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Abstract

We present different constructions for non-prioritized belief revision, that is, belief
changes in which the input sentences are not always accepted. First, we present
the concept of explanation in a deductive way. Second, we define multiple revision
operators with respect to sets of sentences (representing explanations), giving repre-
sentation theorems. Finally, we relate the formulated operators with argumentative
systems and default reasoning frameworks.

1 Introduction

Belief Revision systems are logical frameworks for modelling the dynamics of
knowledge. That is, how we modify our beliefs when we receive new infor-
mation. The main problem arises when that information is inconsistent with
the beliefs that represent our epistemic state. For instance, suppose we be-
lieve that a Ferrari coupe is the fastest car and then we found out that some
Porsche cars are faster than any Ferrari cars. Surely, we need to revise our
beliefs in order to accept the new information while preserving as much of the
old information as possible.

One of the most controversial properties of the revision operators is success.
Success specifies that the new information has primacy over the beliefs of an
agent. In this work we propose a kind of non-prioritized revision operator in
which the new information is supported by an explanation. Every explanation
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contains an explanans (the beliefs that support a conclusion) and an explanan-
dum (the final conclusion). Each explanation is a set of sentences with some
restrictions. The operators we propose, which are defined upon belief bases,
are an intermediate model between semi-revision operator [Han97] and merge
operator [Fuh97]. Moreover, we present a close connection between these new
operators and frameworks for default reasoning. The idea is that the beliefs to
be deleted in a belief base could be preserved in an alternate set as defeasible
rules or assumptions.

There are many different frameworks for belief revision but AGM [AGM85] is
the one which has received the most attention. Most others rely on the foun-
dations of AGM. They present an epistemic model (the formalism in which
the beliefs will be represented) and then they define different kinds of opera-
tors. The basic representation of epistemic states is through belief sets (sets of
sentences closed under logical consequence) or belief bases (sets of sentences
not necessarily closed). Each operator may be presented in two ways: by giv-
ing an explicit construction (algorithm) for the operator, or by giving a set
of rationality postulates to be satisfied. Rationality postulates determine con-
straints that the operators should satisfy. They treat the operators as black
boxes; after receiving certain inputs (of new information) we know what the
response will be, but not the internal mechanisms used.

The operators for change use selection functions to determine which beliefs will
be erased from the epistemic state. Partial meet contractions (AGM frame-
work) are based on a selection among subsets of the original set that do not
imply the information to be retracted. The kernel contraction approach is
based on a selection among the sentences that imply the information to be
retracted. Revision operators can be defined through Levi identity; in order
to revise an epistemic state with respect to a sentence α, we contract with
respect to ¬α and then expand the new epistemic state with respect to α.

1.1 On the use of explanations

The role of explanations in knowledge representation has been widely studied
in [BB93,Gä88,WPFS95,Pag96,PNF94]. We can motivate the use of explana-
tions with an example. Suppose that Michael believes that (α) all birds fly
and that (β) Tweety is a bird. Thus, he will believe that (δ) Tweety flies.
Then, Johana tells him that Tweety does not fly. As a consequence, Michael
will have to drop the belief in α or the belief in β forced by having to drop
δ. However, it does not seem like a rational attitude to incorporate any ex-
ternal belief without pondering it. Usually, an intelligent agent demands an
explanation supporting the provided information. Even more so if that infor-
mation contradicts its own set of beliefs. Being rational, Michael will demand
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an explanation for the belief ¬δ. For instance, Johana accompanies her con-
tention of Tweety does not fly with the sentences Tweety does not fly because
it is a penguin and penguins are birds but they do not fly. Perhaps convinced,
Michael would have to check his beliefs in order to determine whether he
believes Tweety flies.

The main role of an explanation is to rationalize facts. At the base of each
explanation rests a why-question [Res70]: “Why does Tweety not fly?”, “Why
did he say what he did?”, “Why is it raining?”. We think that a rational agent,
before incorporating a new belief that contradicts its knowledge, demands an
explanation for the provided information by means of a why-question. Then,
if the explanation resists the discussion, the new belief, or its explanation, or
both are incorporated into the knowledge.

1.2 The belief revision framework

Since explanations are a major instrument for producing rational belief
changes, they should be representable in belief revision theory. Unfortunately,
AGM theory [AGM85,Gä88], the dominant framework for belief revision, does
not seem to allow for an account of explanations, and the same applies to most
other frameworks of belief revision that we are aware of.

The reason for this is that an explanation should be capable of inducing belief
in a statement that would not be accepted without the explanation; when
faced with a statement α, the epistemic agent does not believe in it, but if an
explanation A is provided, then he or she will acquire belief in α. This simple
feature cannot be modelled in the AGM framework for the simple reason that
it only contains two mechanisms for the receipt of new information -expansion
and revision- both of which satisfy the success postulate according to which
the input information is always accepted.

In our opinion, a better account of explanation can be obtained with a semi-
revision operator (non-prioritized belief revision operator). By this, we mean
an operator that sometimes accepts the new information and sometimes rejects
it. If the new information is accepted, then deletions from the old information
are made if this is necessary to maintain consistency. A wide treatment of
non-prioritized revision operators on belief sets can be found in [HFCF01].

We will adopt a propositional language L with a complete set of boolean
connectives: ¬, ∧, ∨, →, ↔. Formulæ in L will be denoted by lowercase Greek
characters: α, β, δ, . . . , ω. Sets of sentences in L will be denoted by uppercase
Latin characters: A,B, C, . . . , Z. The symbol> represents a tautology or truth.
The symbol⊥ represents a contradiction or falsum. The characters γ and σ will
be reserved to represent selection functions for change operators. We also use
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a consequence operator Cn. Cn takes sets of sentences in L and produces new
sets of sentences. The operator Cn satisfies inclusion (A ⊆ Cn(A)), iteration
(Cn(A) = Cn(Cn(A))), and monotony (if A ⊆ B then Cn(A) ⊆ Cn(B)). We
will assume that the consequence operator includes classical consequences and
verifies the standard properties of supraclassicality (if α can be derived from A
by deduction in classical logic, then α ∈ Cn(A)), deduction (β ∈ Cn(A∪{α})
if and only if (α → β) ∈ Cn(A)) and compactness (if α ∈ Cn(A) then α ∈
Cn(A′) for some finite subset A′ of A). To simplify notation, we write Cn(α)
for Cn({α}) where α is any sentence in L. We also write α ∈ Cn(A) as A ` α.

Let K be a set of sentences. As in the AGM framework, we will assume three
different epistemic attitudes: accepted (whenever α ∈ Cn(K)), rejected (when-
ever ¬α ∈ Cn(K)) and undetermined (whenever α 6∈ Cn(K) and ¬α 6∈ Cn(K)).

2 Explanations in the belief revision framework

In order to present a revision operator based on explanations, we will first
define an explanation. An explanation contains two main parts: an explanans,
that is, the beliefs that support a conclusion, and an explanandum, that is,
the final conclusion of the explanans. We will use a set of sentences as the
explanans and a single sentence as the explanandum.

Definition 1 The set A is an explanation for the sentence α if and only if
the following properties are satisfied:

(1) Deduction: A ` α.
(2) Consistency: A 0 ⊥.
(3) Minimality: If B ⊂ A then B 0 α.
(4) Informational Content: Cn(A) * Cn(α).

The relation A explains α will be noted as A ½ α.

Deduction determines that the explanans implies the explanandum. Consis-
tency averts the possibility that a conclusion be derived from an inconsistent
set. Minimality establishes that there are no irrelevant beliefs in the explanans.
Informational content precludes that the explanandum would imply every sen-
tence in the explanans (for example, A = {α∨β, α∨¬β} is not an explanation
for α because Cn(A) ⊆ Cn(α)). Moreover, informational content precludes
that a single sentence could be an explanation for itself (this means that it is
not the case that {α} ½ α for any sentence α).
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In dialogues between two agents it is very common that an agent does not
fully accept the information provided by the other. Moreover, it is typical that
an agent accepts the new information partially. So, we will define a revision
operator of non-prioritized revision in order to capture this behavior. Other
work related to partial acceptance was formulated by Fermé and Hansson
[FH98].

Now we will present postulates for a revision operator by a set of sentences.
We will extend the framework in [Han97] to allow for multiple inputs, i.e.,
for sets of sentences (explanations) as input. Therefore, our operator will be
a function that takes us from two sets of sentences to a new set of sentences.
We will assume that A is a set of sentences. Let K be a set of sentences and
“◦” a revision operator. We propose the following postulates 1 :

Inclusion: K◦A ⊆ K ∪ A.
This postulate establishes that, if an agent revises its belief base K with
respect to a set A, then its new stock of beliefs will be contained in the
union of K and A.

Vacuity: If K ∪ A 0 ⊥ then K◦A = K ∪ A.
This postulate establishes that if the input set A is consistent with the
original beliefs K, then the revised belief base is equal to the union of K
and A.

Vacuity 2: If A ⊆ K and K 0 ⊥ then K◦A = K.
This postulate determines that if the input set is already included in a
consistent belief base K, then the revised belief base is equal to K.

Weak Success: If K ∪ A 0 ⊥ then A ⊆ K◦A.
This postulate says that A is included in the revised belief base whenever
A is consistent with K.

Stability: If A ⊆ K and K 0 ⊥ then A ⊆ K◦A.
This postulate says that A is included in the revised belief base whenever
A is already included in K and K is consistent.

Consistency: If A 0 ⊥ then K◦A 0 ⊥.
This postulate is equivalent to consistency postulate of the AGM model, in
which the revised set is consistent if the input set is consistent.

Consistency Preservation: If K 0 ⊥ then K◦A 0 ⊥.
This postulate ensures that the revised belief base is consistent whenever
the original belief base is consistent.

Strong Consistency: K◦A 0 ⊥.
This postulate ensures consistency in the revised belief base.

Core Retainment: If α ∈ (K ∪A) \ (K◦A) then there is a set H such that
H ⊆ (K ∪ A), H is consistent but H ∪ {α} is inconsistent.

1 Core Retainment and Relevance have been modified from Hansson’s works
[Han91,Han96] to be used in our formalism. Similarly, Congruence has been modi-
fied from Fuhrmann’s work [Fuh97].
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This postulate expresses the intuition that nothing is removed from the
union of the original belief base and the input set unless its removal in some
way contributes to making the new belief base consistent.

Relevance: If α ∈ (K ∪ A) \ (K◦A) then there is a set H such that K◦A ⊆
H ⊆ (K ∪ A), H is consistent but H ∪ {α} is inconsistent.
This postulate is a stronger version of core retainment and we will use it to
characterize some kinds of revision operators.

Congruence: If K ∪ A = K ∪B then K◦A = K◦B.
This postulate expresses that if A joined with K is equal to B joined with
K then the revision with respect to A is equal to the revision with respect
to B.

Fairness: If the condition that A 0 ⊥, B 0 ⊥ and for all H ⊆ K holds
that (H ∪ A) ` ⊥ if and only if (H ∪ B) ` ⊥, then (K ∪ A) \ (K◦A) =
(K ∪B) \ (K◦B).
This postulate establishes that, if any subset H of K is inconsistent with
a consistent set A if and only if it is inconsistent with a consistent set B,
then the sentences erased in the respective revisions with respect to A and
B are the same.

Reversion: If K∪A and K∪B have the same minimally inconsistent subsets
then (K ∪ A) \ (K◦A) = (K ∪B) \ (K◦B).
This postulate establishes that, if K ∪ A and K ∪ B contain the same
minimally inconsistent subsets then the sentences erased in the respective
revisions with respect to A and B are the same.

Weak Monotony: If A ⊆ B and K ∪B 0 ⊥ then K◦A ⊆ K◦B.
This postulate establishes that if a set B contains a subset A and B is
consistent with K, then the revision of K with respect to A will be contained
in the revision of K with respect to B.

Proposition 2 Some interesting relations among postulates:

(1) If “◦” satisfies relevance then it satisfies core retainment.
(2) If “◦” satisfies strong consistency then it satisfies consistency and con-

sistency preservation.
(3) If “◦” satisfies inclusion and core retainment then it satisfies vacuity.
(4) If “◦” satisfies inclusion and reversion then it satisfies congruence.
(5) If “◦” satisfies vacuity then it satisfies weak success.
(6) If “◦” satisfies inclusion and vacuity then it satisfies weak monotony.
(7) If “◦” satisfies inclusion and fairness then it satisfies weak monotony.
(8) If “◦” satisfies vacuity then it satisfies vacuity 2.

PROOF.

(1) Straightforward.
(2) Straightforward.
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(3) Let K ∪A 0 ⊥. We must show that K◦A = K ∪A. By inclusion K◦A ⊆
K ∪A. It remains to show that K ∪A ⊆ K◦A. Suppose, to the contrary,
that K ∪ A * K◦A. That is, there is some α such that α ∈ K ∪ A but
α 6∈K◦A. Then α ∈ (K ∪ A) \ (K◦A). By core retainment there is a set
H such that H ⊆ K ∪ A, H 0 ⊥ but H ∪ {α} ` ⊥. Since α ∈ K ∪ A
and H ⊆ K ∪ A then H ∪ {α} ⊆ K ∪ A. Therefore, K ∪ A ` ⊥. This
contradiction establishes the claim.

(4) Let K ∪ A = K ∪ B. Then K ∪ A and K ∪ B have the same minimally
inconsistent subsets. From reversion we have that (K ∪ A) \ (K◦A) =
(K ∪B) \ (K◦B). We need to show that K◦A = K◦B.

Assume, to the contrary, that K◦A 6= K◦B. That is, there is a sentence
α ∈ K◦A and α 6∈K◦B. From inclusion it follows that α ∈ K∪A. Since
K ∪ A = K ∪ B then α 6∈ (K ∪ A) \ (K◦A) and α ∈ (K ∪ B) \ (K◦B).
This contradiction establishes the claim.

(5) Straightforward.
(6) Let A ⊆ B and K ∪ B 0 ⊥. We must show that K◦A ⊆ K◦B. By

inclusion we have that K◦A ⊆ K ∪ A. Since “◦” satisfies vacuity then
K ∪ B 0 ⊥ implies that K◦B = K ∪ B. Since K ∪ A ⊆ K ∪ B then
K◦A ⊆ K◦B and we are done.

(7) Let A ⊆ B and K ∪ B 0 ⊥. We must show that K◦A ⊆ K◦B. Assume,
to the contrary, that K◦A * K◦B. Then there is a sentence α such that
α ∈ K◦A and α 6∈K◦B. By inclusion if α ∈ K◦A then α ∈ K ∪ A.
Since A ⊆ B then α ∈ K ∪B. Then α ∈ K◦A, α ∈ K ∪A, α 6∈K◦B and
α ∈ K∪B. That means that α 6∈ (K∪A)\(K◦A) and α ∈ (K∪B)\(K◦B).
Therefore (K ∪A) \ (K◦A) 6= (K ∪B) \ (K◦B). From the hypothesis we
have that K ∪A 0 ⊥. Therefore, for all H ⊆ K we have that H ∪A 0 ⊥
and H ∪B 0 ⊥. By fairness (K ∪A) \ (K◦A) = (K ∪B) \ (K◦B). This
contradiction establishes the claim.

(8) Let A ⊆ K and K 0 ⊥. We must show that K◦A = K. Since A ⊆ K
and K 0 ⊥ then K ∪ A 0 ⊥. By vacuity K◦A = K ∪ A. Since A ⊆ K
then K◦A = K ∪ A = K. ¤

The above properties are proposed as basic requirements for an account of ex-
planation in a belief revision framework. The mechanism of a revision operator
by a set of sentences with partial acceptance is:

(1) The input set A is initially accepted.
(2) All possible inconsistencies of K ∪ A are removed.

This operator is an operator of external revision. The name “external” indi-
cates that the revision process takes place outside of the original set. We can
see that there is an intermediate stage in which the epistemic state can be
inconsistent.
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The operator we will define is an intermediate form between two non-prioritized
revision operators: semi-revision and merge. Semi-revision is a non-prioritized
revision operator proposed by Hansson [Han97] that allows the revision of a
set K with respect to a single sentence α. On the other hand, a merge operator
was presented by Fuhrmann [Fuh97] and it allows the revision of two arbitrary
sets of sentences.

2.1 Kernel Revision by a Set of Sentences

The first construction of revision by a set of sentences is based on the concept
of a kernel set.

Definition 3 (Hansson [Han94]) Let K be a set of sentences and α a sentence.
Then K⊥⊥α is the set of all K ′ such that K ′ ∈ K⊥⊥α if and only if K ′ ⊆ K,
K ′ ` α, and if K ′′ ⊂ K ′ then K ′′ 0 α. The set K⊥⊥α is called the kernel set,
and its elements are called the α-kernels of K.

For instance, if K = {p, p → q, r, r → s, r ∧ s → q, t → u} then the set of q-
kernels is equal to {{p, p → q}, {r, r → s, r ∧ s → q}}. If K = {p, p → q} then
K⊥⊥(p → p) = {∅} because p → p ∈ Cn(∅) and K⊥⊥¬p = ∅ since K 0 ¬p.

In order to define the operator of revision by a set of sentences we need to
use an incision function. This function selects sentences to be removed and
it is called incision function because it makes an incision in every ⊥-kernel.
However, this function is not only applied to K. It is also applied to supersets
of K. Therefore, we need an external incision function for K.

Definition 4 Let K be a set of sentences. An external incision function for
K is a function “σ”(σ : 22L⇒2L) such that for any set A ⊆ L, the following
hold:

1) σ((K ∪ A)⊥⊥⊥) ⊆ ∪((K ∪ A)⊥⊥⊥).

2) If X ∈ (K ∪ A)⊥⊥⊥ and X 6= ∅ then (X ∩ σ((K ∪ A)⊥⊥⊥)) 6= ∅.

The limit case in which (K ∪ A)⊥⊥⊥ = ∅ then σ((K ∪ A)⊥⊥⊥) = ∅.

For instance, taking K = {t, u, r, r → s} and A = {¬t, p, p → ¬s} then K∪A=
{t, u, r, r → s,¬t, p, p → ¬s}, (K ∪ A)⊥⊥⊥={{r, r → s, p, p → ¬s}, {t,¬t}},
and some possible results of σ((K ∪ A)⊥⊥⊥) are {p, t}, {p,¬t} and {p → ¬s, t}.

Formally, we define the kernel revision by a set of sentences as follows.

Definition 5 Let K and A be sets of sentences and “σ” an external incision
function for K. The operator “◦” of kernel revision a by set of sentences
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(◦ : 2L×2L⇒2L) is defined as K◦A = (K ∪ A) \ σ((K ∪ A)⊥⊥⊥).

The mechanism of this operator is to add A to K and then eliminate from the
result all possible inconsistency by means of an incision function that makes
a “cut” over each minimally inconsistent subset of K ∪A. Since this operator
uses an incision function and the set of ⊥-kernels, we call it kernel revision by
a set of sentences.

An axiomatic characterization can now be given for this kind of operator.

Theorem 6 Let K be a belief base. The operator “◦” is a kernel revision by
a set of sentences if and only if it satisfies inclusion, strong consistency, core
retainment and reversion.

PROOF.

[Construction to Postulates] Let “◦σ” be a kernel revision by a set of
sentences for K. We must show that “◦σ” satisfies the postulates enumerated
in the theorem. Let K◦σA = (K ∪ A) \ (σ((K ∪ A)⊥⊥⊥)).
Inclusion: Straightforward from the definition.
Strong Consistency: Since all sets in (K ∪ A)⊥⊥⊥ are minimally inconsis-

tent, and σ cuts every set in it, then (K∪A)\σ((K ∪ A)⊥⊥⊥) is consistent.
Core Retainment: Suppose that α ∈ (K ∪ A) \ (K◦σA). That is, α ∈

K ∪A and α 6∈K◦σA. Then α ∈ σ((K ∪ A)⊥⊥⊥). Since σ((K ∪ A)⊥⊥⊥) ⊆
∪((K ∪ A)⊥⊥⊥) there is some X such that α ∈ X and X ∈ (K ∪ A)⊥⊥⊥.
Let Y = X \ {α}. Then there is some Y such that Y ⊆ (K ∪ A), Y 0 ⊥
but Y ∪ {α} ` ⊥. Therefore, core retainment is satisfied.

Reversion: Suppose that K ∪ A and K ∪ B have the same minimally
inconsistent subsets. That means that (K ∪ A)⊥⊥⊥ = (K ∪B)⊥⊥⊥. Since
σ is a well defined function then σ((K ∪ A)⊥⊥⊥) = σ((K ∪B)⊥⊥⊥). We
need to show that (K ∪ A) \ (K◦σA) = (K ∪B) \ (K◦σB).
⊆) If α ∈ (K∪A)\(K◦σA) then, by definition of “◦”, α ∈ σ((K ∪ A)⊥⊥⊥).

Since σ((K ∪ A)⊥⊥⊥) = σ((K ∪B)⊥⊥⊥) then α ∈ K∪B and α 6∈K◦σB.
Therefore, (K ∪ A) \ (K◦σA) ⊆ (K ∪B) \ (K◦σB).

⊇) If α ∈ (K∪B)\(K◦σB) then, by definition of “◦”, α ∈ σ((K ∪B)⊥⊥⊥).
Since σ((K ∪B)⊥⊥⊥) = σ((K ∪ A)⊥⊥⊥) then α ∈ K∪A and α 6∈K◦σA.
Therefore, (K ∪B) \ (K◦σB) ⊆ (K ∪ A) \ (K◦σA).

[Postulates to Construction] We need to show that if an operator sat-
isfies the enumerated postulates then it is possible to build an operator in
the way specified in the theorem. Let “σ” be a function such that, for every
pair of sets K and A, it holds that:

σ((K ∪ A)⊥⊥⊥) = {α : α ∈ (K ∪ A) \ (K◦A)}
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We must show:
Part A.
(1) “σ” is a well defined function.

That is, if A and B are sets of sentences such that (K ∪ A)⊥⊥⊥ =
(K ∪B)⊥⊥⊥, we must show that σ((K ∪ A)⊥⊥⊥) = σ((K ∪B)⊥⊥⊥).
From the hypothesis we have that K ∪ A and K ∪ B have the
same minimally inconsistent subsets. It follows from reversion that
(K ∪ A) \ (K◦A) = (K ∪B) \ (K◦B). Therefore:

σ((K ∪ A)⊥⊥⊥) = {α : α ∈ (K ∪ A) \ (K◦A)}
= {α : α ∈ (K ∪B) \ (K◦B)}
= σ((K ∪B)⊥⊥⊥)

Therefore, “σ” is well defined.
(2) σ((K ∪ A)⊥⊥⊥) ⊆ ∪((K ∪ A)⊥⊥⊥).

Let α ∈ σ((K ∪ A)⊥⊥⊥). Then α ∈ (K ∪ A) \ (K◦A). Due to core
retainment there is some H such that H ⊆ (K ∪ A), H 0 ⊥ but
H∪{α} ` ⊥. Since α ∈ K∪A then there is a ⊥-kernel K ′ in (K∪A)
(i.e., there is a minimally inconsistent subset of K ∪ A) such that
K ′ ⊆ H ∪ {α} and α ∈ K ′. Therefore, α ∈ ∪((K ∪ A)⊥⊥⊥).

(3) If X ∈ (K ∪ A)⊥⊥⊥ then (X ∩ σ((K ∪ A)⊥⊥⊥)) 6= ∅.
Let X ∈ ((K ∪ A)⊥⊥⊥). We need to show that X ∩σ((K ∪ A)⊥⊥⊥) 6=
∅. Due to strong consistency K◦A 0 ⊥. Since X ` ⊥ we may
conclude that X * K◦A. This means that there is some β such that
β ∈ X and β 6∈K◦A. Since X ⊆ (K ∪A) then β ∈ (K ∪A) \ (K◦A),
i.e., β ∈ σ((K ∪ A)⊥⊥⊥). So β ∈ (X ∩ σ((K ∪ A)⊥⊥⊥)). Therefore,
(X ∩ σ((K ∪ A)⊥⊥⊥)) 6= ∅.

Part B: “◦σ” is equal to “◦”.
Due to inclusion and from the definition of σ((K ∪ A)⊥⊥⊥) we conclude
that K◦A = K◦σA. ¤

2.2 Partial Meet Revision by a Set of Sentences

The second construction of revision by a set of sentences is based on the
concept of a remainder set.

Definition 7 (Alchourrón, Gärdenfors & Makinson [AGM85]) Let K be a set of
sentences and α a sentence. Then K⊥α is the set of all K ′ such that K ′ ∈ K⊥α
if and only if K ′ ⊆ K, K ′ 0 α and if K ′ ⊂ K ′′ ⊆ K then K ′′ ` α. The set
K⊥α is called the remainder set of K with respect to α, and its elements are
called the α-remainders of K.

For instance, if K = {p, p → q, r, r → s, r∧s → q, t → u} then the set of
q-remainders is {{p → q, r → s, r∧s → q, t → u},{p, r → s, r∧s → q, t → u},
{p→ q, r, r∧s→ q, t→ u},{p, r, r ∧ s → q, t → u}}. The set of v-remainders
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of K is equal to {K} since K 0 v. The set of (p → p)-remainders of K is ∅
because p → p ∈ Cn(∅) and there is no subset of K failing to imply p → p.

In order to define the partial meet version of this operator, we need an external
selection function, that is, a selection function to be applied over supersets of
K.

Definition 8 Let K be a set of sentences. An external selection function for
K is a function “γ” (γ : 22L⇒22L

) such that for any set A ⊆ L, it holds that:

1) γ((K ∪ A)⊥⊥) ⊆ (K ∪ A)⊥⊥.

2) γ((K ∪ A)⊥⊥) 6= ∅.

Since every set H contains a consistent subset then H⊥⊥ is always non-empty.
For instance, if K = {p, q, r} and A = {¬p,¬q} then K∪A = {p, q, r,¬p,¬q},
(K ∪ A)⊥⊥ = {{p, q, r}, {¬p, q, r}, {p,¬q, r}, {¬p,¬q, r}} and some possible
results of γ((K ∪ A)⊥⊥) are {{¬p,¬q, r}}, {{¬p, q, r}}, {{p, q, r}, {¬p, q, r}}
and {{p, q, r}, {¬p, q, r}, {p,¬q, r}}.

Definition 9 Let K be a set of sentences and γ an external selection function
for K. Then γ is an equitable selection function for K if (K ∪ A)⊥⊥⊥ =
(K ∪B)⊥⊥⊥ implies that (K∪A)\∩γ((K∪A)⊥⊥) = (K∪B)\∩γ((K∪B)⊥⊥).

The intuition behind this definition is that, if the set of minimally inconsistent
subsets of K ∪A is equal to the set of minimally inconsistent subsets of K ∪B
then α is erased in the selection of ⊥-remainders of K ∪ A if and only if it is
erased in the selection of ⊥-remainders of K ∪B.

For example, let K = {a, b,¬c}, A = {¬b, c, d, e} and B = {¬b, c, f}. Then:

(K ∪ A)⊥⊥={{a, b, c, d, e}, {a,¬b, c, d, e}, {a, b,¬c, d, e}, {a,¬b,¬c, d, e}}

(K ∪B)⊥⊥={{a, b, c, f}, {a,¬b, c, f}, {a, b,¬c, f}, {a,¬b,¬c, f}}

We have that (K ∪ A)⊥⊥⊥ = (K ∪B)⊥⊥⊥ = {{b,¬b}, {c,¬c}}. Suppose that
γ((K ∪ A)⊥⊥) = {{a, b, c, d, e}, {a,¬b, c, d, e}}. That is, γ selects only ⊥-
remainders containing c. If γ is an equitable selection function γ((K ∪B)⊥⊥)
must be equal to {{a, b, c, f}, {a,¬b, c, f}}.

Formally, we define the operator of partial meet revision by a set of sentences
as follows.

Definition 10 Let K and A be sets of sentences and “γ” an equitable se-
lection function for K. The operator “◦” of partial meet revision by a set of
sentences (◦ : 2L×2L⇒2L) is defined as K◦A = ∩γ((K ∪ A)⊥⊥).
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The mechanism of this operator is to add A to K and then eliminate from the
result all possible inconsistencies by means of an equitable selection function
that makes a choice among the maximally consistent subsets of K ∪ A and
intersect them. Since this operator uses a selection function and the remainder
set, we call it partial meet revision by a set of sentences.

The following lemma will be used in the representation theorem of partial
meet revision by a set of sentences.

Lemma 11 If A⊥⊥ = B⊥⊥ then A = B.

PROOF.

⊆) Let A⊥⊥ = B⊥⊥ and let α ∈ A. Then there is an X ∈ A⊥⊥ with α ∈ X.
From the presupposition, X ∈ B⊥⊥ too, in particular, X ⊆ B; so also
α ∈ B. Therefore A ⊆ B.

⊇) Let B⊥⊥ = A⊥⊥ and let α ∈ B. Then there is an X ∈ B⊥⊥ with α ∈ X.
From the presupposition, X ∈ A⊥⊥ too, in particular, X ⊆ A; so also
α ∈ A. Therefore B ⊆ A. ¤

Thus, an axiomatic characterization can now be given for an operator of partial
meet revision by a set of sentences.

Theorem 12 Let K be a belief base. The operator “◦” is a partial meet revi-
sion by a set of sentences if and only if it satisfies inclusion, strong consistency,
relevance and reversion.

PROOF.

[Construction to Postulates] Let “◦γ” be a partial meet revision by
a set of sentences for K. We must show that “◦γ” satisfies the postulates
enumerated in the theorem. Let K◦γA = ∩γ((K ∪ A)⊥⊥).
Inclusion: Straightforward from the definition.
Strong Consistency: Since all sets in (K ∪ A)⊥⊥ are consistent, so is

their intersection.
Relevance: Suppose that α ∈ (K ∪ A) \ (K◦γA). That is, α ∈ K ∪ A

and α 6∈K◦γA. Then α 6∈ ∩ γ((K ∪ A)⊥⊥). Since γ((K ∪ A)⊥⊥) ⊆
(K ∪ A)⊥⊥ there is some X such that α 6∈X and X ∈ γ((K ∪ A)⊥⊥).
Since ∩γ((K ∪ A)⊥⊥) ⊆ X then K◦γA ⊆ X. Since α 6∈X then K◦γA ⊆
X ⊆ K ∪ A, X 0 ⊥ but X ∪ {α} ` ⊥. Therefore, relevance is satisfied.

Reversion: Suppose that K ∪ A and K ∪ B have the same minimally
inconsistent subsets, that is, (K ∪ A)⊥⊥⊥ = (K ∪B)⊥⊥⊥. We need to
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show that (K ∪A) \ (K◦γA) = (K ∪B) \ (K◦γB). Straightforward since
γ is an equitable selection function.

[Postulates to Construction] We will show that if an operator satisfies
the enumerated postulates then it is possible to build an operator in the way
specified in the theorem. Let “γ” be a function such that, for all pair of sets
K and A, it holds that:

γ((K ∪ A)⊥⊥) = {X ∈ (K ∪ A)⊥⊥ : K◦A ⊆ X}

We must show that:
Part A: “◦γ” is equal to “◦”, i.e., ∩γ((K ∪ A)⊥⊥) = K◦A.
(⊇) It follows from the definition.
(⊆) Let α 6∈K◦A. We must prove that α 6∈ ∩ γ((K ∪A)⊥⊥). That is, we

need to find some X ∈ (K ∪ A)⊥⊥ such that α 6∈X. We have two
cases:
(1) α ∈ K ∪ A: by relevance we have that there is some H such

that K◦A ⊆ H ⊆ K ∪ A, H 0 ⊥ and H ∪ {α} ` ⊥. From this
we have that H 0 α. It is clear that we may extend the set H to
a maximally consistent set H ′ such that H ′ ∈ (K ∪ A)⊥⊥ and
α 6∈H ′. Since K◦A ⊆ H ′ then H ′ ∈ γ((K ∪ A)⊥⊥).

(2) α 6∈K ∪ A: then no set in (K ∪ A)⊥⊥ will contain α.
Part B.
(1) “γ” is a well defined function.

Let A and B be sets of sentences such that (K∪A)⊥⊥ = (K∪B)⊥⊥.
We must show that γ((K ∪A)⊥⊥) = γ((K ∪B)⊥⊥). If (K ∪A)⊥⊥ =
(K ∪B)⊥⊥ then it follows from Lemma 11 that K ∪ A = K ∪B.
From Proposition 2 it follows that if inclusion and reversion hold
then congruence holds. Therefore, K◦A = K◦B and:

γ((K ∪ A)⊥⊥) = {X ∈ (K ∪ A)⊥⊥ : K◦A ⊆ X}
= {X ∈ (K ∪B)⊥⊥ : K◦B ⊆ X}
= γ((K ∪B)⊥⊥)

That means that the function “γ” is well defined.
(2) “γ” is an equitable selection function.

First we will show that γ is an external selection function. That
is to say that ∅ 6= γ((K ∪ A)⊥⊥) ⊆ (K ∪ A)⊥⊥. By inclusion
(K◦A) ⊆ (K ∪A). Due to strong consistency K◦A 0 ⊥ and there
is a subset of K ∪ A which is consistent. Hence, there must exist
a set H between K◦A and K ∪ A which is maximally consistent.
Then H ∈ (K ∪ A)⊥⊥ and K◦A ⊆ H. Therefore, there exists an
H ∈ γ((K ∪ A)⊥⊥) and γ is an external selection function.
It remains to show that γ is an equitable selection function. Suppose
that K ∪A and K ∪B have the same minimally inconsistent subsets.
It follows from reversion that (K ∪A) \ (K◦A) = (K ∪B) \ (K◦B).
It follows from Part A that K◦A = ∩γ((K ∪ A)⊥⊥) and K◦B =
∩γ((K ∪B)⊥⊥). Therefore γ is an equitable selection function. ¤
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Since relevance implies core retainment the following corollary is trivially
shown.

Corollary 13 Each partial meet revision by a set of sentences operator is a
kernel revision by a set of sentences operator.

3 Relating Revisions and Explanations

In Section 2 we have introduced postulates for explanans (represented by a
set of sentences). Now we will present postulates that relate explanans to the
corresponding explanandum. Let K be a belief base, “◦” a revision operator
by a set of sentences for K, A and B explanans, and α a sentence of the
language.

Explanans Inclusion: If A ½ α and A ⊆ K◦A then K◦A ` α.
This postulate establishes that if an agent receives an explanation for a
sentence and his belief base contains this explanation then the revised belief
base derives the explanandum.

Weak Success 2: If A ½ α and K ∪ A 0 ⊥ then K◦A ` α.
This postulate expresses that, if an agent receives an explanation for some
sentence α and the sentences of the explanans are not rejected, then the
explanandum will be derived in the revised belief base.

Constrained Success: If A ½ α and K 0 ¬α then K◦A ` α.
This postulate establishes that if an agent receives an explanation for some
sentence α not rejected in the original belief base then the explanandum
will be accepted in the revised belief base.

Expansion: If A ½ α and K ` α then K◦A ` α.
This postulate says that if an agent accepts a sentence α and then receives a
new explanation for it he/she will continue accepting the explained sentence.

It is interesting to note that, since explanations satisfy deduction, the accep-
tance of the explanans forces the acceptance of the explanandum in the revised
set. The following proposition establishes this important relation.

Proposition 14 If “◦” is a revision operator by a set of sentences then it
satisfies explanans inclusion.

PROOF. Suppose that we are revising (in kernel or partial meet mode) K
by A and A ½ α. Since “½” satisfies deduction then A ` α. If A ⊆ K◦A
then K◦A ` α.
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There is an important fact to remark regarding the degree of acceptance of
the explanans and the explanandum. While the explanans can be explicitly
included in the revised set, the explanandum may be inferred from it without
actually being included. This difference in the degree of acceptance is moti-
vated in the epistemic model adopted here which is based on sets of sentences
not necessarily closed as in the AGM model. For this reason, in each belief
base we will have two types of beliefs: basic or explicit beliefs, and inferred or
implicit beliefs.

The following proposition shows that the properties of constrained success and
expansion can not be expected to hold in general.

Proposition 15 If “◦” is an operator of revision by a set of sentences then
in general it does not satisfy neither constrained success nor expansion.

PROOF. Let us consider an operation of partial meet revision by a set of
sentences since it is always a kernel revision by a set of sentences (Corollary
13).

Constrained Success. Let p, q, r, s and t be logically independent propositions.
Let K = {p, s, p ∧ s → ¬q, s → u} and A = {p, p → q, q → r} an explanation
for r. It is clear that K 0 ¬r. We will make a partial meet revision by a set of
sentences of K with respect to A. That is, we need to make a selection among
the best maximally consistent subsets of K ∪ A: (K ∪ A)⊥⊥ = {K1, K2, K3}
where:

K1 = {p, s, p ∧ s → ¬q, s → u, q → r}.
K2 = {p, s, s → u, p → q, q → r}.
K3 = {s, p ∧ s → ¬q, s → u, p → q, q → r}.

Suppose that K1 and K2 are the preferred sets. Then the outcome of the
partial meet revision by a set of sentences is K◦A = {p, s, s → u, q → r}. It
is clear that K◦A 0 r.

Expansion. Let p, q and r be logically independent propositions. Let K =
{p, p → q, r} and A = {¬r,¬r → q}. It is clear that K ` q and A ½ q. We
need to make a selection among the maximally consistent subsets of K ∪ A.
(K ∪ A)⊥⊥ = {K1, K2} where K1 = {p, p → q, r,¬r → q} and K2 = {p, p →
q,¬r,¬r → q}. If we select both sets then K◦A is {p, r,¬r → q}, which does
not imply q. ¤
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4 Extending the representation language

Now we will present some applications of the operator of revision by a set of
sentences. We will assume a representation language that is more expressive
than a propositional one. Most frameworks used and defined for belief revision
use mainly a propositional language or an extension of it. We will define a
language L+ which is a subset of a first order logic.

Let L+ be the extended knowledge representation language with the same
logic connectives used in L. This language is defined recursively by means of
the following BNF grammar:

term ::= variable | constant
list-of-terms ::= term | term “,” list-of-terms
wff-atomic ::= predicate “(” list-of-terms “)”
wff-free ::= wff-atomic | “¬” wff-free | wff-free “→” wff-free

wff-free “∧” wff-free | wff-free “∨” wff-free
wff ::= “(”“∀” variable“)” wff | wff-free

Our extended language is first order without functional symbols and without
explicit existential quantifiers. The symbols between quotation marks are as-
sumed as symbols in the object language (i.e., they are not meta-symbols).
All sentences will be closed, that is, each occurrence of any variable is bound
to a (universal) quantifier. On the other hand, an occurrence of a variable is
free if it is not within the scope of any quantifier. An occurrence of a variable
is bounded if it is within the scope of a quantifier. A ground sentence is a
sentence without variables. An atomic wff is a positive literal and a negated
atomic wff is a negative literal.

To make a distinction among predicate symbols, constants and variables we
will use the Prolog notation [SS96], where predicates and constants are char-
acter strings beginning with lowercase letters whereas variables are character
strings beginning with uppercase letters.

4.1 Different kinds of beliefs

If we use a propositional language, all beliefs have the same status. 2 Every
belief is a symbolic notation that represents knowledge about the real world.
However, with a propositional language we cannot make a distinction among

2 The status is different and independent of other measures such as epistemic en-
trenchment, plausibility, surprise value, acceptance degree or probability.
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objects, functions and relations between objects. Moreover, we cannot deter-
mine if a sentence is referred to an object or a collection of objects.

Our proposal is to represent the knowledge with a richer language than the
propositional one, with the final goal of distinguishing between two kinds of
beliefs:

Particular Beliefs: These beliefs will be mainly represented by ground facts
such as bird(tweety), car(porsche), promoter(bill) or greater(3, 2).

General Beliefs: These beliefs are referred to collections of objects and they
will be general rules such as closed material implications. For instance,
(∀X)(bird(X) → flies(X)), (∀X)(quaker(X) → pacifist(X)).

This distinction is context dependent and it could be modified in different
frameworks. Each belief base K has the form KP ∪KG where KP ∩KG = ∅.
KP is the set of particular sentences whereas KG is the set of general sentences.
The same assumption will be made in the explanations since they will contain
particular and general sentences of the language.

Example 16 Let K = KP ∪KG be a belief base where:

KP = {ostr(jim), ostr(tom)}

KG = {(∀X)(ostr(X) → bird(X)), (∀X)(bird(X) → flies(X))}

The ground logical consequences of this set are:

{ostr(jim), ostr(tom), bird(jim), bird(tom),flies(jim),flies(tom)}

Note that the individuals referenced in this set are relevant, that is, all in-
dividuals are mentioned in the belief base. Suppose we receive the following
explanation for ¬flies(jim): A = {ostr(jim), (∀X)(ostr(X) → ¬flies(X))}.

We need to find the minimally inconsistent sets of K ∪ A:

(1) {ostr(jim), (∀X)(ostr(X) → bird(X)),
(∀X)(bird(X) → flies(X)), (∀X)(ostr(X) → ¬flies(X))}

(2) {ostr(tom), (∀X)(ostr(X) → bird(X)),
(∀X)(bird(X) → flies(X)), (∀X)(ostr(X) → ¬flies(X))}

Suppose we are making a kernel revision by a set of sentences. For that, we
need an incision function to make a cut upon every set. That is, we must decide
which beliefs must be given up in the revision process. A possible policy could
be to discard particular beliefs; on the other hand, we could discard general
beliefs. If we choose the latter option we must decide to give up at least one
belief in the set:
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{(∀X)ostr(X) → bird(X), (∀X)bird(X) → flies(X), (∀X)ostr(X) → ¬flies(X)}

If we use the notion of specificity 3 [Poo85,SL92] we could keep the sentence:

(∀X)(ostr(X) → ¬flies(X))

and eliminate at least one sentence of the remaining set of sentences. Suppose
we give up the sentence (∀X)(bird(X) → flies(X)) That is, σ((K ∪ A)⊥⊥⊥) =
{(∀X)(bird(X) → flies(X))}. The revised belief base, noted K◦σA, will be
composed of the following subsets:

K ′
P = {ostr(jim), ostr(tom)}

K ′
G = {(∀X)(ostr(X) → bird(X)), (∀X)(ostr(X) → ¬flies(X))}

The ground logical consequences of the revised belief base are:

{ostr(jim), ostr(tom), bird(jim), bird(tom),¬flies(jim),¬flies(tom)}

Example 17 Let K = KP ∪KG be a belief base such that:

KP = {bird(tweety), peng(opus)}

KG = {(∀X)(peng(X) → bird(X)), (∀X)(bird(X) → flies(X))}

The ground logical consequences of K are:

{bird(tweety), peng(opus),flies(tweety), bird(opus),flies(opus)}

Suppose we receive the following explanation for ¬flies(opus):

A = {bird(opus), peng(opus), (∀X)(bird(X) ∧ peng(X) → ¬flies(X))}

Suppose we are making a kernel revision by a set of sentences. We need to find
the minimally inconsistent sets of K ∪ A. The sets in these conditions are:

(1) {bird(opus), peng(opus), (∀X)(bird(X) ∧ peng(X) → ¬flies(X))}∪
{(∀X)(bird(X) → flies(X))}.

(2) {peng(opus), (∀X)(peng(X) → bird(X)), (∀X)(bird(X) → flies(X))}
∪{(∀X)(bird(X) ∧ peng(X) → ¬flies(X))}.

3 Informally, {a∧b → c} (based on the facts a and b) is more specific than {a → ¬c}
(just based on the fact a). On the other hand, {p → r} (based on p and one rule) is
more specific than {p → q, q → ¬r} (based on p and two rules). A formal definition
of specifity can be found in Section 6.
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If we choose to discard general beliefs, we must give up at least one sentence
of every set:

• {(∀X)(bird(X) ∧ peng(X) → ¬flies(X)), (∀X)(bird(X) → flies(X))}.
• {(∀X)(peng(X) → bird(X)), (∀X)(bird(X) ∧ peng(X) → ¬flies(X))}∪
{(∀X)(bird(X) → flies(X))}.

Since (∀X)(bird(X) → flies(X)) is a common member of these two sets, we
could discard it. That is, σ((K ∪ A)⊥⊥⊥) = {(∀X)(bird(X) → flies(X))}. The
revised belief base, noted K◦σA, will be composed of the following sets:

K ′
P = {bird(tweety), bird(opus), peng(opus)}

K ′
G = {(∀X)(peng(X) → bird(X)), (∀X)(bird(X) ∧ peng(X) → ¬flies(X))}

The ground logical consequences of the revised belief base are:

{bird(tweety), bird(opus), peng(opus),¬flies(opus)}

In this example we can see that while we have lost some knowledge, i.e., the
rule regarding the flying capabilities of birds, we have learned about an excep-
tion, i.e., penguins are birds that do not fly and this discovery is precluding
us from maintaining a useful general rule. However, we could improve the out-
come if we preserve retracted beliefs with a different status according to the
mechanism we will present in the next sections.

5 Conditionals and Belief Revision

In this section we will consider different kinds of conditionals and how they can
be used in a belief revision system. We will briefly present three main kinds
of conditionals, their properties and their use in knowledge representation.
Every conditional contains two well distinguished parts: the antecedent and the
consequent. We will study two inference rules on conditionals: modus ponens
and antecedent strengthening.

The material conditionals are referred to material implications in most classi-
cal logic systems. This type of conditional has the form α → β and it allows
making inferences in different directions. For instance, from α and α → β we
may obtain β applying modus ponens. On the other hand, from ¬β and α → β
we may infer ¬α applying modus tolens. Moreover, the material conditionals
satisfy antecedent strengthening (If α → β then α ∧ δ → β.) This property of
material conditionals makes them difficult to use in knowledge representation.
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A counterfactual conditional is a sentence of the form α>β where normally the
premise α is either undetermined or rejected (i.e., expected to be false). The
counterfactuals have been studied by Lewis [Lew73] and Ginsberg [Gin86].
Each sentence α>β is interpreted as “if it were the case that α then β would
be the case”. The counterfactual conditionals satisfy modus ponens but not
antecedent strengthening. If we analyze counterfactuals by means of a truth
table we could ensure that, if the antecedent is true then the conditional
truth value is equal to the consequent truth value. However, the truth of
the counterfactual depends upon more than merely the truth or falsity of the
components. Counterfactuals assume the existence of a sphere system centered
on a single world i that represents the real world. This is one of most important
differences between the model for belief revision proposed by Grove [Gro88]
which is a sphere system centered in a set of worlds: the worlds in which the
belief set K holds.

Defeasible conditionals are conditionals in which, if the antecedent is true
then “normally” the consequent is true. The sentence α>−β is interpreted as
“if α holds then normally β holds” or “if α is true then usually β is true”.
For instance, if b(X) is interpreted as “X is a bird” and f(X) is interpreted
as “X flies” then a conditional of the form b(X)>−f(X) is interpreted as:
“every individual X that is a bird is normally a flying individual”. However,
if we believe that Poly is a bird we cannot conclude that Poly flies (i.e.,
we cannot apply modus ponens in the strong sense). The reason for this is
that a defeasible conditional does not allow “skipping” from the antecedent
to the consequent since it is a general rule that holds in normal conditions,
although it is not easy to determine when. Defeasible conditionals do not
satisfy antecedent strengthening. That is, from α>−δ it is not possible to infer
α ∧ β>−δ. In general, they are used as inference rules instead of language
objects, that is, they are on the metalevel. For instance, the default rules
proposed by Reiter [Rei80] are an example of the use of defeasible conditionals
as inference rules. The general form of a default rule is α:β

δ
and it is interpreted

as: if α is true and β may be consistently assumed then δ is concluded. Among
default rules, there is a more specific subclass, called normal default rules, and
they are of the form α:β

β
. A typical example of this kind of rule is:

bird(X) : flies(X)

flies(X)

In other words, for every individual X which is a bird and it can be consistently
assumed that it flies, X is a flying individual.

A formalism in which defeasible conditionals are used as inference rules are
the argumentative systems [SL92,SCnG94,Pra93,Vre93]. In these systems, each
sentence of the form α>−β is a tentative inference rule that can be used to
obtain new conclusions. Next we will present a revision operator that generates

20



defeasible conditionals from a revision operator upon belief bases represented
in a first order language.

5.1 Generating defeasible conditionals by means of revisions

Here we will study the generation of defeasible conditionals from a process
of belief revision. That idea was formally introduced by Alchourrón [Alc93]
upon modal systems and by Falappa and Simari [FS95] upon knowledge based
systems.

Suppose that, in a revision process, we eliminate a conditional sentence of the
form ∀(X)(α(X) → β(X)). This sentence ensures that any object X satisfying
the relation α is an object satisfying the relation β. It can also express that any
object satisfying the relation ¬β is an object satisfying the relation ¬α. If we
eliminate such a sentence surely we have received new information inconsistent
with it and which is more important. Therefore, one of the following cases may
occur:

(1) We have received information regarding some individual satisfying the
relation α but not satisfying β.

(2) We have received information regarding some individual satisfying the
relation ¬β but not satisfying ¬α.

In this case, we could discard the refuted rule because we have accepted that
it has an exception. We will resume Example 17 in which this policy produces
too much loss of information. From the revised set we cannot infer that Tweety
flies because we do not have the rule establishing that all birds fly anymore.
A way to conclude that Tweety flies could be to use a defeasible conditional
(in a disjoint set from the original) determining that, if X is a bird and there
is no evidence against the fact that Tweety flies, then we can conclude that
Tweety is able to do it. This can be represented by the default rule:

bird(X) : flies(X)

flies(X)

or by a defeasible rule such as bird(X)>−flies(X) in argumentative systems.
Next, we will present a framework to define a revision operator by a set of
sentences that generates defeasible conditionals by product of a revision pro-
cess.

21



5.2 Belief Revision in Argumentative Systems

From now on, the epistemic state of an agent will be represented by a tuple
of the form [[K, ∆]] (called knowledge structure) where K is a subset of L+ and
∆ is a set of the form:

∆ = {α>−β : α, β ∈ L+}

Each sentence of K is a well formed formula in L+ and it contains those sen-
tences undefeasible in one moment of time. The set K is called strong or unde-
feasible knowledge and it is split into two sets KP and KG such that KP repre-
sents particular knowledge, KG represents general knowledge, K = KP ∪KG

and KP∩KG = ∅. On the other hand, each sentence in ∆ is a defeasible condi-
tional representing a tentative inference rule to handle incomplete information.
The set ∆ is called defeasible knowledge. The idea is that, some defeasible rule
of the form α>−β in ∆ is the transformation of some rule α → β previously
included in the strong knowledge but eliminated by some change operator.
Instead of fully eliminating that sentence, we propose to preserve a syntactic
transformation of it in a different set.

Definition 18 Let δ = (∀X1 . . . Xn)α → β be a material implication in L+.
A positive transformation of δ, noted by T+(δ), is a sentence of the form
α>−β; a negative transformation of δ, noted by T−(δ), is a sentence of the
form ¬β>−¬α.

Different from material implications, variables in defeasible conditionals are
considered free. The way in which a defeasible conditional of the form α>−β
is interpreted is: “reasons to believe in the antecedent α provide reasons to
believe in the consequent β”. Now, we will define a revision operator upon a
knowledge structure.

Definition 19 Let [[K, ∆]] be a knowledge structure, “◦” an operator of kernel
(partial meet) revision by a set of sentences for K and A a set of sentences.
The kernel (partial meet) composed revision of [[K, ∆]] with respect to A is
defined as [[K, ∆]] ? A = [[K ′, ∆′]] such that K ′ = K◦A and ∆′ = ∆ ∪∆′

1 ∪∆′
2

where:

∆′
1 = {true>−α : α ∈ (KP \K◦A)}

∆′
2 = {T+(α) : α ∈ (KG \K◦A)} ∪ {T−(α) : α ∈ (KG \K◦A)}

The set K ′ contains the revised undefeasible beliefs, ∆′
1 is the transformation

in defeasible rules of particular beliefs (also called assumptions [GSCn98])
eliminated from K whereas ∆′

2 is the transformation of general beliefs elimi-
nated from K into defeasible rules.
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6 Argumentative Systems

Here we will introduce argumentative systems as in [SL92,SCnG94], we will
define the new epistemic model and we will show some examples of the appli-
cation of the composed revision.

The derivations in argumentative systems make use of some ground instances
(i.e., without free variables) of defeasible rules in ∆. So we will use the set ∆↓

of all ground instances of members of ∆ produced by replacing consistently
all variables by constants in L+.

Typically, argumentative systems use sets of undefeasible and defeasible be-
liefs. In other words, they use a knowledge structure [[K, ∆]] such that K rep-
resents undefeasible beliefs whereas ∆ represents defeasible beliefs.

Given a sentence α ∈ L and a set Γ = {α1, α2, . . . , αn} where each αi is a
sentence in K or a member of ∆↓, a meta-meta-relationship “ |∼ ”, called de-
feasible consequence between Γ and α is established as follows [SL92,SCnG94].

Definition 20 Let Γ ⊆ K ∪ ∆↓. A ground literal α ∈ L+ is a defeasible
consequence of a set Γ if and only if there is some sequence β1, β2, . . . , βm

such that βm = α and, for any i, βi ∈ Γ or βi is a direct consequence of the
preceding members of the sequence using modus ponens, weak detachment 4 or
instantiation of a universally quantified sentence or an instance of an axiom
in L+. The notation Γ |∼α is an abbreviation of α is a defeasible consequence
of Γ.

We can use the notation α1, . . . , αn |∼α instead of {α1, . . . , αn} |∼α, or K ∪
T |∼α making the distinction between defeasible and undefeasible sentences
used in the explicit derivation, where T ⊆ ∆↓. The defeasible inference rela-
tion allows the definition of a defeasible consequence operator C as C (Γ) =
{α : Γ |∼α}. This operator is nonmonotonic since some derivations can be
invalidated on the arrival of new pieces of information. That is so because
defeasible rules belonging to each (defeasible) derivation can be invalidated if
the undefeasible knowledge is modified.

Different from classical logic systems, the conclusions in argumentative sys-
tems are tentative, so we need some selection mechanism or preference criteria
among arguments. First, we will introduce the notion of argument in order to
define a preference criteria among them.

Definition 21 (Simari & Loui [SL92]) Given a knowledge structure [[K, ∆]] we
say that a subset T of ∆↓ is an argument for a ground literal α ∈ L+ in the

4 Weak detachment is like modus ponens but using “>−” instead of “→”.
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context K, noted by 〈T, α〉, if and only if:

(1) K ∪ T |∼α.
(2) K ∪ T 6|∼⊥.
(3) There is no T ′ ⊂ T such that K ∪ T ′ |∼α.

The concept of an argument is similar to the concept of an explanation. How-
ever, the first one is defined in terms of a defeasible inference relation and uses
context knowledge, whereas the second one is defined in terms of a classical
inference relation.

Definition 22 (Simari & Loui [SL92]) Let 〈T, α〉 be an argument for α in a
context K. We say that 〈S, β〉 is a subargument of 〈T, α〉 if and only if 〈S, β〉
is an argument for β and S ⊆ T . This relation is noted as 〈S, β〉 ⊆ 〈T, α〉,
overloading the inclusion symbol upon sets.

Proposition 23 (Simari & Loui [SL92]) Every argument 〈T, α〉 contains the
following trivial subarguments: 〈T, α〉 and 〈∅, β〉 for any β ∈ Cn(K).

Definition 24 (Simari & Loui [SL92]) Given two arguments 〈T1, α1〉 and
〈T2, α2〉 we say that they are in disagreement, noted by 〈T1, α1〉 ./ 〈T2, α2〉,
if and only if K ∪ {α1, α2} ` ⊥.

Definition 25 [SL92,SCnG94] An argument 〈T1, α1〉 counterargues to
〈T2, α2〉 at a literal α, noted by 〈T1, α1〉⊗ α−→〈T2, α2〉, if and only if, there
is some subargument 〈T, α〉 of 〈T2, α2〉 such that 〈T1, α1〉 ./ 〈T, α〉.

Since argument conclusions are tentative we can have situations in which there
are arguments with contradictory conclusions. In such case, it is necessary to
get a preference criteria. For instance, we will use the criteria of specificity
introduced by Poole [Poo85].

Definition 26 (Poole [Poo85], Simari & Loui [SL92]) Let 〈T1, α1〉 and 〈T2, α2〉
be two arguments in the context K. We say that 〈T1, α1〉 is strictly more
specific than 〈T2, α2〉, noted by 〈T1, α1〉Âspec〈T2, α2〉, if and only if:

(1) For any ground literal β ∈ L+ such that KG ∪ {β} ∪ T1 |∼α1 and KG ∪
{β} 6|∼α1 then KG ∪ {β} ∪ T2 |∼α2.

(2) There is a ground literal δ ∈ L+ such that
(a) KG ∪ {δ} ∪ T2 |∼α2 (activates T2).
(b) KG ∪ {δ} 6|∼α2 (nontriviality condition).
(c) KG ∪ {δ} ∪ T1 6|∼α1 (does not activate T1).

The term activates is used with the following meaning: together with KG the
argument Ti is enough to construct a defeasible derivation of αj.
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Definition 27 [SCnG94,SL92] Given two arguments 〈T1, α1〉 and 〈T2, α2〉 we
say that 〈T1, α1〉 defeats to 〈T2, α2〉 at a literal α, noted by 〈T1, α1〉Àdef〈T2, α2〉,
if and only if there is a subargument 〈T, α〉 of 〈T2, α2〉 such that:

Proper Defeater: 〈T1, α1〉Âspec〈T, α〉; or

Blocking Defeater: 〈T1, α1〉 is incomparable (by specificity) to 〈T, α〉.

Example 28 Given K = KP ∪ KG where KP = {h(o), p(t)} and KG =
{(∀X)p(X) → b(X), (∀X)h(X) → b(X)}, and the set of defeasible condi-
tionals: 5

∆ = {b(X)>−f(X), p(X) ∧ b(X)>−¬f(X), b(X) ∧ f(X)>−w(X)}

We have the following relations between arguments:

• Argument: 〈{b(o)>−f(o), b(o) ∧ f(o)>−w(o)}, w(o)〉.
• Disagreement: 〈{p(t) ∧ b(t)>−¬f(t)},¬f(t)〉 ./ 〈{b(t)>−f(t)}, f(t)〉.
• Counterargument:

〈{p(t) ∧ b(t)>−¬f(t)},¬f(t)〉⊗ f(t)−→〈{b(t)>−f(t), b(t) ∧ f(t)>−w(t)}, w(t)〉.
• More specific: 〈{p(t) ∧ b(t)>−¬f(t)},¬f(t)〉Âspec〈{b(t)>−f(t)}, f(t)〉.
• Defeat:
〈{p(t) ∧ b(t)>−¬f(t)},¬f(t)〉Àdef〈{b(t)>−f(t), b(t) ∧ f(t)>−w(t)}, w(t)〉.

Definition 29 [SCnG94] Let 〈T, α〉 be an argument for α in the context K.
We say that 〈T, α〉 is a justification for α if for any counterargument 〈S, β〉
of 〈T, α〉 it holds that 〈T, α〉Àdef〈S, β〉.

From now on, the notation [[K, ∆]] ` α is referred to a classical derivation of α
since it only uses sentences of K. On the other hand, the notation [[K, ∆]] |∼α
is referred to a derivation of α using ground instances of sentences in ∆.

Example 30 In the Example 17 we have the set K = KP ∪KG such that:

KP = {bird(tweety), peng(opus)}

KG = {(∀X)(peng(X) → bird(X)), (∀X)(bird(X) → flies(X))}

Suppose that the knowledge structure is [[K, ∆]] where ∆ = ∅. In this case we
have that:

C ([[K, ∆]]) = {bird(tweety), peng(opus), bird(opus),flies(tweety),flies(opus)}

5 Literals: o=opus and t=tweety. Predicates: p=penguin, b=bird, h=hawk, f=flies
and w=winged.
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The set of defeasible consequences of [[K, ∆]] is equal to the set of logical con-
sequences of K since the set of defeasible rules is empty. Then, we receive the
explanation for ¬flies(opus):

A = {bird(opus), peng(opus), (∀X)(bird(X) ∧ peng(X) → ¬flies(X))}

and we obtain a new belief base K ′ = K◦A = K ′
P ∪K ′

G such that:

K ′
P = {bird(tweety), bird(opus), peng(opus)}

K ′
G = {(∀X)(peng(X) → bird(X)), (∀X)(bird(X) ∧ peng(X) → ¬flies(X))}

However, the sentences erased are not fully forgotten but they are stored (trans-
formed) as defeasible rules. That is, the new knowledge structure is [[K ′, ∆′]] =
[[K, ∆]] ? A where K ′ = K◦A and:

∆′ = {bird(X)>−flies(X),¬flies(X)>−¬bird(X)}

Then, we have the following defeasible conclusions:

C ([[K ′, ∆′]]) = {bird(tweety), bird(opus), peng(opus),¬flies(opus),flies(tweety)}

The last literal is derived using defeasible rules. In other words, using defeasible
rules we can extend the conclusions inferred using classical consequence.

6.1 Epistemic Model

Now we will define the new set of epistemic attitudes. Let [[K, ∆]] be a knowl-
edge structure and α a ground literal in L+. The possible epistemic attitudes
towards α are:

(1) Acceptance: If there is a justification 〈T, α〉.
(2) Rejection: If for any possible argument 〈T, α〉 there is at least an unde-

feated proper defeater of 〈T, α〉.
(3) Indeterminate: If there is no argument 〈T, α〉.
(4) Indefinite: If for any possible argument 〈T, α〉 there is no undefeated

proper defeater of 〈T, α〉 but there is at least an undefeated blocking
defeater of 〈T, α〉.

Now, we will give a test for defeasible conditionals assuming the existence
of a revision operator upon a knowledge structure and considering defeasible
conditionals as a meta-linguistic relation, not as a connective of the object
language.

26



Test for Defeasible Conditionals: α(X)>−β(X) ∈ [[K, ∆]]?A if and only if
α(X)>−β(X) ∈ ∆ or (∀X)(α(X) → β(X)) ∈ K and [[K, ∆]]?A ` α(t)∧¬β(t)
for some ground term t.

Note that this test for defeasible conditionals is formulated in terms of a clas-
sical inference relation “`”. The idea is the following: a defeasible conditional
α>−β belongs to the revised knowledge structure if and only if it was in the
original knowledge structure or α → β was in K but not in the revised unde-
feasible knowledge.

Example 31 Suppose we have the knowledge structure [[K0, ∆0]] where:

K0 ={p(a), p(b), p(c), p(d), q(a), q(b), (∀X)p(X)→s(X), (∀X)q(X)→ t(X)}

∆0 = ∅

The ground sentences inferred from this belief base are:

{p(a), p(b), p(c), p(d), q(a), q(b), s(a), s(b), s(c), s(d), t(a), t(b)}

At some given instant, we receive the following explanation A0 for ¬s(a):

{p(a), q(a), (∀X)(p(X) ∧ q(X)) → ¬s(X)}

If we are making a kernel revision by a set of sentences we must give up the
minimally inconsistent subsets of K0 ∪ A0. That is, we must cut every set in
(K0 ∪ A0)

⊥⊥⊥ = {H1, H2} where:

H1 = {p(a), q(a), (∀X)(p(X) ∧ q(X)) → ¬s(X), (∀X)p(X) → s(X)}

H2 = {p(b), q(b), (∀X)(p(X) ∧ q(X)) → ¬s(X), (∀X)p(X) → s(X)}

We can eliminate one of the common rules to cut both minimally entail-
ment sets. Suppose that the belief (∀X)(p(X) ∧ q(X)) → ¬s(X) is better or
more plausible than (∀X)p(X) → s(X). Then, the new knowledge structure is
[[K1, ∆1]] = [[K0, ∆0]] ? A0 where:

K1 ={p(a), p(b), p(c), p(d), q(a), q(b), (∀X)(p(X) ∧ q(X))→¬s(X), (∀X)q(X)→t(X)}

∆1 = {p(X)>−s(X),¬s(X)>−¬p(X)}

Note that in this knowledge structure we can infer the ground sentences:

{p(a), p(b), p(c), p(d), q(a), q(b),¬s(a),¬s(b), t(a), t(b)}

However, we believe in p(c) and p(d) but we cannot conclude classically s(c)
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and s(d) although these sentences are consistent with K1. If we use the defeasi-
ble rule p(X)>−s(X) we can see that there are justifications for s(c) and s(d).
Therefore, s(c) and s(d) will be accepted in the revised knowledge structure.

Example 32 Consider the knowledge structure produced in the above exam-
ple. At some point, we receive the following explanation A1 for s(a):

{p(a), q(a), u(a), (∀X)(p(X) ∧ q(X) ∧ u(X)) → s(X)}

Now, we must eliminate the minimally inconsistent sets of K1 ∪ A1. The one
set in this condition is:

{p(a), q(a), u(a), (∀X)(p(X)∧q(X)∧u(X)) → s(X), (∀X)(p(X)∧q(X)) → ¬s(X)}

If the new rule is considered better than the sentence in K1 then the revised
knowledge structure is: [[K2, ∆2]] = [[K1, ∆1]] ? A1 where:

K2 = {p(a), p(b), p(c), p(d), q(a), q(b), u(a)}∪
{(∀X)(p(X) ∧ q(X) ∧ u(X))→s(X), (∀X)q(X)→ t(X)}

∆2 = {p(X)>−s(X),¬s(X)>−¬p(X)}∪
{(p(X) ∧ q(X))>−¬s(X), s(x)>−(¬p(X) ∨ ¬q(X))}

In this knowledge structure we can infer the following ground sentences:

{p(a), p(b), p(c), p(d), q(a), q(b), u(a), s(a), t(a), t(b)}

The defeasible ground consequences of this set are: {s(b), s(c), s(d),¬s(b)}.
Again, we have extended the set of ground conclusions. But in this case we can
(defeasibily) infer either s(b) or ¬s(b) since we can construct the arguments
〈{p(b)>−s(b)}, s(b)〉 and 〈{(p(b) ∧ q(b))>−¬s(b)},¬s(b)〉. Since the argumen-
tative systems can treat this kind of contradictions (by means of a preference
relation between arguments) it could be the case that one argument defeats
another. Using the specificity criteria proposed in [Poo85,SL92] we could con-
clude that the argument for ¬s(b) defeats the argument for s(b). Therefore,
¬s(b) will be accepted in the knowledge structure.

It is easy to check that the test for defeasible conditionals is satisfied in both
examples.

6.2 Which beliefs should be revised?

A revision operator can modify either the undefeasible or the defeasible knowl-
edge. The main problem is to determine when some piece of information is
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undefeasible or defeasible. A simple solution could be to incorporate knowledge
directly upon the defeasible knowledge. But this solution is too simple and it
is not very realistic. In our perspective, the qualification of the knowledge is
dynamic, that is, it evolves with time and the incorporation of new informa-
tion. When an agent incorporates knowledge it typically incorporates it into its
undefeasible knowledge. But, should it be possible to consider this new knowl-
edge as defeasible knowledge if it were not actually so? Our position is that the
knowledge is undefeasible until we discover new information inconsistent with
it. That is, suppose we believe undefeasibly that all private enterprizes give an
optimal service (α = (∀X)(enterprise(X) ∧ private(X)) → good service(X)).
Then we receive new information saying that private enterprizes with for-
eign capitals provide a bad service (β = (∀X)(enterprise(X) ∧ private(X) ∧
foreigner(X)) → ¬good service(X)). And we receive new information saying
that unicom is a phone company with foreign capitals, its rate is very high
and the service is not very good. At this moment we change the status of the
belief. In other words, we will believe undefeasibly in each belief until we note
new and more plausible information in contradiction with them. In this case,
we do not undefeasibly believe in α. We will undefeasibly believe in β (since it
is more specific than α) and α could be considered as a tentative belief. That
is, for every private enterprize with foreign capitals we will believe that it does
not provide a good service. On the other hand, for those private enterprizes
with unknown source of capital we could believe that they give a good service.

This intuition is modelled with the revision operator by a set of sentences
upon defeasible systems. Suppose that [[K, ∆]] represents the epistemic state
of an agent. After the revision with respect to some explanans A we modify
the undefeasible knowledge by a non-prioritized revision operator. However,
those sentences eliminated in the revision process are not fully discarded, but
stored as tentative rules (with a different status). This mechanism has two
advantages:

(1) Dynamic classification of beliefs: classify beliefs dynamically as undefea-
sible or defeasible.

(2) Minimal change: preserve as much old information as possible.

The idea of minimal change is one of the main principles of theory change. The
concept of dynamic classification has been frequently used in the evolution of
humanity’s knowledge. For instance, the belief establishing that all metals are
solid under normal conditions of temperature and pressure was undefeasible for
years (maybe centuries). However, at some point, it was discovered that mer-
cury is a metal in liquid state under said conditions. Precisely at this moment
the status of the belief about the solidity property of metals was modified.
By analogy, at some moment we believed that the freezing temperature of
water was 0o Celsius. This belief was undefeasible until it was discovered that
this property holds only under normal conditions of pressure. If the pressure
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is high, the freezing point could be a lower temperature. Therefore, a more
specific rule was found for determining the exact freezing point of water. On
the other hand, the belief saying that the freezing temperature of water is 0o

Celsius could be viewed as a default rule that holds within “normal” worlds.

At the base of the above reasoning, we think that beliefs (rules, facts, de-
faults, arguments) are dynamically classified as undefeasible or defeasible by
successive revisions. Someone could believe that it would be simpler to in-
corporate beliefs directly upon the defeasible knowledge. However, this policy
could decrease the inference power of an agent. Consider the following exam-
ple. Think of a rule of the kind is-a (very often used in database relationships),
for instance (∀X)argentinian(X) → south american(X). This rule represents
an is-a relationship: every Argentinean is a South American. Moreover, if we
know that John is not a South American we can conclude that John is not an
Argentinean. This conclusion is not possible if the above rule were defeasible.

We could think that every is-a rule is an undefeasible one. However, is-a rules
are not the only undefeasible rules. Many prototypical properties of objects
are undefeasible too. For instance, every man has a heart as vital organ. This
rule is not an is-a rule and it makes reference to properties of the object man.
Therefore, we are giving one more argument to treat knowledge as undefeasible
until we discover new and better information.

7 Conclusions

We have presented a new kind of non-prioritized revision operator based on
the use of explanations. The idea is that an agent, before incorporating in-
formation which is inconsistent with its knowledge, requests an explanation
supporting it. We distinguish two parts in every explanation: an explanans,
represented by set of sentences supporting some belief, and an explanandum,
which is the final conclusion. We present a deductive notion of explanation,
giving some postulates for it.

We propose that every explanation contains rules and particular knowledge. If
the sentences in the explanans are better or more plausible than the sentences
in the original belief base, then the explanation is incorporated. We have
defined two kinds of revision operator: kernel and partial meet revision by a
set of sentences. These operators may partially accept the new information
and we give representation theorems for them.

Finally, we presented a framework oriented to defeasible reasoning. We showed
how defeasible conditionals can be generated using the revision operator by
a set of sentences upon knowledge structures. This approach is sound be-
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cause it preserves consistency in the undefeasible knowledge and it provides
a mechanism to dynamically qualify the beliefs as undefeasible or defeasible.
Moreover, it provides a more complete set of epistemic attitudes and extends
the inference power of knowledge based systems.

Acknowledgements

We would like to thank David Makinson, Sven Ove Hansson and Eduardo
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