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Abstract

This paper relates the Defeasible Logic Programming (DeLP) framework and its
semantics SEMp.rp to classical logic programming frameworks. In DeLP we dis-
tinguish between two different sorts of rules: strict and defeasible rules. Negative
literals (~A) in these rules are considered to represent classical negation. In contrast
to this, in normal logic programming (NLP), there is only one kind of rules, but the
meaning of negative literals (not A) is different: they represent a kind of negation
as failure, and thereby introduce defeasibility. Various semantics have been defined
for NLP, notably the well-founded semantics (WFS) in [VGRS88,vRS91] and the
stable semantics Stable in [GL88,GL91].

In this paper we consider the transformation properties for NLP introduced by
Brass and Dix and suitably adjusted for the DeLP framework. We show which
transformation properties are satisfied, thereby identifying aspects in which NLP
and DeLP differ. We contend that the transformation rules presented in this paper
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can help to gain a better understanding of the relationship of DeL.P semantics with
respect to more traditional logic programming approaches. As a byproduct, we get
that DeLP is a proper extension of NLP.

KEYWORDS: defeasible argumentation; knowledge representation; logic program-
ming; non-monotonic reasoning.

1 Introduction and motivations

Defeasible Logic Programming (DeLP) [SL92,Gar97,GSC98] is a
logic programming formalism which relies upon defeasible argumenta-
tion [PV01,CMLO00] for solving queries. DeLP combines strict rules, defined
as in extended logic programming, and defeasible rules, of the form A —< B,
indicating that reasons to believe in the antecedent B provide reasons to
believe in the consequent A. Solving a query () in DeLP gives rise to a proof
A for @@ (written (A, Q) for short) involving both strict and defeasible rules,
called argument. In order to determine whether @) is ultimately accepted
as justified belief, a recursive analysis is performed which involves finding
defeaters, i.e., arguments against accepting A, which are better than A (ac-
cording to a preference criterion). Since defeaters are arguments, a recursive
procedure is to be carried out, in which defeaters, defeaters of defeaters, and
so on, must be taken into account.

Logic programming has experienced considerable growth in the last decade,
and several extensions have been developed and studied, such as normal logic
programming (NLP) and extended logic programming (ENLP). For these for-
malizations different semantics have been developed, such as well-founded se-
mantics and stable model semantics: we refer to [DPP97,BD02,DFNO01]| for an
in-depth discussion of extensions of logic programming and their semantics.
In contrast, DeLP has an “operational” semantics which is determined by the
outcome of the dialectical process used for answering queries.

In [BD97,BD98,BD99], a number of transformation rules were introduced
which allow to “simplify” a normal logic program (nlp) P to get its well-
founded semantics WES. The application of these rules leads to a new, sim-
plified NLP P’ from which its WFES can be easily read off. In this paper we
will focus on finding similar transformation rules for DeL P, which can be used
to simplify the knowledge encoded in a DeLP program. In our analysis, we

* This paper emerged while the first author was visiting the University of Koblenz
in February 2000. It is part of the joint Argentine-German collaboration project
DeReLoP [DSSF99]. A preliminary version appeared at CACIC 2000 [CDSS00].



show that in DeLP a complete simplification of the original program can-
not be achieved. However, our results suggest some connections between the
semantics of classical approaches and logic programming with DeL.P.

The paper is structured as follows: Section 2 introduces preliminary notions
concerning NLP and DeLP. Section 3 introduces transformations for NLP.
Section 4 shows how to adapt these transformations for DelLP, analizing two
classes of DeLP programs: DeLP,., (Subsection 4.1) and DeLP,, (Subsec-
tion 4.2). Subsection 4.4 summarizes the relationships between NLP and
DeLP, and the main results we have obtained. Finally, Section 5 discusses
related work and concludes.

2 Preliminaries

In order to render the paper in a self-contained manner, this section contains
all the necessary definitions. Subsection 2.1 introduces normal logic programs,
and Subsection 2.2 introduces the defeasible logic programming framework.
We will focus our analysis on propositional logic programs because, follow-
ing [GL88,Lif94], program rules with variables can be viewed as “schemata”
that represent their ground instances. Although there now exist powerful
grounding techniques applied by various implementations (smodels, DLV) we
believe that handlind programs with free variables and computing appropri-
ate substitutions (variable bindings) can often improve the performance of the
system. Therefore, whenever suitable, we are also using the formalism of most
general unifiers (mgU) stemming from logic programming.

2.1 Normal Logic Programs (NLP)

Definition 1 (Normal logic program P) A normal logic program (nlp) P
is a finite set of normal program rules. A normal program rule has the form
A< Lq,..., L, where A is an atom and each L; is an atom B or its nega-
tion not B. If B = {Ly,..., L} is the body of a rule A < B, we also use
the notation A < Bt notB~, where BT (resp. B~) contains all the positive
(resp. negative) body atoms in B.

In NLP, atoms A and negated atoms not A are called literals. However, we
must not confuse this notion with the notion of a literal introduced in Sec-
tion 2.2. In the sequel we will speak of an atom and its negation, referring to
an atom A and its default negation not A. If BY = B~ = (), we say that the
rule is a fact and denote it by A < (or just by A).



We will now introduce some concepts useful for describing what a semantics
of a nlp is. Let Prog, be the set of all normal propositional programs with
atoms from a signature £. By L£p we understand the signature of P, i.e. the
set of atoms that occur in P. A (partial) interpretation based on a signature £
is a disjoint pair of sets (I, Iy) such that I Ul C L. A partial interpretation
is total if I; UL, = £. We may also view an interpretation (I, I5) as the set
of atoms and negated atoms [; U not I5.

Definition 2 (Semantics SEM) A semantics SEM is a mapping which as-
signs to each logic program P a set SEM(P) of (partial) models of P, such that
SEM is “instantiation invariant”, i.e. SEM(P) = SEM(ground(P)), where
ground(P) denotes the Herbrand instantiation of P. A semantics SEM is
called 3-value based if for each program P the partial interpretation SEM(P)
is a S-valued model' of P.

In Section 3 we will consider a particular 3-valued semantics for the class NLP
called the wellfounded semantics WFS, which can be computed by applying
transformation rules on a nlp P.

2.2 Defeasible Logic Programs (DeLP)

The DeLP language [SL92,Gar97,GSC98] is defined in terms of two disjoint
sets of rules: a set of strict rules for representing strict (sound) knowledge,
and a set of defeasible rules for representing tentative information. Rules will
be defined using literals. A literal L is an atom p or a negated atom ~p, where
the symbol “~7” is called strong negation. In addition, we will consider default
negation with “not” here. We define formally:

Definition 3 (Literal, assumption literal) A literal L is an atom p or
a negated atom ~p, where the symbol “~7 represents strong negation. An
assumption literal A has the form “not A”, where A is a literal.

Definition 4 (Strict rules Head < Body) A strict rule is an ordered pair,
conveniently denoted as Head < Body , the first member of which, Head, is
a literal, and the second member, Body, is a finite set of literals, which may
be (additionally) negated with “not” (default negation). A strict rule with the
head Ly and body {L,..., Ly} can also be written as Ly < Ly,..., L. If
the body is empty, it is written L <— true, and it is called a fact. Facts may
also be written as L.

Definition 5 (Defeasible rules Head —< Body) A defeasible rule is an

1 We equip + with the Kleene interpretation, where undef < undef is considered
to be true.



ordered pair, conveniently denoted as Head —< Body, the first member of
which, Head, is a literal, and the second member, Body, is a finite set of lit-
erals, which may be (additionally) negated with “not ”. A defeasible rule with
the head Ly and body {L1,..., Ly} can also be written as Ly —< Ly,..., Ly,
k> 0.

Syntactically, the symbol “ —< 7 is all that distinguishes a defeasible rule
from a strict rule. Defeasible rules account for tentative information that can
be used if nothing can be argued against it, whereas strict rules are used to
represent non-defeasible information.

In the sequel, atoms will be denoted with lowercase letters (a, b, ...). The
letter r (possibly indexed) will be used for denoting rule names. Literals will
be denoted with capital letters (A, B, ...), possibly indexed. Sets of atoms
will be denoted as A, B, ..., possibly indexed. Logic programs will be usually
denoted as Py, Pq, etc.

Definition 6 (Defeasible logic program P =(II,A)) A defeasible logic
program (dIp) is a finite set of strict and defeasible rules. If P is a dlp, we
will distinguish in P the subset 11 of strict rules, and the subset A of defeasible
rules. When required, we will denote P as (II, A).

We will distinguish the class of all defeasible logic programs that use only strict
(resp. default) negation, denoting them as DeLP,., (resp. DeLP,s). Note that
strong negation “~” is applied to atoms (also in rule heads), whereas default
negation is applied to literals (possibly strongly negated). But default negation
does not occur in heads of programs (see Definition 1). We will associate with
every program P a set of assumable facts of the form assume L, for every literal
L in P. Those literals will be given a special meaning in the argumentation
framework. They will be used to define the semantics of default negation.

We will write P to denote the complement of a literal P, defined as follows:
P=,,~P, ~P=, P, and assume P=, P.

Next we will define the notion of a defeasible derivation for a dlp. In brief, it
is a finite set of rules obtained by backward chaining from a literal ) as in
a PROLOG program, using both strict and defeasible rules from the given dIp
P. The symbol “~” is considered as part of the predicate when generating a
defeasible derivation. The definition is similar to the one of SLDNF-derivation
in [L1087], except that literals negated with “not” are associated with assum-
able facts.

Definition 7 (Derivation sequence) A defeasible derivation for a literal Q)
in a general dlp P (possibly containing assumable facts) is a finite sequence
of (instantiations of ) rules in P. For this, we consider sequences G; of goals
i.e., sequences of sequences of literals, and r; of rules for © > 0 as follows:



(1) Gy = [Q)]. ¢ is not defined.
(2) Let G; = [Q1, ..., Qmy- -, Qn] with 1 < m < n.
o If there 1s a strict or defeasible rule in P with head Ly and body
{Ly,..., Ly} such that Ly and Q,, have the most general unifier o, then

Gi—l—l = [Qh---;Qm—l;Lh---;Lk7Qm+17---=Qn]0 and Ti41 = (Lo —

Ly,....Ly)o orriyg = (Lg —<Ly,...,Ly)o, respectively.
e If Q. has the form not L for some literal L (possibly negated with ~)
and the assumable fact r = assumelL is in P, then Gip =

Q1 s Qm1, Qut1y -, Qn] and ripy = 1.

The sequence of rules S = [ry,...,1| (for some suitable | > 0) is called
defeasible derivation for () in P iff the corresponding sequence Gy is empty.
We say that () can be defeasibly derived from P and write P &= Q) in this case.

Definition 8 (Contradictory set of rules) A set of rules S is contradic-

tory iff there is a defeasible derivation from S for some literal P and its
complement P, i.e., SF P and S+ P.

Given a dlp P, we will always assume that the set Il of strict rules is non-
contradictory (i.e., there is no literal P such that II - P and [T - ~P). If a
contradictory set of strict rules were used in a dlp, the same problems as in
extended logic programming would appear. The corresponding analysis has
been done elsewhere [GL90).

Example 9 Consider an engine the performance of which is determined by
two switches swl and sw2. The switches requlate different features of the en-
gine’s behavior, such as pumping system and working speed. We can model the
engine behavior using a dlp program (II, A), where

II={(swl < ),(sw2 < ),(heat « ), (~fuel_ok < pump_clogged)}

(specifying that the two switches are on, there is heat, and whenever the pump
gets clogged, fuel is not ok), and A models the possible behavior of the engine
under different conditions (Figure 1).

Next we introduce the definition of argument in DeLP. Basically, an argu-
ment for a literal () is a defeasible derivation S = [ry,..., 7] which is non-
contradictory with respect to a given dlp program, and the defeasible infor-
mation in S is minimal with respect to set inclusion.

Definition 10 (Argument) Given a dlp P = (I, A), we will define HBass =
{assume L | L is a literal in P}. An argument A for a query @), denoted
(A, Q), is defined as Ra U Ha, where Ry is a subset of ground instances
of the defeasible rules of P and Ha C HBass, such that:

(1) there exists a defeasible derivation for () from I1U A.



pump _fuel_ok —< swl
(when sw1 is on, normally fuel is pumped properly);
fuel_ok —< pump_fuel _ok
(when fuel is pumped, normally fuel works ok);
pump _otl _ok —< sw?2
(when sw2 is on, normally oil is pumped);
oil_ok —< pump _oil_ok
(when oil is pumped, normally oil works ok);
engine_ok —=< fuel_ok, oil_ok
(when there is fuel and oil, normally engine works ok);
~engine_ok —< fuel_ok, oil_ok, heat
(when there is fuel, oil and heat, usually engine is not working ok);
pump _clogged —< pump _fuel_ok, low _speed
(when fuel is pumped and speed is low, there are
reasons to believe that the pump is clogged);
low _speed —< sw?2
(when sw2 is on, normally speed is low);
~low _speed —< sw2, swl

(when both sw2 and swl are on, speed is considered not to be low).

Fig. 1. Set A (Example 9)

(2) I1U A is non-contradictory, and
(3) A is minimal with respect to set inclusion.

An argument (A, Q) is strict iff A = (. An argument (A;, Q) is a sub-
argument of another argument (As, @), if A; C Ay. Given an argument
(A, Q), we will also write H 4,0y to denote the set of assumption literals in
(A, Q). Next we introduce the auxiliary notion of immediate subargument,
which will be used later in the proofs of Propositions 48 and 60.

Definition 11 (Immediate subarguments) Let (A, H) be an argument,
such that H < Py,..., Py is the last strict rule used in the defeasible deriva-
tion of H from ITU A. Clearly, in such a case there exist subsets A, ..., A
of A, which are arguments for Pi,...,Py. We will call (A1, Py) , ..., {(Ak, Px)
immediate subarguments of (A, H).



Example 12 Consider the dlp program (11, A), with

I = {(p < gnotr), (w = ¢,7),(s < )}
A = {lg <9 (r <9}

It follows that A = {(q¢ —< s),(r —< s)} is an argument for w, and B =
{assume ~r, (¢ —< s)} is an argument for p. In the argument (B,p) the last
strict rule used in the derivation of p is p < gq,notr. Then B' = {q —< s}
is an argument for q, and it is an immediate subargument of (B,p). In the
argument (A, w) the last strict rule used in the derivation of w is w < q,r.
Then (A, q) and (A,r) are immediate subarguments of (A, w).

Example 13 Consider FExample 9. Then the set

A = { (pump_fuel_ok —< swl), (pump_oil_ok —< sw2),
(fuel_ok —< pump_fuel_ok), (oil_ok —< pump_oil_ok ),
(engine_ok —< fuel_ok, oil_ok) }

15 an arqgument for engine_ok. The set

B = { (pump_fuel_ok —< swl), (low_speed —< sw?2),

(pump_clogged —< pump_fuel ok, low_speed) }

is an argument for ~ fuel_ok. The set C = {~low_speed —< sw2, swl} is an
argument for ~low_speed.

Given a dIp program P, we will denote by Args(P) the set of all possible
arguments (A, Q) that can be built from P wrt. arbitrary queries Q). We
emphasize that this set consists of pairs (A, Q) and not just of arguments A
alone. This makes the condition Args(P) = Args(P)" much stronger and is
important for our Propostion 37 to hold.

The following definition captures the notion of conflict between two arguments.

Definition 14 (Counterargument) An argument (A;,();) counterargues
an argument (As, Qa) at a literal Q iff there is a subargument (A, Q) of
(As, Qo) such that TTU{Q1, Q} is contradictory.

Example 15 Consider  Ezample 13. Then (B,~fuel-ok) is a
counterargument for (A, engine_ok), since there is a subargument
A" = { fuel.ok —<  pump_fuel ok, oil_ ok —<  pump_oil_ok,
engine_ok —< fuel_ok, oil_ok } for fuel ok, such that IIU{ fuel_ok, ~ fuel_ok)
1 contradictory.



Informally, a query ) will succeed if the supporting argument is not de-
feated; that argument becomes a justification. In order to establish that A
is a non-defeated argument, counterarguments that could be defeaters for A
are considered, i.e., counterarguments that are preferred to A according to
some criterion. DeLP considers a particular preference criterion called speci-
ficity [SL92,GSCI8] which favors an argument with greater information con-
tent and/or less use of defeasible rules. Next we will introduce this concept
formally.

Definition 16 (Specificity) Given a dlp program P, let Il denote the set
of all rules with nonempty bodies. Let F'denote the set of all possible literals
that have a defeasible derivation in P.

An argument (A;, Q1) is strictly more specific than an argument (A, Q2)
(denoted (A1, Q) » (A, Q2)) if and only if:

(1) For oll H C F :iflcUHU A + Q1 and llg UH If @, then
IIgu HU Ay F Q.

(2) There exists H' C F such that llc UH' U Ay B Qs and Il U H' I/ Qo
andHGU H U .A1'7( Ql-

Example 17 Consider the following dlp P:

P={ (v <fifo) (~p <fi) (fr < ) (fo < )}

Then the set of all literals derivable in P is F={ p, ~p, fi, fo }. Consider
the arguments (A1, p) and (Ag, ~p), with Ay ={ p —< fi,fo } and Ay =
{ ~p —<f; }. For every H C F, condition 1 in Definition 16 holds. For
H' = {f1}, condition 2 in Definition 16 holds. Hence (A1, p) is strictly more
specific than (A, ~p).

Definition 18 (Proper defeater, blocking defeater) An argument
(A1, Q1) defeats (A, Q2) at a literal Q iff there exists a subargument (A, Q)
of (Az, Qs) such that (A1, Q1) counterarques (As, Qq) at Q, and either:

(a) (A, Q1) is strictly more specific than (A, Q). In this case (A;, Q1) is called
a proper defeater of (A, Q), or

(b) Neither (A1, Q1) is strictly more specific than (As, Q2), nor (As, Q2) s
strictly more specific than (Ay, Q1). In this case (Ay, Q1) is a blocking de-
feater of (A, Q).

Example 19 Consider Examples 13 and 15. Then (B, ~ fuel_ok) is a proper
defeater for (A, engine_ok), since it is more specific.

This conceptualization allows us to apply the notion of counterargumentation
(Definition 14) and defeat (Definition 18) in a natural way when assumption



literals are involved, as shown in the following example.

Example 20 Consider a dlp P = (II, A), where

II = {r < ,s<« ,t <« ,q <« s},

A = {p <notq,r,q <t}

Then A ={ p —<notq,r, assume~q } is an argument for p, which is coun-
terargued by the argument ({q —<t},q) as well as by the argument (0, q).

Since defeaters are arguments, there may exist defeaters for the defeaters and
so on. That prompts for a complete dialectical analysis to determine which
arguments are ultimately defeated. Ultimately undefeated arguments will be
marked as U-nodes, and the defeated ones as D-nodes. The formal definitions
required for this process are as follows:

Definition 21 (Argumentation line) Let P be a dlp, and let (A, Q) be an
argument in P. An argumentation line starting from (A, Q), denoted NAQ)
(or simply \) is a possibly infinite sequence of arguments

)\<A’Q> = [<~AO;QO>; <A17Q1>7 <A27Q2>7 ct <'A”’Q"> o -/

satisfying the following conditions:

(1) If (A, Q) has no defeaters, then A9 = [ (A, Q) ].
(2) If (A, Q) has a defeater (B, S) in P, then NAQ) = (A, Q) o ABS),

We distinguish two sets in any argumentation line \: the set of supporting ar-
guments A\s = { (Ao, Qo), (A2, Q2), (A4, Qy), ...} and the set of interferring
arguments \; = { (A1, Q1), (As,Q3), (A5, Qs), ...}

Argumentation lines can be thought of as an exchange of arguments between
two parties, a proponent and an opponent [Res77]. Dialectics imposes addi-
tional requirements on such an argument exchange to be considered rationally
acceptable. In such a setting, fallacious reasoning (such as circular argumen-
tation and falling into self-contradiction) is to be avoided. This can be done
by requiring that all argumentation lines be acceptable [SCG94]. An accept-
able argumentation line starting with an argument (Ag, Qo) constitutes an
exchange of arguments which can be pursued until no more arguments can
be introduced because of the dialectical constraints discussed above. These
notions will be introduced in the following definitions.

Definition 22 (Contradictory set of arguments) Given a dlp P =

(II,A), a set of arguments S = U {(A;, Qi)} is contradictory wrt P iff
ITU UL, A; is contradictory.

10



Definition 23 (Acceptable argumentation line) Let P be a dlp, and let
A = [(Ao, Qo), (A1,Q1), ..., {An, Qn), ... ] be an argumentation line in P.
Let N =[(Ao, Qo), (A1,Q1), ..., (Ax,Qk), .../ be an initial segment of A.
The sequence X' is an acceptable argumentation line in P iff it is the longest
initial segment in A satisfying the following conditions:

(1) The sets N's and Ny are each non-contradictory sets of arguments wrt P.

(2) No argument (A;,Q;) in X' is a sub-argument of an earlier argument
(Ai, Qi) of X' (i < j).

(8) There is no subsequence of arguments [(A;—1, Qi—1), (Ai, Qi), (Ait1, Qit1)]
in N, such that (A;,Q;), is a blocking defeater for (A; 1,Q; 1) and
(Aiy1,Qit1) 1s a blocking defeater for (A;, Q;).

The rationale for the conditions in Definition 23 can be better understood in
a dialectical setting [SCG94|. Condition 1 disallows the use of contradictory
information on either side (proponent or opponent). Condition 2 eliminates the
“circulus in demonstrando” fallacy (circular reasoning). Finally, condition 3
enforces the use of a stronger argument to defeat an argument which acts as
a blocking defeater.

Example 24 Consider Example 9. The sequence
M = [ (A, engine_ok), (B, ~ fuel_ok), (C,~low_speed) |

15 an acceptable argumentation line, whereas any sequence having the initial
segment

Xy = [(A, engine_ok), (B, ~ fuel_ok), (D, fuel_ok) |

with D = { pump_fuel ok —< swl, fuel_ok —< pump _fuel ok } is an ar-
gumentation line which s not acceptable, since the last arqgument defeats
(B, ~fuel_ok), but it is a subargument of a previous argument in Ay (viz.
(A, engine_ok) ). Hence (D, fuel_ok) is deemed as a fallacious argument to be
excluded from the dialectical analysis.

Proposition 25 Any acceptable argumentation line in a dlp P is finite.

PROOF. Since P has no function symbols, and P is a finite set of program
rules, the set of all possible arguments Args(P) is necessarily finite. Hence
the only way to get an infinite argumentation line A = [ (Ag, Qo), (A1, Q1),
(Ag, Q2), .., (A, Q) ...] is by having the same argument twice in A, i.e.,
(Ai, Qi) = (Aj, Q;), and hence A; = A;. But this cannot be the case in an ac-
ceptable argumentation line because of condition 2 in Definition 23. Therefore
any acceptable argumentation line A is necessarily finite.

11



Let AAo@) — fx )\, ... A,} be the set of all acceptable argumentation
lines starting with (Ag, Qo) in a dIp P. A tree structure can be built out of
the elements of A40:Q0) 5o that every path in the tree corresponds to some
\; € AR This structure will be called dialectical tree. Formally:

Definition 26 (Dialectical tree) Let P be a dlp, and let Ay be an argument
for Qo in P. A dialectical tree for (Ag, Qo), denoted T 4y,q,), s a tree structure
defined as follows:

(1) The root node of Tia,00) 5 (Ao, Qo)-

(2) (B', H') is an immediate child of (B, H) iff there exists an acceptable ar-
gumentation line \40Q0) = [[ Ay, Qo), (A1, Q1), ..., (An, Qy) ] such that
there are two elements (A1, Qiv1) = (B, H') and (A;,Q:) = (B, H),
for somei1=0,...,n—1.

Clearly, leaves in a dialectical tree correspond to undefeated arguments. Defeat
among arguments in a dialectical tree can be propagated from the leaves up
to the root, according to the marking procedure given in Definition 27.

Definition 27 (Marking of the dialectical tree) Let (A, Q) be an argu-
ment and T4,y its dialectical tree, then:

(1) All the leaves in T aqy are marked as U-nodes.
(2) Let (B, H) be an inner node of T aqy. Then (B, H) will be a U-node iff
each child of (B, H) is a D-node. The node (B, H) will be a D-node iff it

has at least one child marked as U-node.

An argument A for a literal ) which turns to be ultimately labeled as unde-
feated in T 4,y is called a justification for Q.

Definition 28 (Justification) Let A be an argument for a literal Q, and let
Tiaq) be its associated acceptable dialectical tree. The argument A for Q will
be a justification iff the root of T 4,0y is a U-node.

It can be shown [Gar97] that for any dlp P, strict arguments in P have
no counterarguments, and therefore no defeaters. As a direct consequence of
Definitions 26, 27 and 28, it follows that any strict argument A for a literal
@ will be a justification for ): similar results hold for other argumentation
systems, such as Vreeswijk’s [Vre93] and Prakken and Sator’s [PS97].

Example 29 Consider Example 9, and assume our main query is engine_ok.
An argument (A, engine_ok) can be built, which is defeated by the argu-
ment (B, ~ fuel_ok) (as shown in Ezamples 13, 15 and 19). Hence, the ar-
gument (A, engine_ok) will be provisionally rejected, since it is defeated. How-
ever, (A, engine_ok) can be reinstated, since there exists a third argument
C = {~low_speed —< sw2,swl} for ~low_speed which in turn defeats

12



A, engine_ok
(A, engine-ok)

(B, ~ fuel ok§D, ~engine_ok)

/(D) (U)

C, ~low_speed
( &P )

Fig. 2. Dialectical tree (Example 9)
(B, ~ fuel_ok).

Hence, (A, engine_ok) comes to be undefeated again, since the argument
(B, ~ fuel_ok) was defeated. But there is another defeater for (A, engine_ok),
the argument (D, ~engine_ok), where D = { pump_fuel_ok —< swl,
pump_oil_ok —< sw2, fuel_ok —< pump_fuel_ok, oil_ok —< pump_oil_ok,
~engine_ok —< fuel_ok, oil_ok,heat }. Hence (D,engine_ok) is once again
provisionally defeated.

Since there are no more arguments to consider, (A, engine_ok) turns out to be
ultimately defeated, so that we can conclude that the argument (A, engine_ok)
s not justified.

Figure 2 shows the resulting dialectical tree, as well as its associated labeling.

A given query () can be associated with a particular answer set according to
some criterion. Several criteria have been analyzed corresponding to different
outcomes in the dialectical process. A possible criterion is specified in the
following definition [Gar97]:

Definition 30 (Answers to a given query Q) Given a dlp P, a query Q
can be classified as a positive, negative, undecided or unknown answer as fol-
lows:

(1) Q is a positive answer iff there exists a justification (A, Q).

(2) Q is a negative answer iff for each argument (A,Q), in the dialectical
tree Tia,0), there ewists at least a proper defeater for A marked as U.

(3) Q is an undecided answer iff Q is not justified, and for each argument
(A, Q), it is the case that T 4,0y has at least one blocking defeater marked
as U.

(4) Q is an unknown answer iff there is no argument for Q).

Given a dlp P, we call Positive(P), Negative(P), Undefined(P) and
Unknown(P) the sets of positive, negative, undecided and unknown answers,
resp.
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From the previous definition we can derive a 3-valued semantics SEM pepp(P)
for a dlp P, classifying literals in P as accepted, rejected or undefined as
follows:

Definition 31 (SEMDeLP)
For any dlp P, we define SEMpepp (P) = (Paccerted prejected pundefy - ypere

Ppaccepted {Q|Q € Justified(P)}
prejected = L]|Q € Unknown(P) U Negative(P)}
pundef = 1Q|Q € Undefined(P)}.

Example 32 Consider P as defined in Fxample 9, and consider the analy-
sis performed in Example 29. Then engine_ok € Negative(P), ~engine_ok €
Positive(P), heat € Positive(P), and working_temperature_low €

Unknown(P). Hence {~engine_ok,heat} C Pwerted  qnd engine ok €
Prejected.

3 Transformations for NLP: classifying well-founded semantics

We are now considering logic programs containing default negation not.
A program transformation is a relation — between ground logic pro-
grams [BD97,BD99,BDFZ01|. A semantics SEM allows a transformation —
iff SEM(P;) = SEM(P,), for all P, and P,, such that P, — P,. In this
case we also say that the transformation — holds wrt. SEM. Well-founded
semantics for NLP can be elegantly characterized by a set of transformation
rules [BD99], which reduce a given nlp program P into a simplified version
P', from which the WFS can be easily read off.

Definition 33 (Transformation rules for WFS) Given a program P €
Prog,, let HEAD(P) be the set of all head-atoms of P, i.e., HEAD(P) =
{H|H + B ,notB~ € P}. Let P; and Py be ground programs. The follow-
ing transformation rules characterize WFES:

RED" (Positive Reduction): Program P, results from program P; by
RED" (written P; —p Pso) iff there is a rule H < B in P; and a
negative literal not B € B such that there is no rule about B in Py, i.e.,
B¢ HEAD(P;), and Py, = (P; \{H < B})U{H «+ (B\ {not B})}.

RED  (Negative Reduction): Program P, results from program P; by
RED™ (written P; w—y Ps2) iff there is a rule H < B in P; and a
negative literal not B € B such that B appears as a fact in Py, and Py =

SUB (Deletion of non-minimal rules): Program P, results from pro-
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gram P; by SUB (written P, >y Pg) iff there are rules H < B and
H < B in P, such that BC B' and P, = P; \ {H « B'}.

UNFOLD (Unfolding): Program Py results from program P; by
UNFOLD (written P; —y Pg) iff there is a rule H <— B inP; and a pos-
itive literal B € B such that Py = P, \{H < B} U{H <+ ((B\{B})uB')
| B+ B ¢ Pl}

TAUT (Deletion of Tautologies): Program Py results from program P;
by TAUT (written P; w7 Ps) iff there is H < B € P, such that H € B
and PQ :Pl \{H < B}

A program P' is a normalform of a program P wrt. a transformation %7 iff
P . P!, where —, denotes the reflexive-transitive closure of —, and P’ is
irreducible, i.e., there is no program P" such that P' +— P".

Let “—g” be the rewriting system consisting of the above five transforma-
tions, i.e., =i = =y U =y U =y U —=p U =y, Two distinctive features
of this rewriting system [BD98] are that it is weakly terminating (i.e., each
ground program P has a normal form P’), and confluent (i.e., given a program
P, by applying the transformations in any fair order, we eventually arrive at
a normalform normyps(P)). This normalform normygs(P) is a residual pro-
gram, consisting of rules without positive body atoms. For such a simplified
program, its well-founded semantics can be easily read off as follows:

Definition 34 (SEM,,i,) We define SEMu(P) = (Pirue platse pundefy
for any nlp P, where

pirue  — {H|H « € P}
plese = {H|H € Lp\ HEAD(P)}
'Pundef — {H|H c LP \ (Ptrue U 'Pfalse)}

To illustrate our transformations, we consider the following example taken
from [DOZ01]:

Example 35 (Computing WFS) We consider the program Py and reduce
it as follows:

p
p

g < notp P
g < notp

q < t,notp s <— notgq

—SUB S <4< notq —RED-

S <— notgq q< T
q<r

q<r T4 q
T 4= q

T 4= q
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In the next step, we can apply UNFOLD to one of the two last rules to get:

p

S <— notq
q<4q
T4 q

Now we can delete the resulting tautology by the application of TAUT and
then use Red"

p p
s < notq —grEp+ S
r < q r < q
Finally applying UNFOLD to the last one, we get to normyps(Py) :

p

S

Thus, the wellfounded semantics of Py is:
WFES(Py) = {p, s,notg, nott,notr}

Theorem 36 (Classifying WFS [BD99])
WFS(P) = SEM in(normwrs(P)).

4 Transformation Properties in DeLP

As stated in the introduction, we want to analyze whether transformations
for NLP as the ones described above also hold for a DeLP program. Such
an analysis is very complicated for the whole class DeLP, where we have
not only two sorts of rules, strict and defeasible rules, but also two different
kinds of negation, ~ and not. Adapting the transformation rules presented in
Section 3 to this class of programs is a nontrivial task. In fact, even defining
a semantics for general programs in DeLP is highly nontrivial and subject of
ongoing research.

In our analysis, we will therefore focus first on DeLP,., (i.e., DeLP with
strict negation “~”). As the transformations in [BDFZ01,BD98] are defined
with respect to a NLP setting, we will adapt them accordingly. Therefore,
we extend our previous terminology to be applied to a DeLP,,., program P
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(thus HEAD(P) will stand for all heads of rules in P, etc.), distinguishing
strict rules from defeasible rules when needed. In Section 4.2 we will consider
DeLP,; (i.e., DeLP with default negation not ). In that case, a similar analysis
will be performed.

The following propositions provide ways of determining whether two dlp pro-
grams have the same semantics. These results will be used in the following
sections.

Proposition 37 Let P and P' be two dlp programs. If Args(P) = Args(P’),
then SEMDeLP(P’) - SEMDeLP(P).

PROQOF. This is a direct consequence of the Definition 31, since the seman-
tics of DeLP is entirely determined by relationships among arguments.

The converse does not hold, as shown in the following example.

Example 38 Let P, ={p < ¢, p —<1r,q < ,r <« }, and let P,
={p <4qq « ,r < }. Clearly, SEMperp(P1) = SEMperp(P>),
since {p,q,r} = PPt = pyeered  However Args(Py) # Args(Py) (since
{p —<r},p) is an argument in Py but not in Py).

Definition 39 (Isomorphic dialectical trees) Given  two  arguments
(A1, Q1) and (Az, Qq), their associated dialectical trees Tia, g,y and Tia,q.)
will be isomorphic iff

(1) Q1 = Q2, and both (Ay, Q1) and (As, Qs) have no defeaters, or
(2) Tia@n has Ti, ..., T as immediate subtrees, and T a,,0,) has T{, ...,
T as immediate subtrees, and there exists a one-to-one correspondence
foAT, Ty = AT, ..., T}, such that
(a) T; and f(T;) are isomorphic, i =1,...,k, and
(b) The root of T; is a proper (resp. blocking) defeater for (Ay, Q1) and
the root of f(7T;) is a proper (resp. blocking) defeater for (As, Qs), for
1=1,...,k.

Proposition 40 Let P, and P, be two DeLP,, programs, such that Tia, o)
is the associated dialectical tree for an argument (Ay, Q1) in Pi, and Ti4,,q.)
is the associated dialectical tree for an argument (Ag, Q2) in Pa. If T, qu)

and Tia, 0, are isomorphic, then Q, € pecerted  (rogp, pyeiected pundel ) g
QZ c ,P;ccepted (Tesp. P;‘egected’ ,P;Lndef)'

PROOF. This proposition is direct consequence of the definition of marking
of a dialectical tree (Definition 27).
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Corollary 41 Let Py and Py be two DeLP,o programs, such that HEAD(P;)
= HEAD(P,). Suppose that for any literal Q in HEAD(Py), there exists a

dialectical tree Tia,0) tn Py iff there exists an isomorphic dialectical tree Tis q)
m PQ. Then SEMDeLP(Pl) == SEMDeLP(Pl).

4.1 Transformation Properties in DeLPy.,

Below we will introduce tentative extensions to DeLP), of the previous trans-
formation rules. The distinguishing features of the transformation rules are
discussed next. For each transformation, P; and P, denote ground dlp pro-
grams. Some transformation rules have special requirements which appear in

boldface.

RED;Q: Program P, will result from program P; by RED™ (written
P; —pneg P2) iff there is a rule H < B in P, and a negative literal
~B € B such that there is no rule about B in P;, i.e., B ¢ HEAD(P;),
and Py = (P; \{H « B})U{H < (B\{~B})}.

RED,,,: Program P, will result from program P; by RED™ (written
Pi —neg P2) iff there is a rule H < B in P; and a negative literal
~B € B such that B appears as a fact in P;, and P, = P; \ {H «+ B}.

SUB,,,: Program P, will result from program P; by SUB (written P; > gneq
P,) iff there are strict rules H <— B and H < B’ in P, such that B C B
and Py, = P; \ {H < B'}. The rule H «+ By is called non-minimal rule
wrt. H < B;.

UNFOLD,,.,: Suppose program P; contains a strict rule H < B such that
there is no defeasible rule in P; with head H.

Then program Py will result from program P, by UNFOLD,,, (written
P1 —Uneg P2) iff there is a positive literal B € B? which does not appear
as head of a defeasible rule in P,, such that P, = P, \ {H « B} U
{H < (B\{B})uB') | B+ B €P;}.

The clause H < B is said to be UNFOLD,,.-related with each B <«
B,' € Py (fOI‘iZ 1,...,n).

TAUT,,,: Program P, will result from program P, by TAUT,,, (written
Pi —rneg P2) iff there is H < B € P; such that H € B and Py, =

First we consider RED:eg. This transformation rule does not hold for strict
negation. Note that whereas RED™ captures the idea that not A trivially holds
whenever A cannot be derived (and for that reason not A can be deleted), the

2 Note that we do not distinguish between atoms and their negations because
negated literals are treated as new predicate names.
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same principle cannot be applied to ~A, which holds whenever there is a
derivation for ~A.

Example 42 Consider the following DeLPy., program: 11 ={ (p <+ ~s),
(~s < t), (@ < ) (¢ < )} and A ={(t —<q) (~t —<a,q¢)}
Here p is not justified from P (since the argument Ay = { t —< q; } forp
is defeated by the argument Ay = { ~t —< q;,qs } for ~t. If we considered
P' = RED;, (P) we would get p as a fact, so p would be justified in P'.

neg

Let us now consider RED,, . This transformation rule holds for both defea-

sible and strict rules in a DeLP,., program P, as shown in Proposition 43

Proposition 43 Let P be a DeLP,,, program. Let P’ be the resulting program
of applying RED,, , i.e., P > pmeg P'. Then SEMperp(P') = SEMperp(P).

neg’

PROOF. Let P be a DeLP,,, program, and let (4 <—) € P. Furthermore,
let r =P <« Q... Qn (resp. P —< @y, ..., @) be a rule in P, such that
~A = Q;, for some i. Then r cannot be used in any defeasible derivation
corresponding to an argument in P, since if r is used, then both ~A and
A follow from IT U A, contradicting the definition of argument). Then, each
argument that can be built from P can also be built from P’ = P\ {r}. Thus
Args(P) = Args(P'), and therefore SEMperp(P) = SEMperp(P').

Let us now consider SUB,,.,. This transformation holds for strict rules, as
shown in Proposition 45. It does not hold in DeLP,., for defeasible rules
(since having more literals in the body gives more specific information), as
shown in Example 44

Example 44 Let P = (II, A), where Il = {q1,q2} and A ={ (p —< q1, q2),
(0 —< a1), (vp —< g2) }. The argument A = { (o —< q1,42) } for p
is strictly more specific than B = { (~p —< qz) } for ~p. However, if we
consider P' = P\ {(p —< q1,qz)}, then we get two arguments which block
each other (A ={ (p —<q;) } forp and B ={ (~p —< qg) } for ~p).

Proposition 45 Let P be a DeLP,., program. Let P’ be the program resulting
from applying SUBy, i.€., P > pineg P'. Then SEMperp(P) = SEMpeLp(P').

PROOF. Clearly, P = P\ {r | r is a non-minimal rule }. Let r = P <«
Q;,..., Qr be a non-minimal rule in P, and assume there is an argument
A for some literal H in which r is part of the defeasible derivation for H.
From the definition of defeasible derivation, for each literal @), ..., (Q; there
is an argument (B;,Q.), ...,(By, Qk), such that U*_, B; C A. Since r is a
non-minimal rule, there exists r' = P < @;,...,Q; € II, j < k, such that
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for each literal Q; (i = 1,...,j) there are arguments (B, Q1) ,...,(B;,Q;)-
But ngl B; C Ule Bi. Hence by replacing r by ' we get either the same set
A as an argument for H, or a proper subset A’ C A must be an argument for
H. This means that A is not an argument according to Definition 10, because
it does not satisty condition 3. In any case, the rule r can be removed from
P, without affecting the arguments that can be obtained from P. Therefore

Args(P) = Args(P') (P'= P\ {r}). Hence SEM perp(P) = SEM perp(P').

Let us now consider UNFOLD,,,. As indicated in its definition, this property
is only defined for a certain class of strict rules. It does not hold for defeasible
rules, as shown in Example 46. It does not hold for strict rules in general
either: we imposed the additional condition that no defeasible rule has the
same head as the literal which is being removed when applying “unfolding”.
The reason for doing so is shown in Example 47.

Example 46 (UNFOLD does not hold for defeasible rules) Consider
the following example

I A
has_feathers < flies —< bird
has_beak < ~flies —< bird, wounded
wounded <— bird —< has_feathers, has_beak
In P, there is an argument Ay = { (~flies —< bird, wounded),

(bird —<  has_feathers, has_beak )} for ~flies which is strictly more spe-
cific than Ay = { (flies —< bird), (bird —< has_feathers, has_beak )}
for flies. In this case, the first arqument s a justification. Howewver,
if UNFOLD,., is applied to defeasible rules, we get P = (II,A'),
with A'={ (flies —< has_feathers, has_beak ), (~flies —< bird, wounded),
(bird —< has_feathers, has_beak )}. In P we have two conflicting arguments,
Ay = { (~flies —< bird, wounded), (bird —< has_feathers, has_beak)} for
~flies and Ay = { (flies —< has_feathers, has_beak) } for flies. In this
case, neither of them 1is strictly more specific than the other.

Example 47 Let P = (I, A) be a dlp, where I1 ={ (p <« q,s), (¢ < fi),
(¢ < f2), (s < )}, and A ={ q —< s }. If we could apply UNFOLD,,,
onrule (p < q,s) wrt. the literal q, we would get the program P’ =P\{(p <+
)Y U{(lp < fi,8), (b < fo,8) }. But Ay ={ q —< s } is an argument
for p in P, but it does not exist in P°.

In order to simplify the analysis of UNFOLD,,,, we will define a special
transformation UNFOLD);  corresponding to UNFOLD,,., applied to a

neg

particular UNFOLD,,,-related rule r;.
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Definition 48 (Transformation UNFOLD}, ) Suppose program P; con-
tains a strict rule H < B such that there is no defeasible rule in P,

with head H.

Then program Py will result from program P; by UNFOLD, (written
Pi = Uneg P2) iff there is a positive literal B € B which does not appear
as head of a defeasible rule in P;, such that P, = P, \ {H < B}
U{H <« (B\{BhHUubB) |r, =B < B € P;}. (Such r; are called

UNFOLD,,, related.)

Proposition 49 Let P, be a DeLP,., program which contains a strict rule

r=H <« B, such that r1, o, ..., Tx are all those rules in P; that are
UNFOLD,, -related to r. Consider the sequence of programs P = P, n—)?}neg
P I—);ﬁwg, .., Py l—);}“neg P'. Then P > Uneg P wrt rule r.

PROOF. Direct consequence of Definition 48 and the definition of
UNFOLD,,,.

We present next a particular property of immediate subarguments in DeLP,,,
which will allow us to show that the transformation ~,,., preserves semantics
when applied to a given DeLP,., program.

Proposition 50 Let (A, H) be an argument in DeLP,.,, such that the last
rule used in the derivation is the strict rule H < P;,..., Py. Then all
immediate subarguments (Ay, P) ..., (A, Py) are such that A; = A, Vi =
1,...,k.

PROOF. Since (A, H) is an argument, then IIUA - H, such that there exists
a defeasible derivation S = [ry,..., 7] where 1y = H < P;,..., P}. Clearly,
the sequence S’ = [rq, ..., 7] provides a defeasible derivation for every element
of the sequence of goals G=[Py, ..., P], using the same set A of defeasible
information as in S. In particular, TIUAF P, Vi = 1,...,k, such that A is
minimal and non-contradictory. Thus A is an argument for P;, Vi =1,..., k.

Proposition 51 Let P, be a DeLP,., program, and let Py be the program
resulting from applying »—>{}'neg wrt some rule r;.

Let (A, H) be an argument in Py affected by the application of wyj,.,. Then
(A, H) is also an argument in Py, and Args(Pr) = Args(Ps).

PROOF. Let P, = (II, A) be a DeLP,,, program. Let (A, )) be an argument
in P;. We can assume that (i) a strict rule r = H < B is used in the defeasible
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derivation of @ from IIU A, and (ii) 7 is UNFOLD,,,-related to other rule
r; (otherwise Args(P;) = Args(Ps), and the proposition holds trivially).

Since rule r was applied in the defeasible derivation of ) from IT U A, there
exists an argument (S, H) which is a subargument of (A, @), such that the
last rule used in the defeasible derivation of (S, H) is r. The strict rule r can
be written as

r=H « B,L,,..., L (1)

From Proposition 50, we get that (S, B), (S, L), ..., (S, L) are immediate
subarguments of (S, H).

Consider r;=B < B, which is the last rule used in the defeasible derivation
of (S, B), such that r is UNFOLD,, -related to ;. Since r; is a strict rule,
it will have the form

TZ':B<—P1,...,Pm. (2)

From Proposition 50, we get that (S, Py), (S, Ps), ..., (S, P,) are immediate
subarguments of (S, B). Thus, argument (S, H) in P; is such that (S, P}),
.oy (8, Py,) and (S, Ly), ..., (S, Ly) are also arguments in P;.

Assume we apply l—ﬁ}neg to Py, resulting in a new DeLP,,, program Pj. From
Definition 48, we have:

Py =P \{H « B} U{H « (B\{B)UB)|r; =B « B ePy}

In this case we get Py = P; \ {r} U {r'}, where 7’ is the rule

r'=H « Ly,..., L, Ps,...,Pp (3)

Clearly, (S,L;), i = 1,...,k and (S, P;), i = 1,...,m are also arguments in
P2, and in particular (S, H) is also an argument in P,. Note that no new
argument other than (S, H) is generated in P, since the subarguments of
(S,H) in P; and (S, H) in P, are the same. Thus Args(Py) = Args(Pa).

Corollary 52 Let P be a DeLP,., program, and let P' be the program result-
ing from applying UNFOLD,,., wrt some rule r in P. Then SEMperp(P) =
SEMperp(P').
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PROOF. Follows directly from Proposition 49 by repeated application of
> Uneg» fOT €ach r; which is UNFOLD,,¢ -related with 7.

Let us now consider tautology elimination.

Proposition 53 Let P be a DeLP,., program, and P' the program result-
ing from applying TAUTye, to P, i.e., P +ppeg P Then SEMperp(P) =
SEMperp(P').

PROOF. Let (A,Q) be an argument in Args(P), such that IU A F @
using a strict rule r = P « P,Qq,...,Q. Then the occurrence of P in
the antecedent can also be proven from II \ {r} U A. Thus, there exists a
derivation for @ from II'\ {r} U A (the same holds the other way around).
Therefore, (A,Q) € Args(P iff (A,Q) € Args(P \ {r}). Assume now that
(A, P) is an argument in Args(P), such that IIU A F P using a defeasible
ruler =P —<P,S5;,..., S Let A" = A\{r}. Clearly, IU A" - P. But then
(A, P) is not an argument, since it is not minimal (contradiction). Therefore,
no defeasible rule P —< P, S5;,..., 5 can be used in building an argument.

Therefore, (A, P) € Args(P) iff (A, P) € Args(P \ {r}).

It must be remarked that defeasible information in a given argument is rep-
resented through the defeasible rules used in its construction. This explains
why we have to restrict ourselves to strict rules when considering SUB,,,,
and UNFOLD,,,. Performing such transformations on defeasible rules may
cause the loss of specificity information present in the antecedent of those
rules (i.e., information that distinguishes a defeasible rule as 'more informed’
than another). A similar situation will arise with respect to SUB,,,; and
UNFOLD,,,, as presented in Section 4.2.

4.2 Transformation Properties in DeLP o

DeLP,,, is the subclass of programs in DeLLP which contain only default nega-
tion not, but no strict negation ~ . This class can also be seen as NLP with
the addition of defeasible rules. In such a setting there is no strict negation
“~” and therefore no contradictory literals P and ~P can appear. The at-
tack relationship among arguments is defined in terms of default literals: an
argument (A, (1) accounts for a counterargument for an argument (B, Q) if

not (), is used as an assumption in the defeasible derivation of )5 from 11U B.

Assumption literals are the only possible points for attack in DeLP,.. In
fact, we now restrict our framework in that we allow in Definition 10 only
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assume ~A where A is an atom. That is, we do not allow assume A literals.
Thus the set H 4 ) denotes in this section the set of assumption literals in
(A, Q) where all literals are (strictly) negated atoms. The reason is that we
want to have as much assume ~A as is consistently possible: these negated
atoms do represent the closed world assumption which is always implicit in
such a setting.

An argument involving an assumption assume~A will be attacked by any
other argument concluding A. In order to capture this situation, the notion of
a contradictory set of literals has been extended after Definition 6 to consider
assumption literals.

Strict arguments ((}, R) have the special property of defeating any other argu-
ment involving an assumption literal, as shown in the following proposition.

Proposition 54 Let P be a DeLP,o program, and let (A, Q) be an argument
in P such that Q follows from A using assume ~R as an assumption. If (), R),
then (A, Q) is not a justification.

PROOF. Clearly (0, R) is a counterargument for (A, Q), in particular (ac-
cording to specificity) a defeater. Since (), R) has no defeaters (as discussed
on page 12), the dialectical tree with root (A, () will have a children node
(@, Ry, which will turn out to be marked as U (according to Definitions 27).
Hence (A, Q) will be marked as D, so that (A, Q) is not a justification.

The precise semantics for DelLP,, depends on the analogue of Definitions 14
and 18 and the appropriate notion of a dialectical tree. Suitable definitions
capture different semantics ([GSC98]). But independently of these notions, it
can be stated that not () will not hold whenever () can be ultimately defeated.
In particular, not@ will not hold whenever there is a strict argument for
Q. In this respect, DeLP,, naturally extends the intended meaning of default
negation in traditional logic programming (not H holds iff H fails to be finitely
proven). This fact also suffices to decide which of the transformation properties
are satisfied or to give counterexamples.

Since a DeL P, program does not involve strict negation, many problems con-
sidered in Subsection 4.1 do not arise. New transformations RED; ,, RED, ,,
SUB,,.;, UNFOLD, ,, UNFOLD,,, and TAUT,, can be defined, with
the same meaning as the ones introduced in Subsection 4.1 for DeLP,,,,
but referring to DeLP,,; programs. Similarly, we will use the P +— g+, P’
(reSP. ¥ R nots M Snots " Unots M Unops FrTnot) t0 denote the DeLP,or program P’
resulting from P by application of the transformation RED. , (resp. RED,,

not not»’
SUB,,;, UNFOLD,,,;, UNFOLD),, ,, TAUT,,).

not?
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For each transformation, we will show that the resulting transformed program
is equivalent to the original one. In the case of SUB,,,; and UNFOLD,,,;, we
restrict ourselves to strict rules, since these transformations do not hold when
applied to defeasible rules (as shown in Examples 46 and 44).

Proposition 55 Let P be a DeLP,,; program. Let P’ be the DeLP,q; program
resulting from P+ ginot P'. Then SEMperp(P) = SEMperp(P').

PROOF. Let P be a DeLP,,; program, such that r =
P —< Q...,notQ,..., Q is a defeasible rule in P, and there is no
rule about @ in P. Let P’ be the DeLP,, program resulting from applying
> R+not 10 P on rule r.

Let H be an arbitrary literal in P, such that rule 7 is used in building the defea-
sible derivation of some argument (3,.5), so that assume ~() is an assumption
literal in (B, S). Since P' =, P\ {r} U{P —< @Qy,..., @k}, it is clear that
S has also a defeasible derivation from B\ {r} U{P —< @Qy,..., Qx}, which
is minimal and non-contradictory. Hence we have the argument (B \ {r} U

{P*< QI:"';Qk};S> in P".

Since there is no rule with head @ in P, there exists no argument (C, () in
P and hence no counterargument for (B,S) at assume ~@). Therefore each
defeater for (B,S) in P is also a defeater for (B',S) in P’, where B =
B\ A{r} U{P —< @Q,..., Qr}. The same line of reasoning applies if r is a
strict rule P <« @, ..., Q.

Hence each dialectical tree 7 in P involving (B,S) as a node is isomor-
phic to 7" in P’ involving (B',S) in P’. From Proposition 40 it follows that
SEMDeLP(P) = SEMDeLP(PI).

Proposition 56 Let P be a DeLP,,; program. Let P’ be the DeLP,; program
resulting from P v g-pnoy P'. Then SEMpepp(P) = SEMperp(P').

PROOF. Let P = (II,A) be a DeLP,, program. Let r = P <«
Qi,...,notQ,...,Q, be a strict rule, and assume ¢ <+ € P. As-
sume 7 is used in a defeasible derivation for building an argument (A, H).
Clearly TUA F @ and ITU A + assume ~(). But this violates condition 2
in Definition 10 (contradiction). Therefore each argument (A, H) in P is
also an argument in P\ {r}. Hence Args(P) = Args(P’), and therefore
SEMDeLP(P) == SEMDeLP(P’).

Proposition 57 Let P be a DeLP, o program. Let P’ be the DeLP,,; program
resulting from P +—gnot P'. Then SEMperp(P) = SEMperp(P').
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PROOF. Let P be a DeLP,, program, and let r = P < B; be a non-
minimal strict rule in P (i.e., there exists a rule v = P < By such that
B, C B;). We consider B; = By Unot B, , distinguishing the set B, of positive
literals from the set not B; (literals preceded by not). If B, C By, then two
situations are to be considered: either By C By, or By C By

(1) Suppose By C Bi. Then Args(P) = Args(P \ {r}), following the same
line of reasoning as in Proposition 45.

(2) Suppose that By C By, By = B;. Suppose there exists an argument
(A, H) such that the strict rule r = P <« B; is used in the defeasible
derivation of H. Clearly, there is an assumption literal assume ~() in A for
each not @ in By . Let H; be the set of assumption literals in A. It follows
that A\ H, also provides a defeasible derivation for H using 7’ instead,
where H, is the set of assumption literals in 7/, such that Ho C H;.
But then the defeasible derivation of H using r violates condition 3 in
Definition 10. Therefore no argument using r can be built in P, so that

Args(P) = Args(P\ {r}).

From this analysis it follows that P g, P’ is such that SEMperp(P) =
SEM perp(P').

Proposition 58 Let P be a DeLP,,; program. Let P' be the DeLP . program
resulting from P —rpo P'. Then SEMperp(P) = SEMperp(P’).

PROOF. We will consider only the case in which literals preceded by not
are present in a rule of the form »r = P < P,Q,..., Q. Otherwise the proof
follows the same line of reasoning as in Proposition 53.

(1) Suppose there exists an argument (A, H) in P such that IU A - H
using a strict rule r = P < P, Qy,...,notQ,...,Qk. Then the occur-
rence of P in the antecedent of r can also be proven from IT\ {r} U A’
where A" = A\ {assume~Q}. But then (A, H) is not an argument,
since it violates condition 3 in Definition 10. Therefore, no rule r = P <
P,Q1,...,notQ,...,Q can be used in an argument in P. Hence Args(P)
= ATgS(P’), with P’ =P \ {T} so that SEMDeLP(P) = SEMDeLP(P’).

(2) Suppose there exists an argument (A, H) in P such that IIUA F H using
a defeasible rule r = P —< P, Q;,...,not Q,..., ;. The same line of
reasoning as above applies, with A" = A\ {r, assume ~Q}. Therefore
SEMDeLP(P) == SEMDeLP(P’).

We present next a property of immediate subarguments in DeLP,;, similar to
the one shown in Proposition 50. Then we will show that the transformation
—Unot  Dreserves semantics when applied to a given DeLP,, program.
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Proposition 59 Let (A, H) be an argument in DeLP,y, such that
the last rule wused 1in the derwation s the strict rule H <
Py ..., Pg,notLy,... notlL;, distinguishing literals from assumption literals.
Then all immediate subarguments (A, P1) ..., (A, Px) are such that A; =
A\ UL {assume~L;}, Vi=1,... k.

PROOF. Follows from the same line of reasoning in Proposition 50 when
considering strict rules with assumption literals.

Proposition 60 Let P be a DeLP,,; program. Let P’ be the DeLP,; program
resulting from P i}, P wrt a strict rule v in P. Then SEMperp(P) =
SEMperp(P').

PROOF. Let P, = (II,A) be a DeLP,, program, and let (A, Q) be an
argument in P;, such that (i) a strict rule r = H < Bis used in the defeasible
derivation of @ from I[TUA, and (ii) r is UNFOLD,,,-related to other rule 7;.
If this is not the case, then clearly Args(P;) = Args(P2), and the proposition
holds trivially. We can also assume that () C B~ C B, i.e., there is at least one
literal preceded by not in B; otherwise the proposition follows directly from
Proposition 51.

Since rule r was applied in the defeasible derivation of @) from IT U A, there
exists an argument (S, H) which is a subargument of (A4, @), such that the
last rule used in the defeasible derivation of (S, H) is 7.

The strict rule r can be written as

r=H < B,L;,...,Lg,not My, ... notMM; (4)

distinguishing positive literals from literals preceded by not. Let & =
S\ UL {assume ~M;}. From Proposition 59, we get that (S;, B), (S, L),
..+, (81, L) are immediate subarguments of (S, H). Hence we get that

k J
His,my = Hs, By U U His,,Ly U U{assume ~M;} (5)

i=1 =1

Consider r;=B < B, which is the last rule used in the defeasible derivation
of (81, B), such that r is UNFOLD,,,;-related to r;. Since r; is an arbitrary
strict rule, it will have the form

ri=B < P;,...,Py,,notR,, ... .notR,. (6)
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Let S = &\ UY_ {assume ~R;} It follows that

m p
Hisey = U Hisopy U | J{assume ~R;} (7)
i=1 j=1
Replacing (7) in (5), we get
m P k J
His,my = | HisopyU (U {assume ~R;} U His, pU | J{assume ~M;} (8)
i=1 j=1 i=1 i=1

Thus, argument (S, H) in P; is such that S = Rg U H(s,my, where Hs m)
is defined as in (8). Assume we apply —ynee to Py, where the rule r is
UNFOLD,,;-related to r;, resulting in a new DeLP,, program P,. From
the definition of UNFOLD!’ .. we have:

Py =P \{H « B} U{H « (B\{B)UB)|ri=B « B cPy)

Consider the original rule r in (4), and the UNFOLD,,,;-related rule r; in (6).
Let P, be the DelLP,, program resulting from applying the UNFOLD trans-
formation to r with respect to r;. In this case we get

H < {B,L;,...,Ly,not M;,...,not M;}\ {B}U
{Py,....,Py,notRy,...,not Ry}

or equivalently

H < Li...,L, Py ..., Py ,notM;,....not M; notR,,...,notR, (9)

Let S' = S\ {U_,{assume ~M;} U U’ {assume ~R;}}. From Proposition 59,
it follows that (S', L;), i = 1,...,k and (S, F;), i = 1,...,m are arguments
in Py. In particular, we have

k m

p J
Hism = Hisrg U U HispyU | {assume ~R;} | J{assume ~M;} (10)

i=1 i=1 j=1 i=1

Hence Rs U H s gy is an argument for H in Py, since every defeasible rule in
P; is also a defeasible rule in P,. But from (8) and (10) it follows that H s/ )
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NLP under wfs DeLP,., DeLP,;
RED™ yes no yes
RED~ yes yes yes
SUB yes yes, for strict rules | yes, for strict rules
UNFOLD yes yes®, for strict rules | yes?, for strict rules
TAUT yes yes yes

Fig. 3. Behavior of NLP, DeLP,., and DeLP,, under different transformations

& Some additional conditions are required for the transformation to hold.

= H(s,my, and the set &' = S. Hence, (S, H) is an argument in both P; and
Ps.

Therefore, we can conclude that for any argument (S, H) in P; such that one
of the strict rules r used in its defeasible derivation is UNFOLD,, ;-related to
another rule r;, it follows that (S, H) is also an argument in P,. Note that no
new argument other than (S, H) is generated in Py, since the subarguments
of (§,H) in P; and (S, H) in P, are the same. Hence Args(P;) = Args(Ps),
and therefore SEM perp(P;) = SEMperp(P2).

Corollary 61 Let P be a DeLP,,: program. Let P' be the DeLP,o: program

resulting from P —unoe P' wrt a strict rule r in P. Then SEMperp(P) =
SEMperp(P').

PROOF. Follows directly from Proposition 49 by repeated application of
—Unot, tOr €ach r; which is UNFOLD,,,-related with .

4.3 Relating NLP and DeLP,,; under WES

A natural question is how well-founded semantics WES relates to DeLP,,,;. The
answer is very simple because of our results that the transformation properties
are semantics preserving and the fact that programs in normalform have an
obvious semantics.

Theorem 62 (DeLP,, extends WFS) Let P be a program in NLP. We
can look at P also as a theory in DeLPpo. Then all atoms A and default atoms
not A that are true in WFS(P) are also contained in SEMperppot(P).
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PROOF. As all the transformation properties hold, we can transform P into
a normalform where all rules only have negative body literals (or are empty):

e The atoms true in WFS(P) are, by Theorem 36, exactly those A where
there is a rule of the form “A < ”. But those atoms are certainly justified
in SEM perpnot(P)-

e All default literals not A that are true in WES(P) are, by Theorem 36,
exactly those A where there is no rule with head A. But then assume ~A4 <
can be assumed as it can not lead to any contradiction.

Example 63 Consider the normal logic programs

P, = {(a < b), (b + a),(c + nota,notd) }

Py = { (a < notd), (b < a)}

Py = { (a < notd), (b < nota), (¢ < a), (¢ < b)}

P, = { (a < b,notd), (b < a,notd), (d < notd), (c < nota,notd) }
Ps = { (a < notd), (b < nota), (a < nota) }

We analyze the above NLP programs as DeLP,, programs.

o WFS in P; is {nota,notb,c}. The only argument that can be constructed
from P; as a DeLP,, program is the one which justifies c.

Without the last rule (¢ <— nota,notb) no arguments for positive atoms
can be constructed.

o WFS in Py 1s empty. Under DeLP,y, no argument can be built, since the
only possible set { assume ~b } leads to contradiction.

o WFS in Py is empty. In DeLP,o, two sets of assumptions are possible
for building arguments: A, = {assume~a } and Ay = {assume~b }. We
can build the arguments (A;,b), (As,a), (A, ), (As, c). Any one of these
arqguments has a blocking defeater. From Definition 28 it follows that no
argument 1s justified.

o WFS in P, is {nota,notb,c}. The only argument that can be constructed
from P4 as a DeLP,o program is the one which justifies c.

However, without the last rule ¢ <— not a,not b no argument can be built
in P, under DeLP,o (there is no defeasible sequence for a nor for b).

o WFS in P; is empty. But in SEMperpnot the argument { assume~b } is a
Justification for a. This is because ({assume ~b}, a) cannot be defeated (the
only way to do this would be to find an argument involving the assumption
nota, but this would lead to a contradiction).

The last program P; shows that SEM pepppo is strictly stronger than WES.
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4.4 Relating NLP and DeLP: Summary

Figure 3 summarizes the behavior of NLP, DeLP,., and DeLP,, under the
different transformation rules presented before. From that table we can identify
some relevant features:

e An argumentation-based semantics has been given to NLP using an abstract
argumentation framework [KT99]. From Section 4.2 it is clear that DeLP
is a proper extension of NLP, since there are transformation properties in
NLP which do not hold in DeLP. This is basically due to the knowledge
representation capabilities provided by defeasible rules.

e Some properties of NLP under well-founded semantics are also present in
DeLP (such as TAUT and RED ). It is worth noticing that RED ™~ holds
in NLP because of a “consistency constraint” (it cannot be the case that
both not P and P hold). The same is achieved in DeLP by demanding
non-contradiction when constructing arguments.

e Other transformation properties only hold for strict rules (e.g. SUB), some-
times with extra requirements (e.g. UNFOLD). This shows that defeasible
rules express a link between literals that cannot be easily “simplified” in
terms of a transformation rule, and a more complex analysis (e.g. comput-
ing defeat) is required.

e Some properties (e.g. RED™) do not hold at all wrt. strict negation, but do
hold wrt. default negation. In the first case, the reason is that negated literals
are treated as new predicate names (and succeed as subgoals iff they can
be proven from the program). In the second case, default negation behaves
much like its counterpart in NLP. As in NLP, the absence of rules with
head H is enough for concluding that H cannot be proven, and therefore
not justified.

5 Related Work and Conclusion

5.1 Related Work

In recent work [KT99] an abstract argumentation framework has been used
as a basis for defining an unifying proof theory for various argumentation
semantics of logic programming. In that framework, well-founded semantics
for NLP is computed by using an argument-based approach, which has many
similarities with DeLP [CS99].

Many semantics for extended logic programs view default negation and sym-
metric negation as unrelated. To overcome this situation a semantics WFSX
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for extended logic programs has been defined [ADP95]. Well-founded Seman-
tics with Explicit Negation (WFSX) embeds a “coherence principle” providing
the natural missing link between both negations: if ~L holds then not L should
hold too (similarly, if L then not ~L). In DeLP this “coherence principle” also

holds [GSC98].

Finally, it must be remarked the original Simari-Loui formulation [SL92] con-
tains a fixed-point definition that characterizes all justified beliefs. A similar
approach was used later by Prakken and Sartor [PS97] in an extended logic
programming setting, getting a revised version of well-founded semantics as
defined by Dung [Dun93|. These analogies highlight the link between well-
founded semantics and skeptical argumentative frameworks.

5.2 Conclusion

We have related in this paper the logical framework DeLP to classical logic
programming semantics, particularly well-founded semantics for NLP. The
link between both semantics was established by looking for analogies and
differences in the results of applying transformation rules on logic programs.

The differences between NLP and DeLP are to be found in the expressive
power of DeLP for encoding knowledge in comparison with NLP. Defeasible
rules allow the formalization of criteria for defeat among arguments which
cannot be easily “compressed” by applying transformation rules, as explained
in Subsection 4.4. Strict negation in DeLP is also a feature which extends the
representation capabilities of NLP. However, as already discussed, the same
principle which guides the application of the transformation rule RED™ in
NLP can be used for detecting rules that cannot be used for constructing
arguments.

It is worth noting that the original motivation for DeLP was to find an ar-
gumentative formulation for defeasible theories in order to resolve potential
inconsistencies. This was at the end of the 80s. In the meantime the area of
semantics for logic programs underwent a solid foundational phase and to-
day several possible semantics together with their properties are well-known.
We think that these results can be applied to gain a better understanding of
argumentation-based frameworks.
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