
Negotiation Among DDeLP Agents

Fernando A. Tohmé1 and Guillermo R. Simari2

1 Department of Economics and National Research Council (CONICET)
Email: ftohme@criba.edu.ar

2 Artificial Intelligence Research and Development Laboratory
Department of Computer Science and Engineering

Email: grs@cs.uns.edu.ar

Universidad Nacional del Sur

Baha Blanca – ARGENTINA

Abstract. Negotiation can be conceived as the exchange of messages
among self-interested agents in order to settle on an agreement over a
given issue. They decide which messages to send according to their pref-
erences and their evolving beliefs. Agents able to handle this dynamics
of messages and beliefs can be represented by means of Defeasible Logic
Programming augmented with utility functions. This approach to ar-
gumentation has the advantage of providing a useful platform for the
representation of beliefs and the generation of messages. The interactive
nature of negotiations requires an updating mechanism to be applied
over the knowledge bases of the agents. The features of this mechanism
are described by a protocol of a negotiation. Although there are many
possible protocols, we concentrate on one that ensures the existence of
an agreement in negotiations. The formalism of DeLP provides a very
natural approach to the characterization of such a protocol.

1 Introduction and Motivation

The design of agents able to engage in negotiations is one of the main goals in the
research on Multi-Agent Systems [LS01]. Justifications for the behavior of agents
in negotiations have been known for a long time in disciplines related to the study
of Decision-Making processes [Mye89]. Despite the efforts of many authors both
in the Decision Sciences as in Multi-Agents Systems, the characterization of
precise mechanisms of interaction in negotiations has shown to be a hard problem
because, unlike markets and voting situations, the context of interaction varies
from a negotiation to another. An abstract characterization of the conditions
for mechanisms (protocols) that may ensure the convergence to agreements in
negotiations has been presented in [Toh02]. We take up some of the ideas there,
but adapted to the additional requirement of giving a precise foundation for the
internal argumentation processes carried out by each individual agent.

To represent those deliberation processes we choose an alterna-
tive form of declarative programming, Defeasible Logic Programming
(DeLP) [SCG94,Gar00,GS04]. This formalism combines Logic Programming



with Defeasible Argumentation [Pol87,SL92,Pol95,Dun95,CML00,PV00], allow-
ing the representation of tentative knowledge and leaving for the inference
mechanism the task of finding the conclusions that the knowledge base
warrants [CDSS03]. Furthermore, we introduce Decision-Theoretic tools into
DeLP, in order to represent the fact that agents are self-interested. This is
achieved by adding preferences to the formalism of DeLP, i.e. utility consid-
erations [Lou90,TS04]. We call agents that reason using this Decision-theoretic
enhanced Defeasible Logic Programming, DDeLP agents.

We consider only two-agent negotiations, since the extension to any number
of agents follows basically the same pattern but is more involved in its syntax,
without providing extra intuitions. In this simple kind of negotiations, one agent
(by convention she is always called a1), chooses one preferred conclusion derived
from her beliefs. This conclusion represents a possible settlement for the nego-
tiation. The other agent (a2) treats this message as a query Q. Agent a2 agrees
with a1 if he can find a warranted argument A for Q. Otherwise, he explores his
own knowledge base in order to select a new proposal to make.

If we want to ensure the convergence of the negotiation, we may impose
over the agents a protocol to guide the process of exchange of messages towards
an agreement [Lou98]. As shown in [Toh02] a sufficient condition for such a
protocol is its monotonicity. One consequence of this property is the absence
of cycles, understood as the repetition of messages. Since a message cannot be
repeated by either of the agents, any attempt to “convince” the other party
in the negotiation is implicitly ruled out. In fact, a monotonic protocol rather
forces an agent to accept the message of the other as a constraint.3 Therefore,
returning to our Decision-theoretic DeLP framework, if no warranted argument
for the message of the other party is found, the agent must look for at least
one rule responsible for this. From among several, she should choose the one
that yields less utility and eliminate it from the knowledge base. Although there
are other possible responses, this procedure represents a very cautious change
of beliefs of the agent. With the corrected knowledge base, which represents the
current beliefs of the agent, a message is chosen and the process repeats itself
until either a query becomes warranted or there are no longer rules to be deleted
from the knowledge base. In the first case the negotiation is said to end in an
agreement. In the latter case, instead, it results in the breakup of the negotiation
(which can be seen as a form of degenerate agreement on not pursuing further
the negotiation).

The plan of the rest of this paper is as follows. In section 2 we will present
the rudiments of DeLP with utilities. In section 3 we introduce the protocol and
describe how it proceeds. Section 4 discusses possible extensions for this work.

2 Decision-theoretic Defeasible Logic Programming

We consider a language with three disjoint components:

3 This is a requirement shared by all known models of bargaining.



– Facts, which are ground literals representing atomic information (or the
negation of atomic information).

– Strict Rules of the form L0← L1, . . . , Ln, where L0 is the head and {Li}i>0

is the body. Each Li in the body or the head is a literal.
– Defeasible Rules of the form L0 –≺L1, . . . , Ln, where L0 is the head and

{Li}i>0 is the body. Each Li in the body or the head is a literal.

Then, a Defeasible Logic Program is a set of facts, strict rules, and defeasible
rules. P = (Π,∆), where Π denotes the set of facts and strict rules, while ∆

denotes the set of defeasible rules. For each query Q there are four possible
answers: yes, no, undecided or unknown.

To determine which answer is correct, we need the notion of argument. Given
a program P = (Π,∆) and a literal L, 〈A, L〉 is an argument structure for L. A
is a set of defeasible rules in ∆ such that:

1. there exists a defeasible derivation of L from Π ∪ A. That is, there exists a
finite sequence L1, . . . , Ln = h of ground literals, such that each Li is either
a fact in Π or there exists a rule in Π ∪ A with Li as its head, and every
literal in the body Bj is such that Bj ∈ {Lk}k<i,

2. there is no literal P such that both P and ¬P have defeasible derivations
from Π ∪ A,

3. A is minimal, i.e., there does not exist A1 ⊆ A such that A1 satisfies (1)
and (2).

This framework can be enhanced by means of preferences, Φ : Π ∪ ∆ → B,
where B is an arbitrary Boolean algebra with top > and bottom ⊥. The new
elements Φ(·) and B represent explicit preferences, in the sense that given two
pieces of information µ1, µ2 ∈ Π∪∆ if µ1 is strictly more preferred than µ2 then
Φ(µ1) ÂB Φ(µ2), where ºB is the order of B. The elements of µ ∈ Π ∪∆ which
are most preferred receive a label Φ(µ) = >.

We do not assume here that Φ assigns > to all strict rules in Π, and not even
that Φ(µ1) ÂB Φ(µ2) for µ1 ∈ Π and µ2 ∈ ∆. This is because Φ(·) has, unlike
the distinction between strict and defeasible rules, no epistemic content. Instead,
the preferences represent other kinds of rationales. In particular the cost-benefit
rates of the pieces of information (since their use may preclude the use of other
pieces in the reasoning process).

Whatever the reasons are for preferring elements of Π ∪ ∆, we postulate a
Boolean algebra B over which Φ(·) ranges. It can be argued that a more general
ordering could be appropriate but, as we will see, the inference engine has to
perform some operations over the labels of the pieces of information used in the
process of argumentation. In consequence, the range of Φ(·) has to be not only
an ordered set but also be closed under the logic operators

∧
and

∨
. This can be

easily represented by means of a Boolean algebra. In the simplest case, in which
B is just a compact subset of real numbers with the natural order, we may say
that Φ(µ) is the utility of the piece of information µ.

From the preferences over Π ∪ ∆, we can find preferential values over de-
feasible derivations. A fact L, which can be seen as the head of a (strict) rule



with an empty body, has a value denoted V (L, ∅) = Φ(L). By induction, given
rule µ (strict or defeasible) with head L and body B1, . . . , Bm, if L is de-
rived using µ its preferential value is V (L, µ) = Φ(µ) ∧

∧m
k=1 V (Bk). The in-

tuition here is that a conclusion is as strongly preferred as the weakest of either
its premises or the rule used in the derivation. Given a defeasible derivation
from Π ∪ ∆, LΠ∪∆(L) : L1, . . . , Ln = h, it yields for its conclusion L a value
V (h,LΠ∪∆(L)) = V (L, µ) where µ is the rule that yields h = Ln up from some
literals in {Lj}j<n.

By extension, an argument structure 〈A, L〉 yields a value for L, V (L,A) =∧
LΠ∪A(L) V (L,LΠ∪A(L)). That is, it yields the lowest value among all the

derivations of L by using defeasible rules in A. Notice that, by definition of

A there is no other set A
′

⊂ A that allows the derivation of L, but more than
one selection of strict rules may exist in Π that allows, jointly with A, to do
that.

Let F the set of all literals that can have a defeasible derivation from Π ∪∆.
Any subset H ⊆ F has a value V (H) =

∨
L∈H

∧
LΠ∪∆(L) V (L,LΠ∪∆(L)). This

means that H is as valuable as the most valuable of its elements, which in turn
is as valuable as the weakest of its derivations.

With this characterization we speak of an Decision-theoretic enhanced Defea-

sible Logic Program or P
′

= (Π,∆,Φ,B) which is intended to provide answers
to queries through a process of argumentation that proceeds making compar-
isons among arguments. The main criterion of comparison used is preferential

specificity [Poo85,SL92,SGCS03,TS04]. Consider a program P
′

= (Π,∆,Φ,B)
with ΠG the set of strict rules from Π. Let F the set of all literals that can have
a defeasible derivation from Π ∪∆. Let 〈A1, L1〉 and 〈A2, L2〉 be two argument
structures with L1, L2 ∈ F . Then 〈A1, L1〉 is strictly more preferentially specific
than 〈A2, L2〉 if:

1. For all H ⊆ F , if there exists a defeasible derivation of L1 from ΠG∪H ∪A1

while ΠG ∪ H 6` L1, then L2 can be defeasibly derived from ΠG ∪ H ∪ A2,
and

2. there exists H
′

⊆ F such that there exists a defeasible derivation of h2 from
ΠG ∪H

′

∪A2 and ΠG ∪H
′

6` L2 but there is no defeasible derivation of L1

from ΠG ∪ H
′

∪ A1.
3. For every H verifying (1) and H

′

verifying (2), V (H) ºB V (H
′

).

Argument 〈A1, L1〉 counterargues another 〈A2, L2〉 at a literal L if there
exists a sub-argument of 〈A2, L2〉, 〈A, L〉, i.e., A ⊆ A2, such that there exists a
literal P verifying both Π ∪ {L,L1} ` P and Π ∪ {L,L1} ` ¬P .

If 〈A1, L1〉 and 〈A2, L2〉 are two argument structures, 〈A1, L1〉 is a proper
preferential defeater for 〈A2, L2〉 at literal L iff there exists a sub-argument of
〈A2, L2〉, 〈A, L〉 such that 〈A1, L1〉 counterargues 〈A2, L2〉 at L and 〈A1, L1〉 is
strictly more preferentially specific than 〈A, L〉. Alternatively, 〈A1, L1〉 is a block-
ing preferential defeater for 〈A2, L2〉 at literal L iff there exists a sub-argument
of 〈A2, L2〉, 〈A, L〉 such that 〈A1, L1〉 counterargues 〈A2, L2〉 at L and neither
〈A1, L1〉 is strictly more preferentially specific than 〈A, L〉 nor is 〈A, L〉 strictly



more preferentially specific than 〈A, L〉. If 〈A1, L1〉 is either a proper or a block-
ing preferential defeater of 〈A2, L2〉, it is said to be a preferential defeater of the
latter.

An argumentation line for an argument structure 〈A0, L0〉 is a sequence
Γ = [〈A0, L0〉, 〈A1, L1〉, 〈A2, L2〉, · · · ] where for each i > 0 〈Ai+1, Li+1〉 is a
defeater of 〈Ai, Li〉. ΓS = [〈A0, L0〉, 〈A2, L2〉, 〈A4, L4〉, · · · ] is the sequence of
supporting argument structures of Γ , while the sequence of interfering ones is
ΓI = [〈A1, L1〉, 〈A3, L3〉, 〈A5, L5〉, · · · ].

An acceptable argumentation line in a defeasible program P
′

= (Π,∆,Φ,B)
is a finite sequence Γ = [〈A0, L0〉, · · · , 〈An, Ln〉] such that:

1. Both ΓS and ΓI are concordant, i.e., there is no P such that both P and

¬P have defeasible derivations from Π ∪
⋃bn

2
c

i=0 A2i and no P
′

with defeasible

derivations for both P
′

and ¬P
′

from Π ∪
⋃bn−1

2
c

i=0 A2i+1.
2. No argument 〈Ak, Lk〉 ∈ Γ is a subargument of an argument 〈Aj , Lj〉, i.e.,

Ak 6⊂ Aj , for j < k.
3. For each i < n, if 〈Ai, Li〉 is a blocking preferential defeater of 〈Ai−1, Li−1〉

then 〈Ai+1, Li+1〉 is a proper preferential defeater of 〈Ai, Li〉.

To answer a query Q, the preferential warrant procedure builds up a candidate
argument structure 〈A, Q〉. Then, it associates to this argument a preferential
dialectical tree T〈A,Q〉 as follows:

1. The root of the tree is labeled, 〈A0, Q0〉, i.e., A0 = A and Q0 = Q.
2. Let n be a non-root node, with label 〈An, Qn〉 and Γ =

[〈A0, Q0〉, · · · , 〈An, Qn〉] the labels in the path from the root to n.
Let B = {〈B1,H1〉, · · · , 〈Bk,Hk〉} be the set of all the preferential defeaters
for 〈An, Qn〉. For 1 ≤ i ≤ k, if Γ

′

= [〈A0, Q0〉, · · · , 〈An, Qn〉, 〈Bi,Hi〉] is an
acceptable argumentation line, n has a child ni labeled 〈Bi,Hi〉. If B = ∅ or
no 〈Bi,Hi〉 ∈ B is such that Γ

′

is acceptable, then n is a leaf of the tree.

The nodes of T〈A,Q〉 can be marked, yielding a tagged tree T ∗
〈A,Q〉 as follows:

– All leaves of T〈A,Q〉 are marked U in T ∗
〈A,Q〉.

– If 〈B,H〉 is the label of a node which is not a leaf, the node will be marked U

in T ∗
〈A,Q〉 if every child is marked D. Otherwise, if at least one of its children

is marked U , it is marked as D.

Then, given an argument 〈A, Q〉 and its associated tagged tree T ∗
〈A,Q〉, if the

root is marked U , the literal Q is said to be preferentially warranted. A is said
to be the preferential warrant for Q. Therefore, given a query Q the possible
answers will be:

yes, if Q is preferentially warranted;
no, if ¬Q is preferentially warranted;
undecided, if neither Q nor ¬Q are preferentially warranted;
unknown, if Q is not in the language of the program.



3 Negotiation

A negotiation can be seen as the exchange of messages among agents in order
to reach an agreement over a given issue. The main elements in a negotiation
are the following:

– The possible settlements.
– The preferences over them.
– The individual beliefs about the possible results.
– The messages that can be exchanged.

The messages are chosen according to the preferences over the class of settle-
ments that are believed to be acceptable. Once a message is received, an agent
has to decide whether to accept the implied settlement or to break up the nego-
tiation or to explore for new possibilities. If the latter is the case, the agent has
to update her beliefs and choose her message according to that.

In terms of DDeLP consider a program P
′

= (Π,∆,Φ,B) where Φ = Φ1 ×
. . . Φn with range Bn, from which we may define the elements of a n-person
negotiation as follows:

– The possible settlements are the literals L that can be defeasibly derived
from Π ∪ ∆.

– The preferences over the literals are derived from Φ.
– The individual beliefs are subsets of Π ∪ ∆.
– The messages are the literals L plus two extra symbols, “yes” and “break”,

to indicate either agreement or the breakup of negotiations.

That is, we assume that agents consider only a certain subset of rules, from
which they select some literals as both possible settlements and as messages. We
consider only two agents, 1 and 2. Each agent i performs, at each stage t of the
negotiation, a DDeLP program 〈Πt

i ,∆
t
i, Φ

t
i,B〉, where Πt

i ∪∆t
i ⊆ Π ∪∆ and Φt

i

is the restriction of Φi over Πt
i ∪ ∆t

i.
At t = 1 agent a1 sends a message (a literal L1 derived from Π1

1 ∪ ∆1
1) to

agent a2. He may query his program Π2
2 ∪ ∆2

2 and if the answer is yes end
the negotiation by accepting L and sending the message “yes”. Otherwise, if
the answer is unknown he may break the negotiation (because the issue has
become meaningless) and send “break”. In case that the answer is either no or
undecided, a new literal is chosen to be send as a message.

In general, a response to a message Lt received by agent ai at round t + 1
of the negotiation, is a message Lt+1 defeasibly derived from Πt+1

i ∪∆t+1
i . The

exchange of messages proceeds in orderly fashion: agent a1 sends her messages
at odd values of t (i.e. at 1, 3, . . .) while a2 sends hers at even values (2, 4, . . .).

A possibility is that Lt is either no or undecided. Then, Πt+1
i ∪∆t+1

i must
be revised and updated according to Lt. The result of this operation of updating
is Π̄t+1

i ∪ ∆̄t+1
i

4. There are alternative characterizations of this updating opera-

4 The next time agent i receives a message, t + 3, his knowledge base will be Π
t+3

i
∪

∆
t+3

i
≡ Π̄

t+1

i
∪ ∆̄

t+1

i
.



tion [FKIS02], but a mandatory requirement is that it must be consistent with
the protocol of negotiation.

Since we assume that the goal of both agents is either to reach an agreement
or break up the negotiation, any sufficient condition that ensures such result
may be applied to define a protocol. In [Toh02] it is shown that such condition
is monotonicity, in the sense of reducing disagreements. In other words, agents
are allowed to exchange messages (without repetition) until either an agreement
is found or the negotiation breaks up.

In this sense, if until stage t the messages that have been sent back and
forth are L1, L2, . . . , Lt−1, the possible messages to be send from then on are
constrained by the protocol.

The following is obviously a monotonic protocol:

Protocol 31 If an agreement nor a break up is reached, the response to a mes-
sage Lt must be a Lt+1 in L \ {Lj}t

j=1, where L is the set of literals that can be
defeasibly derived from Π ∪ ∆.

If such non-deterministic protocol is applied, a process of updating Πt+1
i ∪

∆t+1
i must be consistent with it. In this sense, if Lt is not preferentially war-

ranted, no Lj for j = 1, . . . , t should be used as a message up from the resulting
knowledge base Π̄t+1

i ∪ ∆̄t+1
i .

This means that, in particular, the current beliefs must be changed. The
beliefs should no longer allow the messages sent in the previous rounds to be
considered warranted.5 One way to achieve this is by using the following proce-
dure:

Procedure 31 Consider, for a given i, the tagged trees T k
i , for k = 1, . . . , t.

Among those with roots marked U, choose the leaves 〈Hk,Hk〉 that minimize
Vi(H

k,Hk), derived from Φt+1
i .

For each of those leaves, choose a rule that minimizes Φt+1
i (µk) over all

the rules that participate in the derivation of Hk from Πt+1 ∪ Hk. Then define
Π̄t+1

i ∪ ∆̄t+1
i := (Πt+1

i ∪ ∆t+1
i ) \ {µ}k.

This procedure, used in the following algorithm allows to find the updated
beliefs and choose next message:

Algorithm 31 [Update Beliefs and Select Message]

1. Define T〈A,Lk〉 for k = 1, . . . , t.
2. Run Procedure 3.1.
3. Find {T k

i }t
k=1 over Π̄t+1

i ∪ ∆̄t+1
i

4. If a root is marked U go to 2. Else
(a) If Π̄t+1

i ∪ ∆̄t+1
i = ∅, send the message “break”.

5 As said, preferences could also change, but this equivalent to replace Φi for Φ
′

i.
Although this can be easily introduced in our framework, we leave the details for an
extension of this work.



(b) Else choose Lt+1 such that minimizes Φt+1
i (L) over those literals L that

can be preferentially warranted in Π̄t+1
i ∪ ∆̄t+1

i .

It is immediate that:

Proposition 31 Algorithm 3.1 implements Protocol 3.1.

Proof: Trivial. If Lt is warranted, then an agreement is reached and the
selected message is “yes”, else if Lt is unknown the negotiation breaks up.
Otherwise, Algorithm 3.1 is such that if Π̄t+1

i ∪ ∆̄t+1
i = ∅ the negotiation breaks

up, otherwise, it ensures that L1, . . . , Lt are not preferentially warranted in
Π̄t+1

i ∪ ∆̄t+1
i , therefore it chooses Lt+1 ∈ L \ {Lj}t

j=1.

Notice that Algorithm 3.1 is not the only possible implementation of Pro-
tocol 3.1, since the latter just asks for monotonicity in the messages, while the
Algorithm intends to find the best messages for agent ai.

Another result that follows is:

Proposition 32 If both agents use Algorithm 3.1 to choose messages, the ne-
gotiation either ends in an agreement or in a break up.

Proof: Algorithm 3.1 implements Protocol 3.1. We denote Lt = L \ {Lk}t
k=1.

There are two possibilities, either there exists a T such that when one of the
agents sends a message LT the other agent responds with “yes”. Alternatively,
if there is no L that may result in an agreement, as a consequence of the
Compactness Theorem for First-Order Logic there exists a T

′

< ∞ such that

LT
′

= ∅ and leads to a response “break”.

A final consequence of using Algorithm 3.1 is that if agreements (including
break ups as degenerate agreements) are path dependent. That is, the choices
made by the agents condition further choices. Therefore, over the same knowl-
edge base, the agents may end up agreeing on different conclusions. The following
example shows this:

Example 31 Consider the classical example in defeasible argumentation where
preferences are defined for B = {0, 1}, with 0 < 1. The preferences, which for
simplicity are assumed common to both agents, are indicated in parentheses
next to the corresponding pieces of information:

Π = {bird(X) –≺ penguin(X) (1), penguin(tweety) (1), bird(tweety) (1)}
∆ = {¬flies(X) –≺ penguin(X) (1), f lies(X) –≺ bird(X) (0.5)}

Agents have different beliefs:

Π1
1 = {penguin(tweety) (1), bird(tweety) (1)}

∆1
1 = {¬flies(X) –≺ penguin(X) (1)}



while

Π1
2 = {bird(X) –≺ penguin(X) (1), penguin(tweety) (1), }

∆1
2 = {flies(X) –≺ bird(X) (0.5)}

For agent a1, there are two warranted conclusions, penguin(tweety) and
¬flies(tweety). Suppose that her message is L1 = penguin(tweety). Since it
is also a warranted conclusion for a2, he will respond with “yes”. Otherwise,
suppose that L1 = ¬flies(tweety). Since for a1 flies(tweety) is warranted he
must apply Algorithm 3.1. It follows that he has to drop the rule with lowest
preference, namely flies(X) –≺ bird(X). Then,

Π2
2 = {bird(X) –≺ penguin(X) (1), penguin(tweety) (1), }

∆2
2 = ∅

The only (trivially) warranted conclusions are penguin(tweety) and
bird(tweety). In the case that L2 = penguin(tweety), the response is
“yes” and the same is true if L2 = bird(tweety).

On the other hand, assume that Φ(flies(X) –≺ bird(X)) = 1 while
Φ(bird(X) –≺ penguin(X)) = 0.5. Accordingly, if L1 = ¬flies(tweety)
then

Π2
2 = { penguin(tweety) (1), }

∆2
2 = {flies(X) –≺ bird(X) (1)}

Therefore, L2 = penguin(tweety), and the response is “yes”.

Finally, if

Π1
2 = {bird(tweety) (1)}

∆1
2 = {flies(X) –≺ bird(X) (0.5)}

and L1 = penguin(tweety), the response is “break”.

4 Conclusions

We presented in this paper a framework of negotiation with DeLP extended with
preferences. An algorithm of belief updating based on the elimination of rules
ensures that agents will reach an agreement, although this agreement depends
on the particular sequence of messages chosen.

A matter of further work will be to see if a negotiation still converges to an
agreement if another mechanism of belief updating is used.



5 Acknowledgments

This research was partially supported by CONICET, by the Secretaŕıa General
de Ciencia y Tecnoloǵıa de la Universidad Nacional del Sur and by Agencia
Nacional de Promoción Cient́ıfica y Tecnológica (PICT 2002 No. 13096). The
authors would like to thank anonymous reviewers for providing helpful comments
to improve the final version of this paper.

References

[CDSS03] Carlos I. Chesñevar, Jürgen Dix, Frieder Stolzenburg, and Guillermo R.
Simari. Relating defeasible and normal logic programming through trans-
formation properties. Theoretical Computer Science, 290(1):499–529, Jan
2003.

[CML00] Carlos I. Chesñevar, Ana G. Maguitman, and Ronald P. Loui. Logical Models
of Argument. ACM Computing Surveys, 32(4), December 2000.

[Dun95] Phan M. Dung. On the acceptability of arguments and its fundamental
role in nonmonotonic reasoning and logic programming and n-person games.
Artificial Intelligence, 77:321–357, 1995.

[FKIS02] Marcelo A. Falappa, Gabrielle Kern-Isberner, and Guillermo R. Simari. Ex-
planations, belief revision and defeasible reasoning. Artificial Intelligence
Journal, 141(1-2):1–28, October 2002.

[Gar00] Alejandro J. Garćıa. Defeasible Logic Programming: Definition, Operational
Semantics and Parallelism. PhD thesis, Computer Science and Engineer-
ing Department, Universidad Nacional del Sur, Bah́ıa Blanca, Argentina,
December 2000.

[GS04] Alejandro J. Garćıa and Guillermo R. Simari. Defeasible logic programming:
An argumentative approach. Theory and Practice of Logic Programming,
4(1):95–138, 2004.

[KSE98] Sarit Kraus, Katia Sycara, and Amir Evenchik. Reaching agreements
through argumentation: A logical model and implementation. Artificial In-
telligence, 104(1–2):1–69, 1998.

[Lou90] Ronald P. Loui. Defeasible specification of utilities. In Henry Kyburg, Ronald
Loui, and Greg Carlson, editors, Knowledge Representation and Defeasible
Reasoning, pages 345–359. Kluwer Academic Publishers, Dordrecht, 1990.

[Lou98] Ronald P. Loui. Process and policy: Resource-bounded nondemonstrative
reasoning. Computational Intelligence: An International Journal, 14, 1998.

[LS01] Kate Larson and Tuomas Sandholm. Bargaining with limited computation:
Deliberation equilibrium. Artificial Intelligence, 132, 2001.

[Mye89] Roger B. Myerson. Credible negotiation statements and coherent plans.
Journal of Economic Theory, 48, 1989.

[Pol87] John Pollock. Defeasible Reasoning. Cognitive Science, 11:481–518, 1987.
[Pol95] John Pollock. Cognitive Carpentry: A Blueprint for How to Build a Person.

MIT Press, 1995.
[Poo85] David L. Poole. On the Comparison of Theories: Preferring the Most Specific

Explanation. In Proc. 9th IJCAI, pages 144–147. IJCAI, 1985.
[PV00] Henry Prakken and Gerard Vreeswijk. Logical systems for defeasible argu-

mentation. In D.Gabbay, editor, Handbook of Philosophical Logic, 2nd ed.
Kluwer Academic Pub., 2000.



[SCG94] Guillermo R. Simari, Carlos I. Chesñevar, and Alejandro J. Garćıa. The role
of dialectics in defeasible argumentation. In XIV International Conference
of the Chilenean Computer Science Society, November 1994.

[SGCS03] Frieder Stolzenburg, Alejandro J. Garćıa, Carlos I. Chesñevar, and
Guillermo R. Simari. Computing generalized specificity. Journal of Aplied
Non-Classical Logics, 13(1):87–113, January 2003.

[SL92] Guillermo R. Simari and Ronald P. Loui. A Mathematical Treatment of
Defeasible Reasoning and its Implementation. Artificial Intelligence, 53:125–
157, 1992.

[Syc89] Katia Sycara. Multi-agent compromise via negotiation. In L. Gasser and
M. Huhns, editors, Distributed Artificial Intelligence (Vol. 2). Morgan Kauf-
mann, Los Altos, CA, September 1989.

[Syc90] Katia Sycara. Persuasive argumentation in negotiation. Theory and Deci-
sion, 28(3):203–242, May 1990.

[Toh02] Fernando Tohmé. Negotiation and defeasible decision making. Theory and
Decision, 53(4):289–311, 2002.

[TS04] Fernando A. Tohmé and Guillermo R. Simari. Preferential defeasibility: Util-
ity in defeasible logic programming. In Proceedings of the 10th International
Workshop on Non-Monotonic Reasoning, pages 394–399. NMR, June 2004.


