γ).
11. Right absorption (RA): C(Th(Γ)) = C(Γ).
12. Rationality of negation (RN): if A|∼ z then eitherA ∪ {x}|∼ z or A ∪ {∼x}|∼ z.
13. Disjunctive rationality (DR) : if A ∪ {x ∨ y}|∼ z thenA ∪ {x}|∼ z or A ∪ {y}|∼ z.
14. Rational monotonicity (RM) : if A|∼ z then eitherA ∪ {x}|∼ z or A|∼ ∼x.

In what follows we will analyze some relevant logical properties forCw . Notice that
by definitionCw satisfies inclusion.

Proposition 10 The operatorCw satisfies inclusion.

Proposition 11 The operatorCw satisfies (Horn) supraclassicality wrtC` (i.e. C`(P) ⊆
Cw (P)).

Proposition 12 The operatorCw satisfies subclassical cumulativity,i.e. P1 ⊆ P2 ⊆ C`(P1)
impliesCw (P1) = Cw (P2).

Monotonicity does not hold forCw , as expected. As a counterexample consider the
programP = { (q, 1), (p ← q , 0.9) }. Then (p, 0.9) ∈ Cw(P), as there is an undefeated
argument〈A, p, 0.9〉 on the basis ofP for concluding(p, 0.9), withA ={ (p ← q , 0.9)
}. However,(p, 0.9) 6∈ C4(P ∪ {(∼p, 1)}) (as no argument for(p, 0.9) could exist, as
condition 2 in Def. 3 would be violated). Moreover, cummulativity, idempotence and
right-weakening do not hold forCw , as shown in the following examples.

Example 1 Operator Cw does not satisfy idempotence. Consider programPsample given in
Fig. 1. Note thatq 6∈ Cw (Psample): there is an argument〈A, q, 0.7〉, withA ={ (q ← z , 0.7),
(z ← p, 0.7), (p, 0.7) } supporting(q, 0.7). Argument〈A, q, 0.7〉 is defeated by〈B,∼q, 0.8〉,

5OperatorC` defines in fact a consequence relationship, as it satisfies idempotence, cut and monotonicity.
It can be seen as the SLD Horn resolution counterpart in the context of P-DeLP restricted to certain clauses.

6Proofs for propositions 9, 10 and 11 can be found in [9].
7It should be noted that “⊃” stands for material implication, to be distinguished from the symbol “← ”

used in a logic programming setting.



(1) (∼y ← p,∼r , 1)
(2) (y, 1)
(3) (p, 0.7)
(4) (r, 0.8)

(5) (q ← z , 0.7)
(6) (z ← p, 0.7)
(7) (∼q ← r , 0.8)
(8) (∼r, 0.9)

Figure 1. ProgramPsample (see examples 1 and 2)

with B ={ (∼q ← r , 0.8), (r, 0.8) }. There is a third argument〈C,∼r, 0.9〉, with C ={ (∼r, 0.9)
}. Even though this argument defeats〈B,∼q, 0.8〉, it cannot be introduced as a defeater in the
above analysis, as it would be in conflict with argument〈A, q, 0.7〉, violating the non-contradiction
consistency constraint in argumentation lines (since(∼y, 1) and (y, 0.7) would follow from
PΠ

sample ∪ A ∪ B, wherePΠ
sample stands for the certain knowledge inPsample. The set of all

warranted literals supported byPsample is W = { (p, 0.7), (z, 0.7), (∼r, 0.9) }. Consider now
the programP ′ = Psample∪W . Let us analyze whetherq is warranted or not wrtP ′. There is an
argument〈A′, q, 0.7〉, withA′ = {(q ← z , 0.7)}, which is defeated by〈B,∼q, 0.8〉 (as before).
This defeater is defeated by〈C′,∼r, 0.9〉, with C′ = ∅. There are no more arguments to consider,
and therefore(q, 0.7) is warranted. Henceq ∈ Cw (P ′) = Cw (Cw (Psample)), and as shown
aboveq 6∈ Cw (Psample). ThereforeCw does not satisfy idempotence.

Example 2 Operator Cw does not satisfy cummulativity. We must show that there exists a
weighed literal for some programP such that if(Q, α) ∈ Cw (P), then (R, β) ∈ Cw (P ∪
{(Q, α)}) does not imply(R, β) ∈ Cw (P). Consider programPsample in Fig. 1. As shown
in Example 1,(z, 0.7) ∈ Cw (Psample), and (q, 0.7) ∈ Cw (Psample ∪ {(z, 0.7)}). However,
(q, 0.7) 6∈ Cw (Psample). Hence cummulativity does not hold forCw .

Example 3 OperatorCw does not satisfy right weakening. Consider programPsample in Fig. 1.
Note that(p, 0.7) ∈ Cw (Psample) and(∼r, 0.9) ∈ Cw (Psample). Besides,(∼y ← p,∼r , 1) ∈
PΠ

sample. However, the conclusion of this certain rule isnot warranted, i.e. (∼y, 0.7) 6∈
Cw (Psample), since (y, 1) ∈ PΠ

sample and thus there exists no argument with conclusion
(∼y, 0.7) (as it would violate condition 2 in Def. 3).

OperatorCw does not satisfy the properties of LL, CC, LA, RA, RN, RM and DR.
In all cases this is based on the impossibility of computing arguments satisfying these
properties. Suitable counterexamples can be found in [9].

4. Discussion. Related work

Research in logical properties for defeasible argumentation can be traced back to Benfer-
hatet al. [4,3] and Vreeswijk [18]. In the context of his abstract argumentation systems,
Vreeswijk showed that many logical properties for non-monotonic inference relation-
ships turned out to be counter-intuitive for argument-based systems. Benferhatet al. [4]
were the first who studied argumentative inference in uncertain and inconsistent knowl-
edge bases. They defined an argumentative consequence relationship`A taking into ac-
count the existence of arguments favoring a given conclusion against the absence of argu-
ments in favor of its contrary. In contrast, the|∼

w
relationship proposed in this paper takes

into account thewholedialectical analysis for arguments derivable from the program for
any given goal.

In [4,3] the authors also extend the argumentative relation`A to prioritized knowl-
edge bases, assessing weights to conclusions on the basis of the`π-entailment relation-



ship from possibilistic logic [11]. A direct comparison to our|∼
w

relationship is not easy
since we are using a logic programming framework and not general propositional logic,
but roughly speaking whilè π takes into account the inconsistency degree associated
with the whole knowledge base, our logic programming framework allows us to perform
a dialectical analysis restricted only to conflicting arguments related with the goal being
solved.

The complexity of computing warranted beliefs can be better understood in the light
of the logical properties forCw presented in this paper. There are only three properties
(inclusion, supraclassicality and subclassical cummulativity) which hold for this opera-
tor. Next we will briefly discuss some of the relevant properties which do not hold for
C

w
. In [16] some examples are informally presented to show that argumentation sys-

tems should assign facts a special status, and therefore shouldnot be cumulative. In the
particular case of cumulativity (traditionally the most defended property associated with
non-monotonic inference), we have shown that it does not hold forCw even when war-
ranted conclusions are assigned the epistemic status of uncertain facts of the form(Q,α),
α < 1, which provides an even stronger result than the one suggested originally in [16].

Horn right weakening indicates that a certain rule of the form(Y ← X , 1) doesnot
ensure that every warranted argument for(X,α) (with α < 1) implies that(Y, α) is
also warranted. In fact, it can be the case that the certain fact(∼Y , 1) is present in a
given program, so that an argument for the goalY cannot be even computed (as shown
in Example 3). In a recent paper [5], Caminada & Amgoud identify this situation as a
particular anomaly in several argumentation formalisms (e.g. [15,12]) and provide an
interesting solution in terms ofrationality postulateswhich –the authors claim– should
hold in any well-defined argumentative system. In the case of P-DeLP the problem seems
to require a different conceptualization, as the necessity degree1 of the rule(Y ← X , 1)
is attached to the rule itself, and the necessity degree of the conclusionY dependson
the necessity degreeα of the antecedentX. As an example, consider the programP
= { (∼g ← a, 1), (a, 0.7), (g ← b, 1), (b, 0.4) }. In this case,(a, 0.7) and(b, 0.4) are
warranted conclusions. However, we cannot warrantg and∼g with necessity degree1.
In fact, only(∼g, 0.7) can be warranted. In this respect, the behavior of strict rules (as
used in most argumentation systems) seems to be different from the behavior of certain
rules in our framework.

5. Conclusions. Future work

In this paper we have shown that P-DeLP provides a useful framework for making a
formal analysis of logical properties of warrant in defeasible argumentation. We contend
that a formal analysis of defeasible consequence is mandatory to get an in-depth under-
standing of the behavior of argumentation frameworks. An expansion operator likeCw

provides a natural tool for characterizing that behavior, as well as useful criteria when de-
veloping and implementing new argumentation frameworks or assessing their expressive
power.

Our current research work in P-DeLP will follow two main directions: on the one
hand, we are concerned with characterizing differentdegreesof non-monotonicity. We
think that theCw operator can be used to better understand how complex non-monotonic
systems behave. On the other hand, we will extend the current formalization to include



fuzzy constants and thus fuzzy unification features [2].
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