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Abstract

Possibilistic Defeasible Logic Programming (P-DeLP) is a logic programming language which com-
bines features from argumentation theory and logic programming, incorporating as well the treatment of
possibilistic uncertainty and fuzzy knowledge at object-language level. Defeasible argumentation in ge-
neral and P-DeLP in particular provide a way of modelling non-monotonic inference. When modelling
intelligent agents, capturing defeasible inference relationships for modelling argument and warrant is par-
ticularly important, as well as the study of their logical properties. This paper analyzes two specialized
non-monotonic operators for P-DeLP which model theexpansionof a given programP by adding new
weighed facts associated with argument conclusions and warranted literals. Different logical properties
are studied and analyzed, providing useful comparison criteria that can be extended and applied to other
argumentation frameworks.

1 Introduction and motivations

Possibilistic Defeasible Logic Programming (P-DeLP) [13, 11] is a logic programming language which
combines features from argumentation theory and logic programming, incorporating as well the treatment
of possibilistic uncertainty and fuzzy knowledge at object-language level. These knowledge representation
features are formalized on the basis of PGL [1, 2], a possibilistic logic based on Gödel fuzzy logic. In PGL
formulas are built over fuzzy propositional variables and the certainty degree of formulas is expressed with
a necessity measure. In a logic programming setting, the proof method for PGL is based on a complete
calculus for determining the maximum degree of possibilistic entailment of a fuzzy goal. The top-down
proof procedure of P-DeLP has already been integrated in a number of real-world applications such as
intelligent web search [9] and natural language processing [7], among others.

In a MAS context, we propose a model in which intelligent agents will encode their knowledge about
the world using a P-DeLP program [10], using the argument and warrant computing procedure to perform
their inferences. Clearly, P-DeLP-based agents will be usually performing their activities in a dynamic
environment, so that it should also be able to reason, plan, and act according to new perceptions from the
outside world. Such perceptions will be sensed by the agents, integrating them into their current beliefs.

Recent research [18, 21] has shown that argument-based approaches to formalize knowledge and rea-
soning in intelligent agents have proven to be very successful. We contend that in such settings an agent’s
reasoning capabilities can be better modelled and understood in terms of suitableinference operators. The
advantages of such inference operators is twofold: on the one hand, from a theoretical viewpoint logical
properties of defeasible argumentation can be easier studied with such operators at hand. On the other
hand, actual implementations of argumentation systems could benefit from such logical properties for more
efficient computation in the context of real-world applications.

1A slightly different version of this paper (not considering how to model agent reasoning capabilities) was originally published
in [12]



This paper analyzes two non-monotonicexpansion operatorsfor P-DeLP, intended for modelling the
effect of expanding a given program (which stands for an agent’s knowledge base) by introducing new facts,
associated with argument conclusions and warranted literals, respectively. The associated logical properties
are studied and contrasted with a traditional SLD-based Horn logic. We contend that this analysis provides
useful comparison criteria that can be extended and applied to other argumentation frameworks. As we
will show in this paper, expansion operators provide an interesting counterpart to traditional consequence
operators in logic programming [16]. For the sake of simplicity we will restrict our analysis to the fragment
of P-DeLP built over classical propositions, hence based onclassicalpossibilistic logic [14] and not on
PGL itself (which involves fuzzy propositions). The rest of the paper is structured as follows: Section 2
summarizes the fundamentals of the P-DeLP framework. Section 3 discusses how P-DeLP can be used
for modelling reasoning in intelligent agents, and the role of expansion operators for understanding the
relationships between argument-based inferences the agent could perform. Section 2 summarizes the P-
DeLP framework. In Section 4 we characterize two expansion operators for capturing the effect of expanding
a P-DeLP program by adding argument conclusions and warranted literals, as well as their emerging logical
properties. In Section 5 we discuss related work, and finally in Section 6 we summarize the most important
conclusions that have been obtained.

2 The P-DeLP programming language: fundamentals

The classical fragment of P-DeLP languageL is defined from a set of ground atoms (propositional variables)
{p, q, . . .} together with the connectives{∼, ∧, ← }. The symbol∼ stands fornegation. A literal L ∈ L
is a ground (fuzzy) atomq or a negated ground (fuzzy) atom∼q, whereq is a ground (fuzzy) propositional
variable. Arule in L is a formula of the formQ ← L1 ∧ . . . ∧ Ln, whereQ,L1, . . . , Ln are literals inL.
Whenn = 0, the formulaQ ← is called afact and simply written asQ. The termgoal will be used to refer
to any literalQ ∈ L.2 In the following, capital and lower case letters will denote literals and atoms inL,
resp.

Definition 1 (P-DeLP formulas) The set Wffs(L) of wffs inL are facts, rules and goalsbuilt over the
literals of L. A certainty-weightedclause inL, or simplyweighted clause, is a pair of the form(ϕ, α),
whereϕ ∈ Wffs(L) andα ∈ [0, 1] expresses a lower bound for the certainty ofϕ in terms of a necessity
measure.

The original P-DeLP language [13] is based on Possibilistic Gödel Logic or PGL [1], which is able to
model both uncertainty and fuzziness and allows for a partial matching mechanism between fuzzy propo-
sitional variables. In this paper for simplicity and space reasons we will restrict ourselves to fragment of
P-DeLP built on non-fuzzy propositions, and hence based on the necessity-valued classical propositional
Possibilistic logic [14]. As a consequence, possibilistic models are defined by possibility distributions on
the set of classical interpretations3 and the proof method for our P-DeLP formulas, written`, is defined by
derivation based on the following generalized modus ponens rule (GMP):

(L0 ← L1 ∧ · · · ∧ Lk, γ)
(L1, β1), . . . , (Lk, βk)

(L0, min(γ, β1, . . . , βk))

which is a particular instance of the well-known possibilistic resolution rule, and which provides thenon-
fuzzyfragment of P-DeLP with a complete calculus for determining the maximum degree of possibilistic
entailment for weighted literals.

In P-DeLP we distinguish betweencertain anduncertainclauses. A clause(ϕ, α) will be referred as
certain ifα = 1 and uncertain, otherwise. Moreover, a set of clausesΓ will be regarded ascontradictory,
denotedΓ ` ⊥, if Γ ` (q, α) andΓ ` (∼q, β), with α > 0 andβ > 0, for some atomq in L4. A P-DeLP
program is a set of weighted rules and facts inL in which we distinguish certain from uncertain information.
As additional requirement, certain knowledge is required to be non-contradictory. Formally:

2Note that a conjunction of literals is not a valid goal.
3Although the connective← in logic programming is different from the material implication, e.g.p ← q is not the same as

∼q ←∼p, regarding the possibilistic semantics we assume here they share the same set interpretations.
4Notice that this notion of contradiction corresponds to the case when the inconsistency degree ofΓ is strictly positive as defined in

possibilistic logic.



Definition 2 (Program) A P-DeLP programP (or just programP) is a pair (Π, ∆), whereΠ is a non-
contradictory finite set of certain clauses, and∆ is a finite set of uncertain clauses. IfP = (Π,∆) is a
program, we will also writePΠ (resp.P∆) to identify the set of certain (resp. uncertain) clauses inP.

The following notion of argument is based on the one presented in [22] (and similar to [3, 4]), and
considers the necessity degree with which the argument supports a conclusion. The procedural mechanism
for computing arguments can be found in [11].

Definition 3 (Argument. Subargument) Given a programP = (Π, ∆), a setA ⊆ ∆ of uncertain clauses
is anargumentfor a goalQ with necessity degreeα > 0, denoted〈A, Q, α〉, iff: (1) Π ∪ A ` (Q, α); (2)
Π ∪ A is non contradictory; and (3) There is noA1 ⊂ A such thatΠ ∪ A1 ` (Q, β), β > 0. Let〈A, Q, α〉
and〈S, R, β〉 be two arguments. We will say that〈S, R, β〉 is asubargumentof 〈A, Q, α〉 iff S ⊆ A. Notice
that the goalR may be a subgoal associated with the goalQ in the argumentA.5

As in most argumentation formalisms (see e.g. [20, 8]), in P-DeLP it can be the case that there exist
conflictingarguments. Defeat among conflicting arguments involves apreference criteriondefined on the
basis of necessity measures associated with arguments.

Definition 4 (Counterargument) LetP be a program, and let〈A1, Q1, α1〉 and〈A2, Q2, α2〉 be two ar-
guments wrtP. We will say that〈A1, Q1, α1〉 counterargues〈A2, Q2, α2〉 iff there exists a subargument
(calleddisagreement subargument) 〈S, Q, β〉 of 〈A2, Q2, α2〉 such thatΠ ∪ {(Q1, α1), (Q, β)} is contra-
dictory.

Definition 5 (Preference criterionº) LetP be a P-DeLP program, and let〈A1, Q1, α1〉 be a counterargu-
ment for〈A2, Q2, α2〉. We will say that〈A1, Q1, α1〉 is preferredover〈A2, Q2, α2〉 (denoted〈A1, Q1, α1〉
º 〈A2, Q2, α2〉) iff α1 ≥ α2. If it is the case thatα1 > α2, then we will say that〈A1, Q1, α1〉 is strictly
preferredover〈A2, Q2, α2〉, denoted〈A2, Q2, α2〉 Â 〈A1, Q1, α1〉. Otherwise, ifα1 = α2 we will say that
both arguments areequi-preferred, denoted〈A2, Q2, α2〉 ≈ 〈A1, Q1, α1〉.

Definition 6 (Defeat) Let P be a program, and let〈A1, Q1, α1〉 and 〈A2, Q2, α2〉 be two arguments in
P. We will say that〈A1, Q1, α1〉 defeats〈A2, Q2, α2〉 (or equivalently〈A1, Q1, α1〉 is a defeaterfor
〈A2, Q2, α2〉) iff (1) Argument〈A1, Q1, α1〉 counterargues argument〈A2, Q2, α2〉 with disagreement sub-
argument〈A, Q, α〉; and (2) Either it holds that〈A1, Q1, α1〉 Â 〈A, Q, α〉, in which case〈A1, Q1, α1〉 will
be called aproper defeaterfor 〈A2, Q2, α2〉, or 〈A1, Q1, α1〉 ≈ 〈A, Q, α〉, in which case〈A1, Q1, α1〉 will
be called ablocking defeaterfor 〈A2, Q2, α2〉.

As in most argumentation systems [8, 20], P-DeLP relies on an exhaustive dialectical analysis which
allows to determine if a given argument isultimately undefeated (orwarranted) wrt a programP. An
argumentation linestarting in an argument〈A0, Q0, α0〉 is a sequence [〈A0, Q0, α0〉, 〈A1, Q1, α1〉, . . . ,
〈An, Qn, αn〉, . . . ] that can be thought of as an exchange of arguments between two parties, aproponent
(evenly-indexed arguments) and anopponent(oddly-indexed arguments). In order to avoidfallaciousrea-
soning, argumentation theory imposes additional constraints on such an argument exchange to be considered
rationally acceptable wrt a P-DeLP programP, namely:

1. Non-contradiction: given an argumentation lineλ, the set of arguments of the proponent (resp. opponent)
should benon-contradictorywrt P . Non-contradiction for a set of arguments is defined as follows: a setS =⋃n

i=1
{〈Ai, Qi, αi〉} is contradictorywrt P iff Π ∪⋃n

i=1
Ai is contradictory.

2. No circular argumentation: there are no repeated arguments inλ (i.e., if 〈Aj , Qj , αj〉 ∈ λ, then it appears only
once inλ).

3. Progressive argumentation: every blocking defeater〈Ai, Qi, αi〉 in λ is defeated by a proper defeater
〈Ai+1, Qi+1, αi+1〉 in λ.

An argumentation line satisfying the above restrictions is calledacceptable, and can be proven to be
finite. Given a programP and an argument〈A0, Q0, α0〉, the set of all acceptable argumentation lines
starting in〈A0, Q0, α0〉 accounts for a whole dialectical analysis for〈A0, Q0, α0〉 (i.e. all possible dialogues
rooted in〈A0, Q0, α0〉, formalized as adialectical tree, denotedT〈A0, Q0, α0〉). Nodes in a dialectical tree
T〈A0, Q0, α0〉 can be marked asundefeatedanddefeatednodes (U-nodes and D-nodes, resp.). A dialectical

5Note that from the definition of argument, it follows that on the basis of a P-DeLP programP there may exist different arguments
〈A1, Q, α1〉, 〈A2, Q, α2〉, . . . ,〈Ak, Q, αk〉 supporting a given goalQ, with (possibly) different necessity degreesα1, α2, . . . , αk.
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Figure 1: A P-DeLP-based agent in a MAS context

tree will be marked as anAND-OR tree: all leaves inT〈A0, Q0, α0〉 will be marked U-nodes (as they have no
defeaters), and every inner node is to be marked asD-nodeiff it has at least one U-node as a child, and asU-
nodeotherwise. An argument〈A0, Q0, α0〉 is ultimately accepted aswarrantediff the root ofT〈A0, Q0, α0〉
is aU-node.

Definition 7 (Warrant) Given a programP, and a goalQ, we will say thatQ is warranted wrtP with a
necessity degreeα iff there exists a warranted argument〈A, Q, α〉. We will writeP |∼

w
〈A, Q, α〉 to denote

that 〈A, Q, α〉 is a warranted argument on the basis ofP.

3 Modelling Agent Reasoning in P-DeLP

In a MAS context, we propose a model in which intelligent agents will encode their knowledge about the
world using a P-DeLP program [10], using the argument and warrant computing procedure to perform their
inferences. Figure 1 outlines the different elements associated with a P-DeLP-based agent. Clearly, our
agent will be usually performing its activities in a dynamic environment, so that it should also be able to
reason, plan, and act according to new perceptions from the outside world. Such perceptions will be sensed
by the agent, integrating them into its current beliefs. For the sake of simplicity, we will assume that such
perceptions constitute new facts to be added to the agent’s knowledge base. As already stated in the in-
troduction, fuzzy propositions provide us with a suitable representation model as our agent will probably
have vague or imprecise information about the real world, as its sensors are not perfect devices. Defining a
generic procedure for updating the agent’s knowledge base is not easy, as completely new incoming infor-
mation (e.g. facts with new predicate names) might result in the strict knowledgeΠ becoming contradictory
(see Def. 2). A näıve approach to model an updating procedure for P-DeLP can be found in [10]. A detailed
analysis of the technical aspects concerning this problem are presented in [6].

An interesting problem arises when considering how the agent’s reasoning capabilities can be captured
on the basis of the P-DeLP formalism. As discussed in Section 2, P-DeLP allows an agent to construct
arguments and to analyze which literals are justified by means of the definition of warrant. It must be
noted that all conclusions which are based only on certain clauses can be understood as empty arguments
or “theorems” that follow from the programP. For a given programP, let Lit`(P) denote the set of all
possible literals provable from strict knowledge,Lit∆(P) the set of all possible weighed literals which can
be associated with argument conclusions andLitw(P) the set of all possible weighed literals which are
conclusions of warranted arguments. Formally:

Lit`(P) = { (Q, 1) | P ` (Q, 1) }
Lit∆(P) = { (Q,α) | there exists some argumentA for Q with necessity degreeα }
Litw(P) = { (Q,α) | P |∼

w
〈A, Q, α〉, for some argumentA for Q with necessity degreeα }

Clearly, it holds that:

Lit`(P) ⊆ Litw(P) ⊆ Lit∆(P)



Which is the relationship between these distinguished sets and the programP? An answer to that ques-
tion can be given in terms of thoselogical propertieswhich relate any non-monotonic inference relationship
“ |∼ ” and a setΓ of sentences. In particular, we distinguish a classical inference operatorTh, which stands
for theorems that follow from the theory. For an in-depth treatment see [17]. Traditionally, the logical
properties analyzed in this context are the following:

1. Inclusion (IN) : Γ ⊆ C(Γ)

2. Idempotence (ID): C(Γ) = C(C(Γ))

3. Cumulativity (CU) : γ ∈ C(Γ) impliesφ ∈ C(Γ ∪ {γ}) iff φ ∈ C(Γ), for any wffsγ, φ ∈ L.

4. Monotonicity (MO) : Γ ⊆ Φ impliesC(Γ) ⊆ C(Φ)

5. Supraclassicality: Th(A) ⊆ C(A)

6. Left logical equivalence (LL): Th(A) = Th(B) impliesC(A) = C(B)

7. Right weakening (RW): If x ⊃ y ∈ Th(A) andx ∈ C(A) theny ∈ C(A).6

8. Conjunction of conclusions (CC):7 If x ∈ C(A) andy ∈ C(A) thenx ∧ y ∈ C(A).

9. Subclassical cumulativity (SC): If A ⊆ B ⊆ Th(A) thenC(A) = C(B).

10. Left absorption (LA) : Th(C(Γ)) = C(Γ).

11. Right absorption (RA): C(Th(Γ)) = C(Γ).

12. Rationality of negation (RN): if A|∼ z then eitherA ∪ {x}|∼ z or A ∪ {∼x}|∼ z.

13. Disjunctive rationality (DR) : if A ∪ {x ∨ y}|∼ z thenA ∪ {x}|∼ z or A ∪ {y}|∼ z.

14. Rational monotonicity (RM) : if A|∼ z then eitherA ∪ {x}|∼ z or A|∼ ∼x.

Our aim is to study the behavior of a P-DeLP program (which stands for an agent’s knowledge base)
in the context of the above properties. In order to do this, we will define suitable inference operators for
expressing argument conclusions and warranted literals.

4 Logical properties of argument and warrant in P-DeLP

First, we will formalize the notion ofexpansion operatoras follows:

Definition 8 (Expansion operatorsC` , C4 and Cw ) LetP be a P-DeLP program. We define the operators
C` , C4 andCw associated withP as follows: (1)C`(P) = P ∪ Lit`(P); (2) C4(P) = P ∪ Lit∆(P); (3)
Cw(P) = P ∪ Litw(P).

OperatorC` computes the expansion ofP by adding new certain facts(Q, 1) whenever such facts can be
derived inP via `.8 OperatorC4 computes the expansion ofP with new facts corresponding to defeasible
knowledge derivable as argument conclusions.C4(P) incorporates a new uncertain fact(Q,α) whenever
there exists an argument〈A, Q, α〉 in P. Notice thatC4 may contain contradictory knowledge (i.e. it may
be the case that two arguments〈A1, Q, α〉 and〈A2,∼Q, β〉 could be inferred from a given programP).9

Finally, operatorCw computes a subset ofC4 , namely the expansion ofP including all new facts which
correspond to conclusions of warranted arguments inP.

Proposition 9 OperatorsC` , C4and Cw are well-defined (ie, given a P-DeLP programP as input, the
associated output is also a P-DeLP programP ’). Besides, they satisfy the following relationship:C`(P) ⊆
Cw(P) ⊆ C4(P).10

6It should be noted that “⊃” stands for material implication, to be distinguished from the symbol “← ” used in a logic programming
setting.

7Sometimes also called “Right and”.
8OperatorC` defines in fact a classical consequence relationship, as it satisfies idempotence, cut and monotonicity. It can be seen

as the SLD Horn resolution counterpart in the context of P-DeLP restricted to certain clauses.
9For a given goalQ, we write∼Q as an abbreviation to denote “∼q” if Q ≡ q and “q” if Q ≡ ∼q.

10Proofs for propositions in this paper can be found in [11, 12].



4.1 Logical properties for C4

Proposition 10 The operatorC4 satisfies inclusion and idempotence.

Monotonicity does not hold forC4 , as expected. As a counterexample consider the programP = { (q, 1),
(p ← q , 0.9) }. Then(p, 0.9) ∈ C4(P), as there is an argument〈A, p, 0.9〉 on the basis ofP for concluding
(p, 0.9), with A ={ (p ← q , 0.9) }. However,(p, 0.9) 6∈ C4(P ∪ {(∼p, 1)}) (as no argument for(p, 0.9)
could exist, as condition 2 in Def. 3 would be violated). Semi-monotonicity is an interesting property for
analyzing non-monotonic consequence relationships. It is satisfied if all defeasible consequences from a
given theory are preserved when the theory is augmented with newdefeasibleinformation.

Proposition 11 The operatorC4 satisfies semi-monotonicity when new defeasible information is added,i.e.
C4(P1) ⊆ C4(P1 ∪ P2), whenPΠ

2 = ∅.

Cumulativity for argument construction shows us that any argument obtained from a programP can be
kept as an intermediate proof or lemma to be later used for building more complex arguments. Formally:

Proposition 12 The operatorC4 satisfies cumulativity,i.e. γ ∈ C4(Γ) impliesφ ∈ C4(Γ ∪ {γ}) iff φ ∈
C4(Γ).

Note that the property of right weakening cannot be considered (in a strict sense) in P-DeLP, since
the underlying logic does not allow the application of the deduction theorem. Therefore, wffs of the form
(x ← y , α) cannot be derived. However, an alternative approach can be intended, introducing a new property
in which right weakening is restricted to Horn-like clauses:

Proposition 13 The operatorC4 satisfies (Horn) supraclassicality wrtC` (i.e. C`(P) ⊆ C4(P)), and
(Horn) right weakening, (i.e. if (Y, α) ∈ C4(P) and(X ← Y , 1) ∈ C`(P), then(X,α) ∈ C4(P)).

Most of the non-pure logical properties forC4 do not hold. In particular,C4 does not satisfy the prop-
erties of (LL) left-logical equivalence; (CC) conjunction of conclusions; (LA) left absorption; (RA) right
absorption; (RN) rational negation; (RM) rational monotonicity; (DR) disjunctive rationality, as shown next.

LL: Given two programsP1 andP2, C`(P1) = C`(P2) does not implyC4(P1) = C4(P2). ConsiderP1 = {
(y ← , 1) } andP2 = P1 ∪ { (x ← y , 0.9) }.

LA: Consider the programP = {(Q, α)}, whereQ is a literal,α < 1.
ThenC`(C4(P)) = C`({(Q, α)}) = ∅ 6= C4(P).

RA: Consider the same counterexample given for LA. Analogously,C4(C`(P)) = C4(∅) = ∅ 6= C4(P).

RN: ConsiderP1 = { (∼p ← x , 1), (∼p ← ∼x , 1), (r ← , 1), (z ← p, 1), (p ← r , 0.9) }. Then it holds that
P1 |∼4〈A1, z, 0.9〉, with A1 = { (p ← r , 0.9) } However,P1 ∪ { (x ← , 1) } 6 |∼4 〈A1, z, 0.9〉, andP1 ∪ {
(∼x ← , 1) } 6 |∼4 〈A1, z, 0.9〉.

RM: Consider the same counterexample as given for RN. ThenP1 |∼4〈A1, z, 0.9〉, but it is not the case thatP1 ∪ {
(x ← , 1) } |∼4 〈A1, z, 0.9〉 norP1 |∼4 (∼x ← , 1).

CC,DR: Clearly, C4 does not satisfy property CC nor DR; disjunctions and conjunctions of goals supported by an
argument cannot be expressed as wffs in the P-DeLP object language.

4.2 Logical properties for Cw

In what follows we will analyze some relevant logical properties forCw . Monotonicity does not hold for
Cw , as expected. As a counterexample consider the programP = { (q, 1), (p ← q , 0.9) }. Then(p, 0.9) ∈
Cw(P), as there is an undefeated argument〈A, p, 0.9〉 on the basis ofP for concluding(p, 0.9), with A
={ (p ← q , 0.9) }. However,(p, 0.9) 6∈ C4(P ∪ {(∼p, 1)}) (as no argument for(p, 0.9) could exist, as
condition 2 in Def. 3 would be violated). Moreover, cumulativity, idempotence and right-weakening do not
hold forCw , as shown in the following examples.

Example 1 OperatorCw does not satisfy idempotence. Consider programPsample given in Fig. 2. Note
that q 6∈ Cw(Psample): there is an argument〈A, q, 0.7〉, withA ={ (q ← z , 0.7), (z ← p, 0.7), (p, 0.7) }
supporting(q, 0.7). In this case, argument〈A, q, 0.7〉 is defeated by〈B,∼q, 0.8〉, withB ={ (∼q ← r , 0.8),
(r, 0.8) }. There is a third argument〈C,∼r, 0.9〉, withC ={ (∼r, 0.9) }. Even though this argument defeats



(1) (∼y ← p,∼r , 1)
(2) (y, 1)
(3) (p, 0.7)
(4) (r, 0.8)

(5) (q ← z , 0.7)
(6) (z ← p, 0.7)
(7) (∼q ← r , 0.8)
(8) (∼r, 0.9)

Figure 2: ProgramPsample (see examples 1 and 2)

〈B,∼q, 0.8〉, it cannot be introduced as a defeater in the above analysis, as it would be in conflict with
argument〈A, q, 0.7〉, violating the non-contradiction consistency constraint in argumentation lines (since
(∼y, 1) and(y, 0.7) would follow fromPΠ

sample ∪ A ∪ B, wherePΠ
sample stands for the certain knowledge

in Psample. The set of all warranted literals supported byPsample is W = { (p, 0.7), (z, 0.7), (∼r, 0.9) }.
Consider now the programP ′ = Psample ∪W . Let us analyze whetherq is warranted or not wrtP ′. There
is an argument〈A′, q, 0.7〉, withA′ = {(q ← z , 0.7)}, which is defeated by〈B,∼q, 0.8〉 (as before). This
defeater is defeated by〈C′,∼r, 0.9〉, with C′ = ∅. There are no more arguments to consider, and therefore
(q, 0.7) is warranted. Henceq ∈ Cw(P ′) = Cw(Cw(Psample)), and as shown aboveq 6∈ Cw(Psample).
ThereforeC

w
does not satisfy idempotence.

Example 2 OperatorC
w

does not satisfy cumulativity. We must show that there exists a weighed literal
for some programP such that if(Q,α) ∈ Cw(P), then (R, β) ∈ Cw(P ∪ {(Q,α)}) does not imply
(R, β) ∈ Cw(P). Consider programPsample in Fig. 2. As shown in Example 1,(z, 0.7) ∈ Cw(Psample),
and(q, 0.7) ∈ Cw(Psample ∪ {(z, 0.7)}). However,(q, 0.7) 6∈ Cw(Psample). Hence cumulativity does not
hold forCw .

Example 3 OperatorCw does not satisfy right weakening. Consider programPsample in Fig. 2. Note that
(p, 0.7) ∈ Cw(Psample) and (∼r, 0.9) ∈ Cw(Psample). Besides,(∼y ← p,∼r , 1) ∈ PΠ

sample. However,
the conclusion of this certain rule isnot warranted,i.e. (∼y, 0.7) 6∈ Cw(Psample), since(y, 1) ∈ PΠ

sample

and thus there exists no argument with conclusion(∼y, 0.7) (as it would violate condition 2 in Def. 3).

Proposition 14 summarizes the properties that hold forCw . Notice thatCw satisfies inclusion trivially
(by definition).

Proposition 14 The operatorCw satisfies inclusion, (Horn) supraclassicality wrtC` (i.e. C`(P) ⊆ Cw(P))
and subclassical cumulativity,i.e. P1 ⊆ P2 ⊆ C`(P1) impliesCw (P1) = Cw (P2).

OperatorCw does not satisfy the properties of LL, CC, LA, RA, RN, RM and DR. In all cases this is
based on the impossibility of computing arguments satisfying these properties. Suitable counterexamples
can be found in [11].

5 Discussion. Related work
Research in logical properties for defeasible argumentation can be traced back to Benferhatet al. [3, 4]
and Vreeswijk [23]. In the context of his abstract argumentation systems, Vreeswijk showed that many
logical properties for non-monotonic inference relationships turned out to be counter-intuitive for argument-
based systems. Benferhatet al. [3] were the first who studied argumentative inference in uncertain and
inconsistent knowledge bases. They defined an argumentative consequence relationship`A taking into
account the existence of arguments favoring a given conclusion against the absence of arguments in favor of
its contrary. In contrast, the|∼

w
relationship proposed in this paper takes into account thewholedialectical

analysis for arguments derivable from the program for any given goal.
In [3, 4] the authors also extend the argumentative relation`A to prioritized knowledge bases, assessing

weights to conclusions on the basis of the`π-entailment relationship from possibilistic logic [14]. A direct
comparison to our|∼

w
relationship is not easy since we are using a logic programming framework and not

general propositional logic, but roughly speaking while`π takes into account the inconsistency degree asso-
ciated with the whole knowledge base, our logic programming framework allows us to perform a dialectical
analysis restricted only to conflicting arguments related with the goal being solved.

The complexity of computing warranted beliefs can be better understood in the light of the logical
properties forCw presented in this paper. There are only three properties (inclusion, supraclassicality and
subclassical cumulativity) which hold for this operator. Next we will briefly discuss some of the relevant



properties which do not hold forCw . In [20] some examples are informally presented to show that argumen-
tation systems should assign facts a special status, and therefore shouldnot be cumulative. In the particular
case of cumulativity (traditionally the most defended property associated with non-monotonic inference),
we have shown that it does not hold forC

w
even when warranted conclusions are assigned the epistemic

status of uncertain facts of the form(Q,α), α < 1, which provides an even stronger result than the one
suggested originally in [20].

Horn right weakening indicates that a certain rule of the form(Y ← X , 1) doesnot ensure that every
warranted argument for(X, α) (with α < 1) implies that(Y, α) is also warranted. In fact, it can be the case
that the certain fact(∼Y , 1) is present in a given program, so that an argument for the goalY cannot be even
computed (as shown in Example 3). In a recent paper [5], Caminada & Amgoud identify this situation as a
particular anomaly in several argumentation formalisms (e.g. [19, 15]) and provide an interesting solution
in terms ofrationality postulateswhich –the authors claim– should hold in any well-defined argumentative
system. In the case of P-DeLP the problem seems to require a different conceptualization, as the necessity
degree1 of the rule(Y ← X , 1) is attached to the rule itself, and the necessity degree of the conclusion
Y dependson the necessity degreeα of the antecedentX. As an example, consider the programP = {
(∼g ← a, 1), (a, 0.7), (g ← b, 1), (b, 0.4) }. In this case,(a, 0.7) and(b, 0.4) are warranted conclusions.
However, we cannot warrantg and∼g with necessity degree1. In fact, only(∼g, 0.7) can be warranted. In
this respect, the behavior of strict rules (as used in most argumentation systems) seems to be different from
the behavior of certain rules in our framework.

6 Conclusions. Future work

In this paper we have shown that P-DeLP provides a useful framework for making a formal analysis of
logical properties in defeasible argumentation. We contend that a formal analysis of defeasible consequence
is mandatory to get an in-depth understanding of the behavior of argumentation frameworks, particularly
when used for modelling reasoning in intelligent agents. Expansion operators likeC4 andCw provide a
natural tool for characterizing that behavior, as well as useful criteria when developing new argumentation
frameworks and assessing their expressive power.

Our current research work in P-DeLP will follow two main directions: on the one hand, we are con-
cerned with characterizing differentdegreesof non-monotonicity. We think that theCw operator can be
used to better understand how complex non-monotonic systems behave. On the other hand, we will extend
the current formalization to include fuzzy constants and thus fuzzy unification features [2].
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and by CONICET (Argentina).

References

[1] T. Alsinet and L. Godo. A complete calculus for possibilistic logic programming with fuzzy proposi-
tional variables. InProc. of the UAI-2000 Conference, pages 1–10, 2000.

[2] T. Alsinet and L. Godo. A proof procedure for possibilistic logic programming with fuzzy constants.
In Proc. of the ECSQARU-2001 Conference, pages 760–771, 2001.

[3] S. Benferhat, D. Dubois, and H. Prade. Argumentative inference in uncertain and inconsistent knowl-
edge bases. InProc. of UAI, pages 411–419, 1993.

[4] S. Benferhat, D. Dubois, and H. Prade. Some syntactic approaches to the handling of inconsistent
knowledge bases: A comparative study. part ii: The prioritized case. In Ewa Orlowska, editor,Logic
at work, volume 24, pages 473–511. Physica-Verlag , Heidelberg, 1998.

[5] M. Caminada and L. Amgoud. An axiomatic account of formal argumentation. InProc. of AAAI 2005
Conference. Pittsburgh, USA, 2005.
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