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Abstract

A well-known problem in multiagent systems
(MAS) involves finding an adequate formaliza-
tion of an agent’s knowledge to perform defeasible in-
ferences in a computationally effective way. In the
last years, argument-based approaches have proven
to be an attractive setting to achieve this goal. Deal-
ing with uncertainty and fuzziness associated with
the available knowledge are also common require-
ments in MAS. Such features, however, are not embed-
ded in most argument-based formalisms. Possibilistic
Defeasible Logic Programming (P-DeLP) has re-
cently appeared as an alternative to solve the above
problem. P-DeLP is a logic programming language
which combines features from argumentation the-
ory and logic programming, incorporating as well the
treatment of possibilistic uncertainty and fuzzy knowl-
edge at object-language level. This paper describes
how P-DeLP can be applied in the context of for-
malizing an agent’s beliefs and perceptions, along
with an argumentative inference procedure to de-
termine which of the agent’s beliefs are ultimately
accepted (orwarranted).

KEY WORDS: Agent reasoning, Argumentation, Logic Pro-

gramming, Uncertainty

∗ A slightly different version of this paper (not considering how
to model agent reasoning capabilities) was originally published
in the Proceedings of the Intl. Conference in Uncertainty in Ar-
tificial Intelligence (UAI 2004), pages 76-84.

1. Introduction and motivations

A well-known problem in multiagent sys-
tems (MAS) involves finding an adequate for-
malization of an agent’s knowledge to perform
defeasible inferences in a computationally effec-
tive way. In the last years, argument-based ap-
proaches have proven to be a attractive setting to
achieve this goal [28, 22, 24]. Dealing with un-
certainty and fuzziness associated with the agent’s
knowledge are also common requirements when for-
malizing MAS. Such features, however, are usually
not embedded at object-level in argument-based for-
malisms.

Possibilistic Defeasible Logic Programming
(P-DeLP) [14] has recently appeared as an alterna-
tive to solve the above problem. P-DeLP is a logic pro-
gramming language which combines features from
argumentation theory and logic programming, incor-
porating as well the treatment of possibilistic uncer-
tainty and fuzzy knowledge at object-language level.
These knowledge representation features are for-
malized on the basis of PGL [1, 2], a possibilistic
logic based on G̈odel fuzzy logic. In PGL formu-
las are built over fuzzy propositional variables and the
certainty degree of formulas is expressed with a ne-
cessity measure. In a logic programming setting, the
proof method for PGL is based on a complete calcu-
lus for determining the maximum degree of possibilis-
tic entailment of a fuzzy goal. The top-down proof
procedure of P-DeLP is based on the one used inde-
feasible logic programming[17], which has already
been integrated in a number of real-world applica-
tions such as intelligent web search [11, 13], cluster-



ing [18], and natural language processing [10], among
others.

This paper describes how P-DeLP can be applied in
the context of formalizing an agent’s beliefs and per-
ceptions, along with an effective argumentative infer-
ence procedure to determine which of the agent’s be-
liefs are ultimately accepted (orwarranted). In our ap-
proach, the agent’s knowledge will be represented in
terms of certainty-weighted formulas. We model the
distinction between strict and defeasible knowledge by
attaching different certainty weights (weight 1 corre-
sponds to strict knowledge, and weights in the inter-
val [0, 1) correspond to defeasible knowledge). Argu-
ments will be computed as proof trees supporting a
given formula (goal) with a certainty weight. These
weights will be used to solve conflicts among contra-
dictory goals.

The rest of the paper is structured as follows. First
in Section 2 we will discuss the knowledge representa-
tion features provided by P-DeLP, including its syntax
and semantics at object-language level. Then in Sec-
tion 3 we present the central notion ofargumentin
P-DeLP as well as an associated procedural mecha-
nism for obtaining them. In Section 4 we formalize the
notions of attack among arguments and the top-down
proof procedure for computing ultimately undefeated
arguments (orwarrants) in P-DeLP. In Section 5 we
present a worked example, showing how P-DeLP can
be used to model beliefs and reasoning capabilities of
an intelligent agent. Finally, in Section 6 we discuss
related work and the most important conclusions that
have been obtained.

2. The P-DeLP programming language:
fundamentals

The P-DeLP languageL is defined from a set of
ground fuzzy atoms (fuzzy propositional variables)
{p, q, . . .} together with the connectives{∼, ∧, ← }.
The symbol∼ stands fornegation. A literal L ∈ L is
a ground (fuzzy) atomq or a negated ground (fuzzy)
atom∼ q, whereq is a ground (fuzzy) propositional
variable. Arule in L is a formula of the formQ ←
L1 ∧ . . . ∧ Ln, whereQ,L1, . . . , Ln are literals in
L. Whenn = 0, the formulaQ ← is called afact
and simply written asQ. In the following, capital and
lower case letters will denote literals and atoms inL,
respectively.

Fuzzy propositions provide us with a suitable rep-
resentation model in situations where our agent has
vague or imprecise information about the real world.
For instance, the fuzzy statement “the engine speed is
low” can be nicely represented by the fuzzy propo-
sition engine speed(low), wherelow is a fuzzy set
defined over the domainrevs per minute , say an
interval [0, 6000]. In the caselow actually denotes

a crisp interval of number of revolutions, the above
proposition is to be interpreted as “∃x ∈ low such
that the engine speed isx”. In the caselow denotes
a fuzzy interval with a membership functionµlow :
[0, 6000] → [0, 1], the above proposition is inter-
preted in possibilistic terms as “for eachα ∈ [0, 1],
∃x ∈ [µlow]α such that the engine speed isx, is cer-
tain with a necessity of at least1− α”, where[µlow]α
denotes theα-cut of µlow, the set of values defined
as [µlow]α = {u ∈ [0, 6000] | µlow(u) ≥ α}.
So, fuzzy propositions can be seen as (flexible) re-
strictions on an existential quantifier [16]. It must be
noted that negation in P-DeLP is used to contradict
statements represented by fuzzy propositions. For in-
stance, in the caselow denotes a crisp interval of
revolutions,∼ engine speed(low) is interpreted as
“¬[∃x ∈ low such that the engine speed isx]”, or
equivalently “∀x ∈ low, x does not correspond with
the engine speed”.

Definition 1 (P-DeLP formulas) The set Wffs(L) of
wffs inL are factsandrulesbuilt over the literals ofL.
A certainty-weightedclause inL, or simplyweighted
clause, is a pair of the form(ϕ, α), whereϕ is a wff in
L andα ∈ [0, 1] expresses a lower bound for the cer-
tainty ofϕ in terms of a necessity measure.

The P-DeLP language is based on Possibilis-
tic Gödel Logic or PGL [1]. There are different rea-
sons for choosing PGL as the underlying logic to
model both uncertainty and fuzziness.1 A key fea-
ture of PGL is that it can be extended with a partial
matching mechanism between fuzzy propositional va-
riables based on a necessity-like measure which
preserves completeness for a particular class of for-
mulas [2].

Since wffs inL involve fuzzy propositional varia-
bles, the underlying semantics of P-DeLP is many-
valued2 instead of Boolean and possibilistic models
are defined as possibility distributions over all the pos-
sible set of many-valued interpretations. A detailed de-
scription about the many-valued and possibilistic se-
mantics of P-DeLP can be found in [14].

The proof method for P-DeLP formulas, writteǹ,
is defined by derivation based on the following trivial-
ity axiom and a particular instance of the generalized
modus ponens rule:

Axiom: (ϕ, 0)

Generalized modus ponens (GMP):

(L0 ← L1 ∧ · · · ∧ Lk, γ)
(L1, β1), . . . , (Lk, βk)
(L0,min(γ, β1, . . . , βk))

1 See [14] for discussion.
2 Actually, it corresponds to the well known Gödel infinitely-

valued calculi.



Due to the negation connective of P-DeLP the
GMP rule allows us to define a complete calculus for
determining the maximum degree of possibilistic en-
tailment of a goal from a set of clauses if we restrict
ourselves to sets of clauses satisfying the following
forward reasoningconstraint: The possibilistic entail-
ment degree of a goalQ from a set of clausesΓ must
be univocally determined by those clauses ofΓ hav-
ing Q in their head or leading to one of these clauses
by resolving them with other clauses by applying the
GMP rule.

A detailed description of soundness and complete-
ness for P-DeLP clauses satisfying the forward reason-
ing constraint can be found in [14]. In the sequel we
will restrict ourselves to weighed clauses inL satisfy-
ing the forward reasoning constraint.

3. Argumentation in P-DeLP

In P-DeLP we distinguish betweencertainandun-
certainclauses. A clause(ϕ, α) will be referred as cer-
tain if α = 1 and uncertain, otherwise. Moreover, a set
of clausesΓ will be deemed ascontradictory, denoted
Γ ` ⊥, if Γ ` (q, α) andΓ ` (∼ q, β), with α > 0
andβ > 0, for some atomq in L.

A P-DeLP program is a set of weighted clauses in
L in which we distinguish certain from uncertain in-
formation. As additional requirement, certain knowl-
edge is required to be non-contradictory. Formally:

Definition 2 (P-DeLP program) A P-DeLP program
P (or just programP) is a pair (Π, ∆), whereΠ is a
non-contradictory finite set of certain clauses, and∆
is a finite set of uncertain clauses.

Definition 3 (Argument. Subargument) Given a P-
DeLP programP = (Π, ∆), a setA⊆ ∆ of uncertain
clauses is anargumentfor a goalQ with necessity de-
greeα > 0, denoted〈A, Q, α〉, iff:

1. Π ∪ A ` (Q,α);

2. Π ∪ A is non contradictory; and

3. There is noA1 ⊂ A such thatΠ ∪ A1 ` (Q, β),
β > 0.

Let〈A, Q, α〉 and〈S, R, β〉 be two arguments. We
will say that〈S, R, β〉 is a subargumentof 〈A, Q, α〉
iff S ⊆ A. Notice that the goalR may be a subgoal
associated with the goalQ in the argumentA.

Note that from the definition of argument, it follows
that on the basis of a P-DeLP programP there may ex-
ist different arguments〈A1, Q, α1〉, 〈A2, Q, α2〉, . . . ,
〈Ak, Q, αk〉 supporting a given goalQ, with (possi-
bly) different necessity degreesα1, α2, . . . , αk.

It must be remarked that the three conditions in the
above definition are inherited from similar definitions

in the argumentation literature [26, 7, 12]. Given a pro-
gramP = (Π, ∆), we define the following procedu-
ral rules (based on the P-DeLP calculus [14]) to con-
struct arguments:
1) Building arguments from facts (INTF)

(Q, 1)
〈∅, Q, 1〉

for any weighted fact(Q, 1) ∈ Π

(Q, α), Π ∪ {(Q, α)} 6` ⊥, with α < 1,
〈{(Q, α)}, Q, α〉

for any weighted fact(Q, α) ∈ ∆

2) Building Arguments by GMP (MPA):

〈A1, L1, α1〉 〈A2, L2, α2〉 . . . 〈Ak, Lk, αk〉
(L0 ← L1 ∧ L2 ∧ . . . ∧ Lk , γ) with γ < 1

Π ∪ {(L0 ← L1 ∧ L2 ∧ . . . ∧ Lk , γ)} ∪
⋃k

i=1
Ai 6` ⊥

〈
⋃k

i=1
Ai ∪ {(L0 ← L1 ∧ L2 ∧ . . . ∧ Lk , γ)}, L0, β〉

for any weighted rule(L0 ← L1 ∧ L2 ∧ . . . ∧ Lk , γ) ∈ ∆, with

the necessity degreeβ = min(α1, . . . , αk, γ).

3) Extending Arguments (EAR):

〈A, P, α〉 Π ∪ {(P, α)} ` (Q, α)
〈A, Q, α〉

for any argument〈A, P, α〉, whenever (Q, α) follows from

Π ∪ {(P, α)}.

The basic idea with the argument construction pro-
cedure is to keep a trace of the setA of all uncer-
tain information used to derive a given goalQ with
necessity degreeα. Appropriate preconditions ensure
that the proof obtained always follows condition 2 in
Def. 3.

4. Computing Warrant in P-DeLP

Given a programP, it can be the case that
there exist conflicting arguments〈A1, Q, α1〉 and
〈A2,∼ Q, α2〉.3 Such conflict among arguments
will be formalized by the notions of counterargu-
ment and defeat presented next.

Definition 4 (Counterargument) Let P be a pro-
gram, and let〈A1, Q1, α1〉 and 〈A2, Q2, α2〉 be two
arguments wrtP. We will say that〈A1, Q1, α1〉 coun-
terargues〈A2, Q2, α2〉 iff there exists a subargu-
ment (calleddisagreement subargument) 〈S, Q, β〉 of
〈A2, Q2, α2〉 such thatΠ∪{(Q1, α1), (Q, β)} is con-
tradictory.

Defeat among arguments involves apreference cri-
terion on conflicting arguments, defined on the basis
of necessity measures associated with arguments.

3 For a given goalQ, we write∼ Q as an abbreviation to denote
“∼ q” if Q ≡ q and “q” if Q ≡ ∼ q.



Definition 5 (Preference criterionº) Let P be a
P-DeLP program, and and let〈A1, Q1, α1〉 and
〈A2, Q2, α2〉 be conflicting arguments inP. We will
say that〈A1, Q1, α1〉 is preferredover 〈A2, Q2, α2〉
(denoted〈A1, Q1, α1〉 º 〈A2, Q2, α2〉) iff α1 ≥ α2.
If it is the case thatα1 > α2, then we will say that
〈A1, Q1, α1〉 is strictly preferred over 〈A2, Q2, α2〉,
denoted 〈A2, Q2, α2〉 Â 〈A1, Q1, α1〉. Other-
wise, if α1 = α2 we will say that both argu-
ments areequi-preferred, denoted〈A2, Q2, α2〉 ≈
〈A1, Q1, α1〉.
Definition 6 (Defeat) Let P be a P-DeLP program,
and let 〈A1, Q1, α1〉 and 〈A2, Q2, α2〉 be two ar-
guments inP. We will say that〈A1, Q1, α1〉 defeats
〈A2, Q2, α2〉 (or equivalently〈A1, Q1, α1〉 is a de-
featerfor 〈A2, Q2, α2〉) iff

1. 〈A1, Q1, α1〉 counterargues〈A2, Q2, α2〉 with
disagreement subargument〈A, Q, α〉.

2. Either it holds that〈A1, Q1, α1〉 Â 〈A, Q, α〉, in
which case〈A1, Q1, α1〉 will be called aproper
defeater for 〈A2, Q2, α2〉, or 〈A1, Q1, α1〉 ≈
〈A, Q, α〉, in which case〈A1, Q1, α1〉 will be
called ablocking defeaterfor 〈A2, Q2, α2〉.

As in most argumentation systems [12, 23],
P-DeLP relies on an exhaustive dialectical analy-
sis which allows to determine if a given argument
is ultimately undefeated (orwarranted) wrt a pro-
gram P. An argumentation linestarting in an ar-
gument 〈A0, Q0, α0〉 is a sequence [〈A0, Q0, α0〉,
〈A1, Q1, α1〉, . . . , 〈An, Qn, αn〉, . . . ] that can be
thought of as an exchange of arguments between
two parties, a proponent (evenly-indexed argu-
ments) and anopponent(oddly-indexed arguments).
In order to avoidfallacious reasoning, argumenta-
tion theory imposes additional constraints on such an
argument exchange to be considered rationally ac-
ceptable wrt a P-DeLP programP, namely:

1. Non-contradiction: given an argumentation line
λ, the set of arguments of the proponent (resp. op-
ponent) should benon-contradictorywrt P.

2. No circular argumentation: no argument
〈Aj , Qj , αj〉 in λ is a sub-argument of an argu-
ment〈Ai, Qi, αi〉 in λ, i < j.

3. Progressive argumentation:every blocking de-
feater〈Ai, Qi, αi〉 in λ is defeated by a proper
defeater〈Ai+1, Qi+1, αi+1〉 in λ.

An argumentation line satisfying the above re-
strictions is calledacceptable, and can be proven
to be finite. Given a programP and an argument
〈A0, Q0, α0〉, the set of all acceptable argumentation
lines starting in〈A0, Q0, α0〉 accounts for a whole di-
alectical analysis for〈A0, Q0, α0〉 (i.e. all possible
dialogues rooted in〈A0, Q0, α0〉, formalized as adi-
alectical tree, denotedT〈A0, Q0, α0〉).

Nodes in a dialectical treeT〈A0, Q0, α0〉 can be
marked asundefeatedand defeatednodes (U-nodes
and D-nodes, resp.). A dialectical tree will be marked
as anAND-OR tree: all leaves inT〈A0, Q0, α0〉 will be
marked U-nodes (as they have no defeaters), and ev-
ery inner node is to be marked asD-node iff it has
at least one U-node as a child, and asU-node oth-
erwise. An argument〈A0, Q0, α0〉 is ultimately
accepted as valid (orwarranted) wrt a DeLP pro-
gram P iff the root of T〈A0, Q0, α0〉 is labelled as
U-node.

Definition 7 (Warrant) Given a programP, and a
goal Q, we will say thatQ is warranted wrtP with
a necessity degreeα iff there exists a warranted argu-
ment〈A, Q, α〉.
For a given programP, a P-DeLP interpreter will find
an answer for a goalQ by determining whetherQ
is supported by some warranted argument〈A, Q, α〉.
Different doxastic attitudes are distinguished when
providing an answer for the goalQ according to the
associated status of warrant.

1. AnswerYES (with a necessityα) wheneverQ is
supported by a warranted argument〈A, Q, α〉;

2. Answer NO (with a necessityα) whenever
for ∼ Q is supported by a warranted argu-
ment〈A,∼ Q,α〉;

3. AnswerUNDECIDED whenever (1) and (2) do not
hold.

5. Modelling an intelligent agent in
P-DeLP

Next we will present an example which illustrates
how P-DeLP can be used to model the beliefs and rea-
soning capabilities of an agent. Consider an intelligent
agent controlling an engine with three switchessw1,
sw2 andsw3. These switches regulate different fea-
tures of the engine, such as pumping system, speed,
etc. This agent may have the following certain and un-
certain knowledge about how this engine works, e.g.:

• If the pump is clogged, then the engine gets no fuel.

• Whensw1 is on, normally fuel is pumped properly.

• When fuel is pumped properly, fuel seems to work ok.

• Whensw2 is on, usually oil is pumped.

• When oil is pumped, usually it works ok.

• When there is oil and fuel, usually the engine works
ok.

• When there is heat, then the engine is usually not ok.

• When there is heat, normally there are oil problems.

• When fuel is pumped and speed is low, then there are
reasons to believe that the pump is clogged.

• Whensw2 is on, usually speed is low.

• Whensw2 andsw3 are on, usually speed is not low.

• Whensw3 is on, usually fuel is ok.



(1) (∼fuel ok ← pump clog, 1)
(2) (sw1, 1)
(3) (sw2, 1)
(4) (sw3, 1)
(5) (heat, 1)
(6) (pump fuel ← sw1 , 0.6)
(7) (fuel ok ← pump fuel , 0.3)
(8) (pump oil ← sw2 , 0.8)
(9) (oil ok ← pump oil , 0.8)
(10) (engine ok ← fuel ok ∧ oil ok , 0.3)
(11) (∼engine ok ← heat , 0.95)
(12) (∼oil ok ← heat , 0.9)
(13) (pump clog ← pump fuel ∧ low speed , 0.7)
(14) (low speed ← sw2 , 0.8)
(15) (∼low speed ← sw2 , sw3 , 0.8)
(16) (fuel ok ← sw3 , 0.9)

Figure 1. P-DeLP program Peng

Suppose also that the agent knows some particu-
lar facts:sw1, sw2 andsw3 are on, and there is heat.
The knowledge of such an agent can be modelled by
the programPeng shown in Fig. 1, where the finite set
of certain clauses (i.e.Π) is from clause (1) to (5), and
the finite set of uncertain clauses (i.e.∆) is from clause
(6) to (16). Note that uncertainty is assessed in terms
of different necessity measures. From the P-DeLP pro-
gram in Fig. 1 differentargumentscan be derived us-
ing the procedural rules defined in Section 3. Thus, for
example, the argument〈B, fuel ok, 0.3〉 can be de-
rived fromPeng as follows:

i) 〈∅, sw1, 1〉 from (2) via INTF.
ii) 〈B′, pump fuel, 0.6〉 from (6) and i) via MPA.
iii) 〈B, fuel ok, 0.3〉 from (7) and ii) via MPA.

where

B′ = {(pump fuel ← sw1 , 0.6)} and
B = { (pump fuel ← sw1 , 0.6) ;

(fuel ok ← pump fuel , 0.3)}.
Similarly, an argument〈C, oil ok, 0.8〉 can be derived
from Peng using the rules (3), (8) and (9) via INTC,
MPA, and MPA, resp., with

C = {(pump oil ← sw2 , 0.8);
(oil ok ← pump oil , 0.8)}.4

Finally, an argument〈A1, engine ok, 0.3〉 can be de-
rived fromPeng as follows:

i) 〈B, fuel ok, 0.3〉 as shown above.
ii) 〈C, oil ok, 0.8〉 as shown above.
iii) 〈A1, engine ok, 0.3〉 from i), ii), 10) via MPA.

where A1={(engine ok ← fuel ok ∧ oil ok , 0.3)
}∪B ∪ C. Note that arguments〈C, oil ok, 0.8〉 and
〈B, fuel ok, 0.3〉 are subarguments (see Def. 3) of
〈A1, engine ok, 0.3〉.

Let us assume that the agent is in charge of control-
ling the engine, answering queries from other agents
(e.g. a supervisor agent) about the status of the engine.

For instance, the query? − (engine ok, 0.8) corre-
sponds with proving whether the engine works ok with
a certainty degree of at least0.8. In order to answer this
query, the agent will apply the procedure described in
the previous sections: first will compute an argument
supportingengine ok, and then will perform a recur-
sive analysis of defeaters for these arguments, comput-
ing its associated dialectical tree.

In this particular example, the agent will
find an argument supportingengine ok, namely
〈A1, engine ok, 0.3〉. A counteragument (see Def. 4)
for 〈A1, engine ok, 0.3〉 can be found, namely
〈A2,∼ fuel ok, 0.6〉, obtained from (2), (3), (6),
(14), (13) and (1) by applying INTF, INTF, MPA,
MPA, MPA, and EAR, resp., with

A2 = { (pump fuel ← sw1 , 0.6),
(low speed ← sw2 , 0.8),
(pump clog ← pump fuel ∧ low speed , 0.7)}.

The argument〈A2,∼ fuel ok, 0.6〉 is a counter-
argument for the argument〈A1, engine ok, 0.3〉
as there exists a subargument〈B, fuel ok, 0.3〉
in 〈A1, engine ok, 0.3〉 such that the set
Π ∪ {(fuel ok, 0.3), (∼ fuel ok, 0.6)} is con-
tradictory. Note as well that〈A2,∼ fuel ok, 0.6〉 is
a proper defeater (Def. 6) for〈A1, engine ok, 0.3〉,
as 〈A2,∼ fuel ok, 0.6〉 counterargues the argu-
ment 〈A1, engine ok, 0.3〉 with disagreement subar-
gument〈B, fuel ok, 0.3〉, and0.6 > 0.3.

As the defeater 〈A2,∼ fuel ok, 0.6〉 is also
an argument, a recursive analysis can be car-
ried out by the agent, computing anargu-
mentation line rooted in 〈A1, engine ok, 0.3〉.
In fact, note that 〈A2,∼ fuel ok, 0.6〉 has
the subargument 〈A2

′, low speed, 0.8〉, with
A2

′ = {(low speed ← sw2 , 0.8)}. From the pro-
gramPeng (Fig. 1) a blocking defeater for the argu-
ment 〈A2,∼ fuel ok, 0.6〉 can be derived, namely
〈A3,∼ low speed, 0.8〉, obtained from (3), (4) and
(15) via INTF, INTF and MPA, respectively. In this
case we have:

A3 = { (∼ low speed ← sw2 , sw3 , 0.8) }
Note that this third defeater can be thought of as

an answer of the proponent to the opponent, rein-
stating the first argument〈A1, engine ok, 0.3〉, as it
defeats the opponent’s defeater〈A2,∼ fuel ok, 0.6〉.
The above situation can be expressed in the following
argumentation line:5

[ 〈A1, engine ok, 0.3〉, 〈A2,∼ fuel ok, 0.6〉,
〈A3,∼ low speed, 0.8〉 ]

In order for the preceding analysis to be ex-
haustive, every possible argumentation line rooted
in 〈A1, engine ok, 0.3〉 should be analysed.

5 Note that the proponent’s last defeater in the above se-
quence could be on its turn defeated by a blocking defeater
〈A2

′, low speed, 0.8〉, resulting in
[〈A1, engine ok, 0.3〉, 〈A2,∼ fuel ok, 0.6〉,

〈A3,∼ low speed, 0.8〉, 〈A2
′, low speed, 0.8〉 . . . ]

However, such line isnot acceptable, as it violates the condi-
tion of non-circular argumentation.



〈A1, engine ok, 0.3〉
(D)

¡
¡

@
@

〈A2,∼ fuel ok, 0.6〉
(D)

〈A5,∼engine ok, 0.95〉
(U)

¡
¡

@
@

〈A3,∼low speed, 0.8〉
(U)

〈A4, fuel ok, 0.6〉
(U)

Figure 2. Dialectical tree for
〈A1, engine ok, 0.3〉

In this particular case, note that the argument
〈A2,∼ fuel ok, 0.6〉 has a second (blocking) de-
feater 〈A4, fuel ok, 0.6〉, computed from (4),
(16) via INTF and MPA, respectively. The argu-
ment 〈A1, engine ok, 0.3〉 has also a second de-
feater 〈A5,∼ engine ok, 0.95〉, computed from (5),
(11) via INTF and MPA, respectively. In this case we
have:

A4 = { (fuel ok ← sw3 , 0.9) }
A5 = { (∼ engine ok ← heat , 0.8) }

There are no more arguments to consider. As a con-
sequence, there are three acceptable argumenta-
tion lines rooted in〈A1, engine ok, 0.3〉, namely:

• [ 〈A1, engine ok, 0.3〉, 〈A2,∼ fuel ok, 0.6〉,
〈A3,∼ low speed, 0.8〉 ]

• [ 〈A1, engine ok, 0.3〉, 〈A2,∼ fuel ok, 0.6〉,
〈A4, fuel ok, 0.9〉 ]

• [ 〈A1, engine ok, 0.3〉, 〈A5,∼ engine ok, 0.95〉 ]

Fig. 2 shows the corresponding dialectical
tree T〈A1, engine ok, 0.3〉 rooted in the argument
〈A1, engine ok, 0.3〉. The marking procedure de-
fined in Section 4 results in the nodes of the tree
T〈A1, engine ok, 0.3〉 marked asU -nodes andD-nodes
as shown in the figure.

The argument〈A1, engine ok, 0.3〉 is the only
possible argument the agent can compute supporting
the queryengine ok. As this argument is ultimately
defeated, it is not warranted (Def. 7). On the con-
trary, the agent can compute there exists an argument
〈A5,∼ engine ok, 0.95〉 supporting∼ engine ok,
and such argument has no defeaters, and therefore it is
warranted. The answer to goalengine ok will there-
fore beNO, with α = 0.95.

In a MAS context, intelligent agents will encode
their knowledge about the world using a P-DeLP pro-
gram. Figure 3 outlines the different elements asso-
ciated with a P-DeLP-based agent. Clearly, our agent
will be usually performing its activities in a dynamic
environment, so that it should also be able to reason,
plan, and act according to new perceptions from the
outside world. Such perceptions will be sensed by the
agent, integrating them into its current beliefs. For the

Figure 3. A P-DeLP-based agent in a MAS
context

sake of simplicity, we will assume that such percep-
tions constitute new facts to be added to the agent’s
knowledge base. As already stated in the introduction,
fuzzy propositions provide us with a suitable represen-
tation model as our agent will probably have vague or
imprecise information about the real world, as its sen-
sors are not perfect devices.

Defining a generic procedure for updating the
agent’s knowledge base is not easy, as completely
new incoming information (e.g. facts with new predi-
cate names) might result in the strict knowledgeΠ be-
coming contradictory (see Def. 2). In some particular
cases the agent will only perceive changes in the ne-
cessity measure of the already known facts (e.g.
the agent has a fact(heat, 1) in the knowledge
base, but the sensed temperature has changed, mod-
elled by a new fact(heat, 0.8)). In such cases, a
simple but effective strategy can be applied, sim-
ilar as the one suggested in [8]. We will make
the assumption that new perceptions always su-
persede old ones, so that a if a new perception
(p, value) is sensed at timet, and the agent has al-
ready a fact(p, value′) in its strict knowledge base
Π, then the updated knowledge base will be com-
puted asΠ \ {(p, value′)} ∪ {(p, value)}.

6. Conclusions and related work

In this paper we have described how to model
an agent’s beliefs and perceptions using P-DeLP. A
salient feature of P-DeLP is that it is based on two log-
ical frameworks that have already been implemented
(namely PGL [2] and DeLP [17]). Several features
leading to efficient implementations of the argumen-
tative proof procedure described in this paper have
been also recently studied, particularly those related
to comparing conflicting arguments by specificity [27]
and defining transformation properties for DeLP pro-
grams [9].

In this context, P-DeLP keeps all the original fea-
tures of DeLP while incorporating more expressiv-
ity and representation capabilities by means of possi-
bilistic uncertainty and fuzzy knowledge. One particu-
larly interesting feature of P-DeLP is the possibility of



defining aggregated preference criteria by combining
the necessity measures associated with arguments with
other syntax-based criteria (e.g. specificity [26, 27]).

In the last years the development of combined ap-
proaches based on qualitative reasoning and un-
certainty has deserved much research work [21].
Preference-based approaches to argumentation have
been developed, many of them oriented towards for-
malizing conflicting desires in multiagent systems
[3, 4, 5]. In contrast with these preference-based ap-
proaches, the P-DeLP framework involves neces-
sity measures explicitly attached to fuzzy formulas
and the proof procedure of the underlying possibilis-
tic fuzzy logic is used for computing the necessity
measure for arguments.

There have also been generic approaches con-
necting defeasible reasoning and possibilistic logic
(e.g.[6]), and recently a number of hybrid ap-
proaches connecting argumentation and uncertainty
have been developed. Probabilistic Argumenta-
tion Systems [19, 20] use probabilities to com-
pute degrees of support and plausibility of goals,
related to Dempster-Shafer belief and plausibil-
ity functions. However this is not a dialectics-based
framework as opposed to the one presented in this pa-
per. In [25] a fuzzy argumentation system based on
extended logic programming is proposed. In con-
trast with our framework, this approach relies only
on fuzzy values applied to literals and there is no ex-
plicit treatment of possibilistic uncertainty.

Part of our current research work will be developed
into different directions. First, we will extend the ex-
isting implementation of DeLP to incorporate the new
features of P-DeLP. Second, we will apply the re-
sulting implementation of P-DeLP to improve exist-
ing real-world applications of DeLP and to develop
new ones. Finally, we will analyze extending P-DeLP
to first order. It must be remarked that the Generalized
Modus Ponens rule used in P-DeLP is syntactically the
same as the one used in possibilistic logic [15]. As a
consequence, to implement the machinery of P-DeLP
the underlying possibilistic fuzzy logic PGL can be re-
placed by the possibilistic logic. The advantage of this
approach is that the current logic programming system
can be extended to first order, incorporating fuzzy uni-
fication between fuzzy constants [2].
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