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Abstract

Defeasible argumentation frameworks have
evolved to become a sound setting to for-
malize commonsense, qualitative reasoning
from incomplete and potentially inconsistent
knowledge. Defeasible Logic Programming
(DeLP) is a defeasible argumentation formal-
ism based on an extension of logic program-
ming. Although DeLP has been successfully
integrated in a number of different real-world
applications, DeLP cannot deal with explicit
uncertainty, nor with vague knowledge, as de-
feasibility is directly encoded in the object
language. This paper introduces P-DeLP,
a new logic programming language that ex-
tends original DeLP capabilities for qualita-
tive reasoning by incorporating the treatment
of possibilistic uncertainty and fuzzy knowl-
edge. Such features will be formalized on the
basis of PGL, a possibilistic logic based on
Gödel fuzzy logic.

1 Introduction and motivations

In the last years defeasible argumentation frame-
works have proven to be a successful approach
to formalizing qualitative, commonsense rea-
soning from incomplete and potentially in-
consistent knowledge [Chesñevar et al., 2000,
Prakken and Vreeswijk, 2002]. As a consequence,
argument-based frameworks have integrated in a
number of real-world applications, such as au-
tomated text analysis [Hunter, 2001], intelligent
web search [Chesñevar and Maguitman, 2004b],
knowledge engineering [Carbogim et al., 2000] and
clustering [Gómez and Chesñevar, 2004], among
many others). Defeasible Logic Programming (or
DeLP) [Garćıa and Simari, 2004] is one of such
formalisms, combining results from defeasible argu-

mentation theory and logic programming. Although
DeLP has proven to be a suitable framework for build-
ing real-world applications that deal with incomplete
and contradictory information in dynamic domains, it
cannot deal with explicit uncertainty, nor with vague
knowledge, as defeasible information is encoded in the
object language using “defeasible rules”.

This paper introduces P-DeLP, a new logic pro-
gramming language that extends original DeLP ca-
pabilities for qualitative reasoning by incorporat-
ing the treatment of possibilistic uncertainty and
fuzzy knowledge. Such features will be formal-
ized on the basis of PGL [Alsinet and Godo, 2000,
Alsinet and Godo, 2001], a possibilistic logic based on
Gödel fuzzy logic. In PGL formulas are built over
fuzzy propositional variables and the certainty degree
of formulas is expressed with a necessity measure. In a
logic programming setting, the proof method for PGL
is based on a complete calculus for determining the
maximum degree of possibilistic entailment of a fuzzy
goal.

In the context of complex logic-programming frame-
works (like the one provided by extended logic pro-
gramming), PGL lacks of an adequate mechanism
to handle contradictory information, as conflicting
derivations can be found. In P-DeLP such conflicts will
be solved using an argument-based inference engine.
Formulas will be supported by arguments, which will
have an attached necessity measure associated with
the supported conclusion. The ultimate answer to
queries will be given in terms of warranted arguments,
computed through a dialectical analysis.

The rest of the paper is structured as follows. First,
in Section 2 we formalize the syntax, semantics and
the proof method of P-DeLP. In Section 3 we intro-
duce the central notion of argument and a procedural
mechanism for obtaining arguments. In Section 4 we
formalize the notions of attack among arguments and
the process of warrant in P-DeLP. Finally, in Section 5
we discuss related work and present the most impor-



tant conclusions that have been obtained.

2 The P-DeLP programming language

As already pointed out our objective is to extend the
DeLP programming language to deal with both vague
knowledge and possibilistic uncertainty, we will refer to
this extension as Possibilistic DeLP or P-DeLP. To this
end, the base language of DeLP will be extended with
fuzzy propositional variables and arguments will have
an attached necessity measure associated with the sup-
ported conclusion. The ultimate answer to queries will
be given in terms of warranted arguments, computed
through a dialectical analysis.

The P-DeLP language L is defined from a set of
fuzzy atoms (fuzzy propositional variables) {p, q, . . .}
together with the connectives {∼, ∧, ← }. The sym-
bol ∼ stands for negation. A literal L ∈ L is a ground
(fuzzy) atom q or a negated ground (fuzzy) atom ∼ q,
where q is a (fuzzy) propositional variable. A rule in
L is a formula of the form Q ← L1 ∧ . . . ∧ Ln, where
Q,L1, . . . , Ln are literals in L. When n = 0, the for-
mula Q ← is called a fact and simply written as Q. In
the following, capital and lower case letters will denote
literals and atoms in L, respectively.

On the one hand, fuzzy propositions provide us with
a suitable representation model in situations where
there is vague or imprecise information about the real
world. For instance, the fuzzy statement “the en-
gine speed is low” can be nicely represented by the
fuzzy proposition engine speed(low), where low is a
fuzzy set defined over the domain revs per minute,
say an interval [0, 6000]. In the case low actually de-
notes a crisp interval of number of revolutions, the
above proposition is to be interpreted as “∃x ∈ low
such that the engine speed is x”. In the case low
denotes a fuzzy interval with a membership function
µlow : [0, 6000] → [0, 1], the above proposition is in-
terpreted in possibilistic terms as “for each α ∈ [0, 1],
∃x ∈ [µlow]α such that the engine speed is x, is cer-
tain with a necessity of at least 1− α”, where [µlow]α
denotes the α-cut of µlow, the set of values defined as
[µlow]α = {u ∈ [0, 6000] | µlow(u) ≥ α}. So, fuzzy
propositions can be seen as (flexible) restrictions on
an existential quantifier [Dubois et al., 1998].

On the other hand, in this framework, negation is used
to contradict statements represented by fuzzy propo-
sitions. For instance, in the case low denotes a crisp
interval of revolutions, ∼ speed(low) is interpreted as
“¬[∃x ∈ low such that the engine speed is x]”, or
equivalently “∀x ∈ low, x does not correspond with
the engine speed”.

A rigorous (and powerful) approach should be to define

a first-order language with typed regular predicates
and sorted fuzzy constants (cf. [Alsinet et al., 1999])
which would indeed represent, for instance, the
fuzzy statement “the engine speed is low” as
engine speed(low) where engine speed is a unary
predicate of type (revs per minute) and low is a fuzzy
constant of sort revs per minute. In doing so, one
is able to deal with partial matching between similar
(fuzzy) constants, a very interesting feature. However,
in this paper we are not considering yet the possibility
of incorporating fuzzy unification between fuzzy con-
stants in the language. Therefore, we will restrict our-
selves to a simpler propositional language, where for
instance the fuzzy statement engine speed(low) will
be simply represented as a fuzzy propositional varia-
ble low speed.

Definition 1 (P-DeLP formulas) The set Wffs(L)
of wffs in L are facts and rules built over the literals of
L. A certainty-weighted wff in L or weighted clause
is a pair of the form (ϕ, α), where ϕ is a wff in L and
α ∈ [0, 1] expresses a lower bound for the certainty of
ϕ in terms of a necessity measure.

The P-DeLP language is based on Possibilistic Gödel
Logic or PGL [Alsinet and Godo, 2000]. There are
three main reasons for choosing PGL as the underlying
logic to model both uncertainty and fuzziness. First,
we have proved that many-valued Gödel logic is fully
compatible with an already proposed and suitable ex-
tension of necessity measures for fuzzy events, in the
sense that Gödel logic allows us to define a well be-
haved and featured possibilistic semantics on top of it.
Second, like in classical propositional logic program-
ming systems, PGL enables us to define an efficient
proof method by derivation based on a complete calcu-
lus for determining the maximum degree of possibilis-
tic belief with which a fuzzy propositional variable can
be entailed from a set of formulas. Finally, PGL can be
extended with a partial matching mechanism between
fuzzy propositional variables based on a necessity-like
measure which preserves completeness for a particu-
lar class of formulas [Alsinet and Godo, 2001]. In our
opinion, this is a key feature that justifies by itself
the interest of such a logic programming system for
defeasible argumentation under vague knowledge and
possibilistic uncertainty.

The semantics of PGL [Alsinet and Godo, 2000] is
given by interpretations I of the fuzzy propositional
variables into the real unit interval [0, 1] which are ex-
tended to wffs in L by means of the following rules:

I(L1 ∧ · · · ∧ Ln) = min(I(L1), . . . , I(Ln))

I(Q ← ϕ) =
{

1, if I(ϕ) ≤ I(Q)
I(Q), otherwise



I(∼ q) =
{

1, if I(q) = 0
0, otherwise

Certainty weights are employed to model statements
of the form “ϕ is α-certain”, where ϕ represents vague
knowledge about the real world. Within the possibilis-
tic model of uncertainty, belief states are modelled by
normalized possibility distributions π : I → [0, 1] on a
set of interpretations I. In our framework, the truth
evaluation of a wff in L ϕ in each interpretation I is a
value I(ϕ) ∈ [0, 1]. Therefore, each formula does not
induce a crisp set of interpretations, but a fuzzy set
of interpretations [ϕ], defining µ[ϕ](I) = I(ϕ), for each
interpretation I. Hence, to measure the uncertainty
induced on a formula by a possibility distribution on
the set of interpretations I we have to consider some
extension of the notion of necessity measure for fuzzy
sets, in particular for fuzzy sets of interpretations. In
[Dubois and Prade, 1991] the authors propose to de-
fine

N([ϕ] | π) = inf
I∈I

π(I) ⇒ µ[ϕ](I),

where µ[ϕ](I) = I(ϕ) ∈ [0, 1] and ⇒ is the reciprocal
of Gödel’s many-valued implication, which is defined
as x ⇒ y = 1 if x ≤ y and x ⇒ y = 1− x, otherwise.

Now let us go into formal definitions.

Definition 2 (Possibilistic model) Let I be the set
of many-valued, interpretations over the language L.
A possibilistic model is a normalized possibility distri-
bution π : I → [0, 1] on the set of interpretations I.

A possibility distribution π is normalized when there
is at least one I ∈ I such that π(I) = 1. In other
words, belief states modelled by normalized distribu-
tions are consistent states, in the sense that at least
one interpretation (or state or possible world) has to
be fully plausible.

Definition 3 (Possibilistic entailment) A possi-
bilistic model π : I → [0, 1] satisfies a clause (ϕ, α),
written π |= (ϕ, α), iff N([ϕ] | π) ≥ α. Now let Γ be a
set of clauses in L. We say that Γ entails (ϕ, α), writ-
ten Γ |= (ϕ, α), iff every possibilistic model satisfying
all the clauses in Γ also satisfies (ϕ, α).

Proposition 4 Let Γ be a set of clauses in L. If Γ is
satisfiable, then Γ |= {(q, α), (∼ q, β)} iff either α = 0
or β = 0.1

In [Alsinet and Godo, 2000] we formalized a Hilbert-
style axiomatization of PGL. Axioms of PGL are ax-
ioms of Gödel fuzzy logic weighted by 1 plus the triv-
iality axiom (ϕ, 0), and inference rules of PGL are a
generalized modus ponens rule for necessity measures

1The proof is not included for space reasons.

and a weight weakening rule. The proof method in
PGL is defined for any certainty-weighted Gödel for-
mula by deduction relative to the set of axioms and
inference rules. In L wffs are either certainty-weighted
facts or rules (with positive and negative literals) and
the proof method should be oriented to goals (posi-
tive and negative literals). Then, for P-DeLP we will
consider a simple and efficient calculus which will not
need the whole axiomatization of PGL. But before we
need to introduce some extra definitions and results.

Definition 5 (Maximum degree of possibilistic
entailment) The maximum degree of possibilistic en-
tailment of a goal Q from a set of clauses Γ, de-
noted by ‖Q‖Γ, is the greatest lower bound α ∈ [0, 1]
on the belief on Q such that Γ |= (Q,α). Thus,
‖Q‖Γ = sup{α ∈ [0, 1] | Γ |= (Q,α)}.

Follwing [Alsinet and Godo, 2000], one can prove that
the maximum degree of possibilistic entailment of a
goal Q from a set of clauses Γ is the least necessity
evaluation of Q given by the models of Γ.

To provide P-DeLP with a complete calculus for deter-
mining the maximum degree of possibilistic entailment
we only need the triviality axiom of PGL and a par-
ticular instance of the generalized modus ponens rule
of PGL:

Axiom: (ϕ, 0)

Generalized modus ponens (GMP):

(L0 ← L1 ∧ · · · ∧ Lk, γ)
(L1, β1), . . . , (Lk, βk)
(L0, min(γ, β1, . . . , βk))

The GMP rule can be proven to be sound with respect
to the many-valued and the possibilistic semantics of
the underlying logic.

Definition 6 (Degree of deduction) A goal Q is
deduced with a degree of deduction α from a set of
clauses Γ, denoted Γ ` (Q, α), iff there exists a finite
sequence of clauses C1, . . . , Cm such that Cm = (Q,α)
and, for each i ∈ {1, . . . , m}, it holds that Ci ∈ Γ, Ci

is an instance of the axiom or Ci is obtained by apply-
ing the above inference rule to previous clauses in the
sequence.

Due to the negation connective of P-DeLP, the GMP
rule allows us to define a complete calculus for deter-
mining the maximum degree of possibilistic entailment
of a goal from a set of clauses if we restrict ourselves
to sets of clauses satisfying the following forward rea-
soning constraint: The possibilistic entailment degree
of a goal Q from a set of clauses Γ must be univocally
determined by those clauses of Γ having Q in their



head or leading to one of these clauses by resolving
them with other clauses by applying the GMP rule.
The objective of the forward reasoning constraint is
to ensure that, for any goal Q, ‖Q‖Γ can be deter-
mined only from the subset ΓQ of clauses (ϕ, α) in Γ
for which either Q is in the head of ϕ or Q depends2

on the head of ϕ. Roughly speaking, with this re-
quirement one wants to avoid having formulas of the
form (t ← p, 1) and (∼ t, 1) together in Γ since, due
to the semantics of the negation connective, we would
have that the clause (∼ p, 1) should be derivable from
(t ← p, 1) and (∼ t, 1), and thus, we should enable a
kind of modus tollens inference mechanism. The for-
ward reasoning constraint is ensured when for all li-
teral L appearing in the body of a rule, Γ contains
explicit information about L, i.e. either (L,α) ∈ Γ or
(L ← L1 ∧ · · ·Ln, α) ∈ Γ with α > 0. A similar con-
straint was defined in [Alsinet and Godo, 2000], called
there context constraint, for preserving completeness
when extending PGL with a fuzzy unification mech-
anism between fuzzy constants. At this point we are
ready to define the syntactic counterpart of maximum
degree of possibilistic entailment.

Definition 7 (Maximum degree of deduction)
The maximum degree of deduction of a goal Q from a
set of clauses Γ, denoted |Q|Γ, is the greatest α ∈ [0, 1]
such that Γ ` (Q,α).

As the only inference rule of our proof method is the
GMP rule within a logic programming framework in
which Γ is always a finite set of clauses, there exists a
finite number of proofs of a goal Q from Γ, and thus,
the above definition turns into |Q|Γ = max{α ∈ [0, 1] |
Γ ` (Q,α)}.
Finally, following [Alsinet and Godo, 2000,
Alsinet and Godo, 2001], completeness for P-DeLP
reads as follows: Let Γ be a set of clauses satisfying
the forward reasoning constraint and let Q be a
goal. Then, ‖Q‖Γ = |Q|Γ. From now on, we will
consider clauses in L satisfying the forward reasoning
constraint.

3 Argumentation in P-DeLP

In the last section we formalized the many-valued and
the possibilistic semantics of the underlying logic of
P-DeLP. In this section we formalize the procedural
mechanism for building arguments in P-DeLP.

We distinguish between certain and uncertain clauses.
A clause (ϕ, α) will be referred as certain if α = 1

2We say that Q depends on P in Γ if Γ contains a set
of clauses {(ϕ1, α1), . . . , (ϕk, αk)}, with k ≥ 1, such that P
appears in the body of ϕ1, the head of ϕk is Q, and the head
of ϕi appears in the body of ϕi+1, with i ∈ {1, . . . , k − 1}.

and uncertain, otherwise. Moreover, a set of clauses
Γ will be deemed as contradictory, denoted Γ ` ⊥, if
Γ ` (q, α) and Γ ` (∼ q, β), with α > 0 and β > 0, for
some atom q in L. Notice that if Γ is a contradictory
set of clauses for some atom q in L, Γ is not satisfiable
and there exist Γ1 ⊂ Γ and Γ2 ⊂ Γ such that Γ1 and
Γ2 are satisfiable and |q|Γ1 > 0 and |∼ q|Γ2 > 0.

Example 8 Consider the set Γ ={ (p ← q , 0.5),
(∼ p ← q ∧ r , 0.3), (q, 0.2), (r, 1) }. Then Γ is con-
tradictory, whereas Γ\{(r, 1)} is not.

A P-DeLP program is a set of clauses in L in which
we distinguish certain from uncertain information. As
additional requirement, certain knowledge is required
to be non-contradictory. Formally:

Definition 9 (P-DeLP program) A P-DeLP pro-
gram P (or just program P) is a pair (Π,∆), where
Π is a non-contradictory finite set of certain clauses,
and ∆ is a finite set of uncertain clauses.

Example 10 Consider an intelligent agent control-
ling an engine with three switches sw1, sw2 and sw3.
These switches regulate different features of the en-
gine, such as pumping system, speed, etc. This agent
may have the following certain and uncertain knowl-
edge about how this engine works, e.g.: – If the pump

is clogged, then the engine gets no fuel.

– When sw1 is on, normally fuel is pumped properly.

– When fuel is pumped properly, fuel seems to work ok.

– When sw2 is on, usually oil is pumped.

– When oil is pumped, usually it works ok.

– When there is oil and fuel, usually the engine works ok.

– When there is heat, then the engine is usually not ok.

– When there is heat, normally there are oil problems.

– When fuel is pumped and speed is low, then there are rea-

sons to believe that the pump is clogged.

– When sw2 is on, usually speed is low.

– When sw2 and sw3 are on, usually speed is not low.

– When sw3 is on, usually fuel is ok.

Suppose also that the agent knows some particular
facts: sw1, sw2 and sw3 are on, and there is heat. The
knowledge of such an agent can be modelled by the pro-
gram Pengine shown in Fig. 1. Note that uncertainty
is assessed in terms of different necessity measures.

Next we will introduce the notion of argument in P-
DeLP. Informally, a argument A is a tentative proof
(as it relies to some extent on uncertain, possibilistic
information) supporting a given conclusion Q with a
necessity measure α. Formally:

Definition 11 (Argument. Subargument)
Given a P-DeLP program P = (Π, ∆), a set A ⊆ ∆
of uncertain clauses is an argument for a goal Q with
necessity measure α > 0 (denoted 〈A, Q, α〉) iff:



(1) (∼fuel ok ← pump clog , 1)
(2) (sw1, 1)
(3) (sw2, 1)
(4) (sw3, 1)
(5) (heat, 1)
(6) (pump fuel ← sw1 , 0.6)
(7) (fuel ok ← pump fuel , 0.3)
(8) (pump oil ← sw2 , 0.8)
(9) (oil ok ← pump oil , 0.8)
(10) (engine ok ← fuel ok ∧ oil ok , 0.3)
(11) (∼engine ok ← heat , 0.95)
(12) (∼oil ok ← heat , 0.9)
(13) (pump clog ← pump fuel ∧ low speed , 0.7)
(14) (low speed ← sw2 , 0.8)
(15) (∼low speed ← sw2 , sw3 , 0.8)
(16) (fuel ok ← sw3 , 0.9)

Figure 1: P-DeLP program Peng (example 10)

1) Π ∪ A ` (Q,α);
2) Π ∪ A is non contradictory; and
3) A is minimal wrt set inclusion (i.e. there is no
A1 ⊂ A which satisfies conditions (1) and (2)).

Let 〈A, Q, α〉 and 〈S, R, β〉 be two arguments. We
will say that 〈S, R, β〉 is a subargument of 〈A, Q, α〉
iff S ⊆ A. Notice that the goal R may be a subgoal
associated with the goal Q in the argument A.

Note that an argument must satisfy certain require-
ments. First, the conclusion Q should follow via ` from
Π ∪ A. Second, it should not be the case that A to-
gether with Π turns out to be contradictory. The third
requirement operates as a kind of Occam’s razor prin-
ciple [Garćıa and Simari, 2004] on the uncertain infor-
mation used for concluding Q. It must be remarked
that the definition of argument satisfying these three
requirements can be traced back to the Simari-Loui
framework [Simari and Loui, 1992]. Given a program
P = (Π, ∆), we define the following procedural rules
to construct arguments:

1) Building arguments from facts (INTF)

(Q, 1)
〈∅, Q, 1〉

(Q, α), Π ∪ {(Q, α)} 6` ⊥, with α < 1,
〈{(Q, α)}, Q, α〉

for any weighted fact (Q, α) ∈ P
3) Building Arguments by GMP (MPA):

〈A1, L1, α1〉 〈A2, L2, α2〉 . . . 〈Ak, Lk, αk〉
(L0 ← L1 ∧ L2 ∧ . . . ∧ Lk , γ) with γ < 1

Π ∪ {(L0 ← L1 ∧ L2 ∧ . . . ∧ Lk , γ)} ∪⋃k

i=1
Ai 6` ⊥

〈⋃k

i=1
Ai ∪ {(L0 ← L1 ∧ L2 ∧ . . . ∧ Lk , γ)}, L0, β〉

for any weighted rule (L0 ← L1 ∧ L2 ∧ . . . ∧ Lk , γ) ∈ ∆,

with β = min(α1, . . . , αk, γ).

4) Extending Arguments (EAR):

〈A, P, α〉 Π ∪ {(P, α)} ` (Q, α)
〈A, Q, α〉

for any argument 〈A, P, α〉, whenever (Q, α) follows from

Π ∪ {(P, α)}.
The basic idea with the argument construction proce-
dure is to keep a trace of the set A of all uncertain
information used to derive a given goal Q with neces-
sity degree α. Appropriate preconditions ensure that
the proof obtained always follows Cond. 2 in Def. 11.
Given a program P, rule INTF allows to construct
arguments from facts. An empty argument can be
obtained for any certain fact in P. An argument con-
cluding an uncertain fact (Q,α) in P can be derived
whenever assuming (Q,α) is not contradictory wrt the
set Π in P. Rule MPA accounts for modus ponens
with a uncertain rule (L0 ← L1 ∧ L2 ∧ . . . ∧ Lk , γ),
with γ < 1. Note that there must exist arguments
〈A1, L1, α1〉, . . . , 〈A1, Lk, α1〉 for every literal in the
antecedent of the rule. MPA is applicable whenever
no contradiction wrt Π results when assuming the rule
(L0 ← L1 ∧ L2 ∧ . . . ∧ Lk , γ) and the sets A1, . . . , Ak

corresponding to the arguments associated with the
antecedent of the rule. Finally, the rule EAR stands
for extending a given argument 〈A, P, α〉 on the basis
of certain knowledge. As any argument is non contra-
dictory wrt Π, making new inferences from Π ∪ (P, α)
cannot lead to contradictions, and hence 〈A, Q, α〉 is
also valid whenever Π ∪ {(P, α)} ` (Q,α). Note that
in this case the necessity measure of Q is the same as
the one computed for P , as no uncertainty is involved.

Example 12 Consider the program Peng in Exam-
ple 10. An argument 〈B, fuel ok, 0.3〉 can be derived
from Pengas follows:

i) 〈∅, sw1, 1〉 from (2) via INTF.
ii) 〈B′, pump fuel, 0.6〉 from (6) and i) via MPA.
iii) 〈B, fuel ok, 0.3〉 from (7) and ii) via MPA.

where B′={(pump fuel ← sw1 , 0.6)} and B=
{(pump fuel ← sw1 , 0.6);(fuel ok ← pump fuel , 0.3)}.
Similarly, an argument 〈C, oil ok, 0.8〉 can be
derived from Peng using the rules (3), (8) and
(9) via INTC, MPA, and MPA, resp., with C =
{(pump oil ← sw2 , 0.8);(oil ok ← pump oil , 0.8)}.3
Finally, an argument 〈A1, engine ok, 0.3〉 can be
derived from Peng as follows:

i) 〈B, fuel ok, 0.3〉 as shown above.
ii) 〈C, oil ok, 0.8〉 as shown above.
iii) 〈A1, engine ok, 0.3〉 from i), ii), 10) via MPA.

where A1={(engine ok ← fuel ok ∧ oil ok , 0.3) }∪B∪
C. Note that 〈C, oil ok, 0.8〉 and 〈B, fuel ok, 0.3〉 are
subarguments of 〈A1, engine ok, 0.3〉.

3For the sake of clarity, we use semicolons to separate
elements in an argument A = {e1 ; e2 ; . . . ; ek }.



4 Computing Warrant in P-DeLP

4.1 Counterargumentation and defeat

Given a program P, it can be the case that there
exist conflicting arguments for complementary liter-
als 〈A1, q, α1〉 and 〈A2,∼ q, α2〉. Such conflict among
arguments will be formalized by the notions of coun-
terargument and defeat presented next.

Definition 13 (Counterargument) Let P be a pro-
gram, and let 〈A1, Q1, α1〉 and 〈A2, Q2, α2〉 be two
arguments wrt P. We will say that 〈A1, Q1, α1〉
counterargues 〈A2, Q2, α2〉 iff there exists a subargu-
ment (called disagreement subargument) 〈S, Q, β〉 of
〈A2, Q2, α2〉 such that Π ∪ {(Q1, α1), (Q, β)} is con-
tradictory.

Example 14 Consider 〈A1, engine ok, 0.3〉 given
in Example 12 wrt the program Peng. A counter-
agument for 〈A1, engine ok, 0.3〉 can be found,
namely 〈A2,∼ fuel ok, 0.6〉, obtained from (2),
(3), (6), (14), (13) and (1) by applying INTF,
INTF, MPA, MPA, MPA, and EAR, resp., with A2

= { (pump fuel ← sw1 , 1), (low speed ← sw2 , 1),
(pump clog ← pump fuel ∧ low speed , 1)}. Argu-
ment 〈A2,∼ fuel ok, 0.6〉 is a counterargument for
〈A1, engine ok, 0.3〉 as there exists a subargument
〈B, fuel ok, 0.3〉 in 〈A1, engine ok, 0.3〉 (see Exam-
ple 12) such that Π∪{(fuel ok, 0.3), (∼ fuel ok, 0.6)}
is contradictory.

Defeat among arguments involves a preference crite-
rion on conflicting arguments, defined on the basis of
necessity measures associated with arguments.

Definition 15 (Preference criterion º) Let P be
a program, and and let 〈A1, Q1, α1〉 and 〈A2, Q2, α2〉
be conflicting arguments in P. We will say that
〈A1, Q1, α1〉 is preferred over 〈A2, Q2, α2〉 (denoted
〈A1, Q1, α1〉 º 〈A2, Q2, α2〉) iff α1 ≥ α2.
If α1 > α2, then we will say that 〈A1, Q1, α1〉 is
strictly preferred over 〈A2, Q2, α2〉. Otherwise, if
α1 = α2 we will say that both arguments are equi-
preferred, denoted 〈A2, Q2, α2〉) ≈ 〈A1, Q1, α1〉.

Definition 16 (Defeat) Let P be a program, and
let 〈A1, Q1, α1〉 and 〈A2, Q2, α2〉 be two arguments in
P. We will say that 〈A1, Q1, α1〉 defeats 〈A2, Q2, α2〉
(or equivalently 〈A1, Q1, α1〉 is a defeater for
〈A2, Q2, α2〉) iff
1) 〈A1, Q1, α1〉 counterargues 〈A2, Q2, α2〉 with disagree-

ment subargument 〈A, Q, α〉.
2) Either it holds that α1 > α, in which case 〈A1, Q1, α1〉
will be called a proper defeater for 〈A2, Q2, α2〉, or

α1 = α, in which case 〈A1, Q1, α1〉 will be called a

blocking defeater for 〈A2, Q2, α2〉.

Example 17 Consider 〈A1, engine ok, 0.3〉 and
〈A2,∼ fuel ok, 0.6〉 in Example 14. Then
〈A2,∼ fuel ok, 0.6〉 is a proper defeater for
〈A1, engine ok, 0.3〉, as 〈A2,∼ fuel ok, 0.6〉 coun-
terargues 〈A1, engine ok, 0.3〉 with disagreement
subargument 〈B, fuel ok, 0.3〉, and 0.6 > 0.3.

4.2 Computing Warrant via Dialectical Trees

Given an argument 〈A, Q, α〉, the definitions of coun-
terargument and defeat allows to detect whether other
possible arguments 〈B1, Q1, α1〉 . . . 〈Bk, Qk, αk〉 are
defeaters for 〈A, Q, α〉. Should the argument 〈A, Q, α〉
be defeated, then it would be no longer supporting its
conclusion Q. However, since defeaters are arguments,
they may on their turn be defeated. That prompts for
a complete recursive dialectical analysis to determine
which arguments are ultimately defeated. Ultimately
undefeated arguments will be marked as U-nodes, and
the defeated ones as D-nodes. To characterize this pro-
cess we will introduce some auxiliary notions.

An argumentation line starting in an argument
〈A1, Q1, α1〉 (denoted λ〈A1,Q1,α1〉 ) is a sequence
[〈A0, Q0, α0〉, 〈A1, Q1, α1〉, . . . , 〈An, Qn, αn〉, . . . ]
that can be thought of as an exchange of arguments be-
tween two parties, a proponent (evenly-indexed argu-
ments) and an opponent (oddly-indexed arguments).
Each 〈Ai, Qi, αi〉 is a defeater for the previous ar-
gument 〈Ai−1, Qi−1, αi−1〉 in the sequence, i > 0.
In order to avoid fallacious reasoning, argumentation
theory imposes additional constraints on such an argu-
ment exchange to be considered rationally acceptable
wrt a P-DeLP program P, namely:

1) Non-contradiction: given an argumentation line λ,

the set of arguments of the proponent (resp. opponent)

should be non-contradictory wrt P.

2) No circular argumentation: no argument

〈Aj , Qj , αj〉 in λ is a sub-argument of an argument

〈Ai, Qi, αi〉 in λ, i < j.

3) Progressive argumentation: every blocking de-

feater 〈Ai, Qi, αi〉 in λ is defeated by a proper defeater

〈Ai+1, Qi+1, αi+1〉 in λ.

The first condition disallows the use of contra-
dictory information on either side (proponent or
opponent). The second condition eliminates the
“circular reasoning” fallacy. The last condition
enforces the use of a stronger argument to defeat
an argument which acts as a blocking defeater. An
argumentation line satisfying the above restrictions is
called acceptable, and can be proven to be finite.



Example 18 Consider 〈A1, engine ok, 0.3〉 and
the associated defeater 〈A2,∼ fuel ok, 0.6〉 in
Example 17. Note that 〈A2,∼ fuel ok, 0.6〉 has
the associated subargument 〈A2

′, low speed, 0.8〉,
with A2

′ = {(low speed ← sw2 , 0.8)}. From
the program Peng (Fig. 1) a blocking defeater
for 〈A2,∼ fuel ok, 0.6〉 can be derived, namely
〈A3,∼ low speed, 0.8〉, obtained from (3), (4) and
(15) via INTF, INTF and MPA, resp. Note that
this third defeater can be thought of as an answer
of the proponent to the opponent, reinstating the
first argument 〈A1, engine ok, 0.3〉, as it defeats the
opponent’s defeater 〈A2,∼ fuel ok, 0.6〉. The above
situation can be expressed in the following argumenta-
tion line: [〈A1, engine ok, 0.3〉, 〈A2,∼ fuel ok, 0.6〉,
〈A3,∼ low speed, 0.8〉]. Note that the proponent’s last
defeater in the above sequence could be on its turn
defeated by a blocking defeater 〈A2

′, low speed, 0.8〉,
resulting in [〈A1, engine ok, 0.3〉, 〈A2,∼ fuel ok, 0.6〉,
〈A3,∼ low speed, 0.8〉, 〈A2

′, low speed, 0.8〉 . . . ].
However, such line is not acceptable, as it violates
the condition of non-circular argumentation.

Given a program P and an argument 〈A0, Q0, α0〉, the
set of all acceptable argumentation lines starting in
〈A0, Q0, α0〉 accounts for a whole dialectical analysis
for 〈A0, Q0, α0〉 (i.e. all possible dialogues rooted in
〈A0, Q0, α0〉, formalized as a dialectical tree. 4

Definition 19 (Dialectical Tree) Let P be a DeLP
program, and let 〈A0, Q0, α0〉 be an argument wrt
P. A dialectical tree for 〈A0, Q0, α0〉, denoted
T〈A0, Q0, α0〉, is a tree structure defined as follows:
1) The root node of T〈A0, Q0, α0〉 is 〈A0, Q0, α0〉.
2) 〈B′, h′, β′〉 is an immediate child of 〈B, h, β〉 iff

there exists an acceptable argumentation line λ〈A1,Q1,α1〉

= [〈A0, Q0, α0〉, 〈A1, Q1, α1〉, . . . ,〈An, Qn, αn〉, . . . ] such

that there are two elements 〈Ai+1, Qi+1, αi+1〉 = 〈B′, h′, β′〉
and 〈Ai, Qi, αi〉 =〈B, h, β〉, for some i = 0 . . . n− 1.

Example 20 Consider 〈A1, engine ok, 0.3〉 from Ex-
ample 12, and the argumentation line shown in Exam-
ple 18. Note that the argument 〈A2,∼ fuel ok, 0.6〉
has a second (blocking) defeater 〈A4, fuel ok, 0.6〉,
computed from (4), (16) via INTF and MPA, resp.
The argument 〈A1, engine ok, 0.3〉 has also a second
defeater 〈A5,∼ engine ok, 0.95〉, computed from (5),
(11) via INTF and MPA, resp. There are no more ar-
guments to consider. There are three acceptable argu-
mentation lines rooted in 〈A1, engine ok, 0.3〉, namely:
• [〈A1, engine ok, 0.3〉, 〈A2,∼ fuel ok, 0.6〉, 〈A3,∼ low speed, 0.8〉]

4It must be remarked that the definition of di-
alectical tree as well as the characterization of con-
straints to avoid fallacies in argumentation lines can be
traced back to [Simari et al., 1994]. Similar formalizations
were also used in other argumentation frameworks (e.g.
[Prakken and Sartor, 1997]).

• [〈A1, engine ok, 0.3〉, 〈A2,∼ fuel ok, 0.6〉, 〈A4, fuel ok, 0.9〉]

• [〈A1, engine ok, 0.3〉, 〈A5,∼ engine ok, 0.95〉]

Fig. 2 shows the corresponding dialectical tree
T〈A1, engine ok, 0.3〉 rooted in 〈A1, engine ok, 0.3〉.

Nodes in a dialectical tree T〈A0, Q0, α0〉 can be marked
as undefeated and defeated nodes (U-nodes and D-
nodes, resp.). A dialectical tree will be marked as an
and-or tree: all leaves in T〈A0, Q0, α0〉 will be marked
U-nodes (as they have no defeaters), and every inner
node is to be marked as D-node iff it has at least one
U-node as a child, and as U-node otherwise. An ar-
gument 〈A0, Q0, α0〉 is ultimately accepted as valid
(or warranted) wrt a DeLP program P iff the root of
T〈A0, Q0, α0〉 is labelled as U-node.

Example 21 Consider the dialectical tree
T〈A1, engine ok, 0.3〉 from Example 20. The mark-
ing procedure results in the nodes of T〈A1, engine ok, 0.3〉
marked as U -nodes and D-nodes as shown in Fig. 2.5

Definition 22 (Warrant) Given a program P, and
a goal Q, we will say that Q is warranted wrt P with
a necessity α iff there exists a warranted argument
〈A, Q, α〉.

For a given program P, a P-DeLP interpreter will find
an answer for a goal Q by determining whether Q
is supported by some warranted argument 〈A, Q, α〉.
Different doxastic attitudes are distinguished when
providing an answer for the goal Q according to the
associated status of warrant.
(1) Answer Yes (with a necessity α) whenever Q is sup-

ported by a warranted argument 〈A, Q, α〉;
(2) Answer No (with a necessity α) whenever for ∼ Q6 is

supported by a warranted argument 〈A,∼ Q, α〉;
(3) Answer Undecided whenever (1) and (2) do not hold.

It can be shown that the cases (1) and (2) cannot hold
simultaneously [Garćıa and Simari, 2004]: if there ex-
ists an warranted argument for an atom q based on a
program P, then there is no warranted argument for
∼ q based on P.

Example 23 Consider program Peng, and the
goal engine ok. The only argument support-
ing engine ok is not warranted (as shown in
Fig. 2). On the contrary, there exists an argument
〈A5,∼ engine ok, 0.95〉 supporting ∼ engine ok,
and such argument has no defeaters, and therefore
it is warranted. The answer to goal engine ok will

5The search space associated with dialectical trees is re-
duced by applying α−β pruning [Garćıa and Simari, 2004]
(e.g. in Figure 2, if the right branch is computed first, then
the left branch of the tree does not need to be computed).

6For a given goal Q, we write ∼ Q as an abbreviation
to denote “∼ q” if Q ≡ q and “q” if Q ≡ ∼ q.
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Figure 2: Dialectical tree for 〈A1, engine ok, 0.3〉

therefore be No, with α = 0.95.
Consider now the same program Peng, and the goal
fuel ok. The only argument supporting fuel ok
is 〈A4, fuel ok, 0.6〉, which is defeated by a block-
ing defeater 〈A2,∼ fuel ok, 0.6〉. The analysis for
〈A2,∼ fuel ok, 0.6〉 is analogous, as this argument is
defeated by 〈A4, fuel ok, 0.6〉. Thus both arguments
‘block’ each other, neither of them being warranted.
The resulting answer is Undecided.

5 Conclusions and related work

In this paper we have presented P-DeLP, a new logic
programming language based on Defeasible Logic Pro-
gramming which incorporates the treatment of possi-
bilistic uncertainty and representation of fuzzy knowl-
edge. The proposed approach improves the PGL logic
programming framework, allowing to reason about
conflicting goals on the basis of an argument-based
procedure for computing warrant built on top of the
PGL inference mechanism. In this approach, argu-
ments are sets of uncertainty weighted formulas that
support a goal, and support weights are used to re-
solve conflicts among contradictory goals. It must be
remarked that DeLP has been successfully integrated
in a number of real-world applications (e.g. clus-
tering [Gómez and Chesñevar, 2004], intelligent web
search [Chesñevar and Maguitman, 2004b] and recom-
mender systems [Chesñevar and Maguitman, 2004a]).
Several features leading to efficient implementations
of DeLP have been also recently studied, partic-
ularly those related to comparing conflicting ar-
guments by specificity [Stolzenburg et al., 2003] and
defining transformation properties for DeLP pro-
grams [Chesñevar et al., 2003]. Extensions for DeLP
in the context of multiagent systems have been also
been proposed [Capobianco et al., 2004].

In this context, P-DeLP keeps all the original fea-
tures of DeLP while incorporating more expressivity
and representation capabilities by means of possibilis-
tic uncertainty and fuzzy knowledge. One particu-
larly interesting feature of P-DeLP is the possibil-
ity of defining aggregated preference criteria by com-
bining the necessity measures associated with argu-

ments with other syntax-based criteria (e.g. specificity
[Simari and Loui, 1992, Stolzenburg et al., 2003]).

In the last years the development of com-
bined approaches based on qualitative reason-
ing and uncertainty has deserved much re-
search work [Parsons, 2001]. Preference-based
approaches to argumentation have been devel-
oped, many of them oriented towards formal-
izing conflicting desires in multiagent systems
[Amgoud, 2003, Amgoud and Cayrol, 2002]. In
contrast with these preference-based approaches,
the P-DeLP framework involves necessity measures
explicitly attached to fuzzy formulas and the proof
procedure of the underlying possibilistic fuzzy logic
is used for computing the necessity measure for
arguments. Besides, it must be stressed that a
salient feature of P-DeLP is that it is based on two
logical frameworks that have already been imple-
mented (namely PGL [Alsinet and Godo, 2001] and
DeLP [Garćıa and Simari, 2004]).

There has been generic approaches connect-
ing defeasible reasoning and possibilistic logic
(e.g.[Benferhat et al., 2002]), and recently a number
of hybrid approaches connecting argumentation
and uncertainty have been developed. Probabilis-
tic Argumentation Systems [Haenni et al., 2000,
Haenni and Lehmann, 2003] use probabilities to
compute degrees of support and plausibility of goals,
related to Dempster-Shafer belief and plausibility
functions. However this is not a dialectics-based
framework as opposed to the one presented in
this paper. In [Schweimeier and Schroeder, 2001]
a fuzzy argumentation system based on extended
logic programming is proposed. In contrast with our
framework, this approach relies only on fuzzy values
applied to literals and there is no explicit treatment
of possibilistic uncertainty.

Part of our current research work will be developed
into three directions: first, we will extend the exist-
ing implementation of DeLP to incorporate the new
features of P-DeLP. Second, we will apply the result-
ing implementation of P-DeLP to improve existing
real-world applications of DeLP and to develop new
ones. Finally, we will analyze extending P-DeLP to
first order. It must be remarked that the General-
ized Modus Ponens rule used in P-DeLP is syntacti-
cally the same as the one used in possibilistic logic
[Dubois et al., 1994]. As a consequence, to implement
the machinery of P-DeLP the underlying possibilistic
fuzzy logic PGL can be replaced by the possibilistic
logic. The advantage of this approach is that the cur-
rent logic programming system can be extended to first
order, incorporating fuzzy unification between fuzzy
constants [Alsinet and Godo, 2001].
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and Loui, R. Logical Models of Argument. ACM Com-
puting Surveys, 32(4):337–383.

[Dubois et al., 1994] Dubois, D., Lang, J., and Prade, H.
Possibilistic logic. In Gabbay, D., Hogger, C., and
Robinson, J., editors, Handbook of Logic in Artificial In-
telligence and Logic Programming, volume 3, Nonmono-
tonic Reasoning and Uncertain Reasoning, pp. 439–513.
Claredon Press.

[Dubois and Prade, 1991] Dubois, D. and Prade, H. Fuzzy
sets in approximate reasoning - Part 1: Inference
with possibility distributions. Fuzzy Sets and Systems,
40(1):143–202.

[Dubois et al., 1998] Dubois, D., Prade, H., and Sandri,
S. Possibilistic logic with fuzzy constants and fuzzily
restricted quantifiers. In Arcelli, F. and Martin, T., edi-
tors, Logic Programming and Soft Computing, chapter 4,
pp. 69–90. Research Studies Press.
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