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Abstract. One of the most difficult problems in Multi-Agent Systems (MAS) involves representing the

knowledge and beliefs of an agent which performs its tasks in a dynamic environment. New perceptions

modify this agent’s current knowledge about the world, and consequently its beliefs about it also change.

Such a revision and update process should be performed efficiently by the agent, particularly in the context

of real-time constraints. In the last decade argumentation has evolved as a successful approach to for-

malize defeasible, commonsense reasoning, gaining wide acceptance in the MAS community by providing

tools for designing and implementing features, which characterize reasoning capabilities in rational agents.

In this paper we present a new argument-based formalism specifically designed for representing knowledge

and beliefs of agents in dynamic environments, called Observation-based Defeasible Logic Programming

(ODeLP). A simple but effective perception mechanism allows an ODeLP-based agent to model new

incoming perceptions, and modify the agent’s knowledge about the world accordingly. In addition, in

order to improve the reactive capabilities of ODeLP-based agents, the process of computing beliefs in a

changing environment is made computationally attractive by integrating a ‘‘dialectical database’’ with the

agent’s program, providing pre-compiled information about previous inferences. We present algorithms

for managing dialectical databases as well as examples of their use in the context of real-world problems.

Keywords: argumentation, logic programming, defeasible logic programming, multi-agent systems.

1. Introduction: the problem of perceiving and changing beliefs

Knowledge representation issues play a major role in practically all areas of Artificial
Intelligence, and the area of Multi-Agent Systems (MAS) is not an exception.
Well-known problems in MAS involve the need for complex reasoning capabilities,
planning and acting in dynamic environments [1]. In the last years, argumentation has
gained wide acceptance in the MAS community by providing tools for designing and
implementing different features which characterize interaction among rational agents.
Logic programming approaches to argumentation [2, 3] have proven to be suitable

formalization tools in the context of MAS, as they combine the powerful features
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provided by logic programming for knowledge representation together with the
ability to model complex, argument-based inference procedures in unified, integrated
frameworks. Most MAS approaches based on logic programming rely on Extended
Logic Programming (ELP) as the underlying formalism [4]. Thus, the agent’s
knowledge is codified in terms of an ELP program and the semantics of the program
will represent the agent’s beliefs. Although ELP is expressive enough to capture
different kinds of negation (strict and default negation), it has limitations for
modeling incomplete and potentially contradictory information. In a MAS context it
is common for agents to require such capabilities, as they interact with the envi-
ronment and amongst themselves, processing new inputs, changing dynamically their
beliefs and intentions, etc. Clearly, in such a setting, the argumentation formalism
underlying such MAS should have the capability for incorporating new information
into the knowledge base of the agent and reasoning accordingly.
In this paper we present Observation-based Defeasible Logic Programming

(ODeLP), an argument-based formalism for agents reasoning in dynamic environ-
ments. The fundamental notions of ODeLP come from Defeasible Logic Program-
ming (DeLP) [5]. As in DeLP, the ODeLP formalism uses a knowledge
representation language in the style of logic programming and the inference mech-
anism is based on argumentation. In order to provide an agent with the ability to
incorporate changes in the world and integrate them into its existing beliefs, in
ODeLP we have adapted the system to handle perceptions. This is a complex
problem that could be considered as a form of Belief Revision or Update [6–8].
The problem of perception in artificial agents was addressed by Pollock from a

philosophical standpoint based on studies about human perception. In Taking Per-
ception Seriously [9], Pollock maintains that an agent residing in a complex dynamic
environment cannot be provided from its creation with all the information it needs. It
is then necessary to define some mechanism to gather information perceptually.
Therefore, the problems faced by an agent designer are essentially similar to those
faced by philosophers studying our knowledge about the external world.
In Pollock’s work, perception is defined as ‘‘the process that begins with the

stimulation of sensors, and ends with beliefs about the agent’s immediate sur-
roundings’’. The author then identifies three main problems in the implementation of
a perception mechanism. First, perception may be misleading; in some cases the
world may not be as it appears. Second, perception is a form of sampling; an agent
cannot continuously monitor the entire state of the world. This sampling provides
the agent with images of small parts of its environment at discrete moments in time
or over-short intervals. It is up to the agent cognitive faculties to make inferences
from these images to a coherent model of the world. Third, the world changes; the
agent must update its picture of the world when faced with new perceptual inputs. In
order to do this, it should be able to reason about both persistence and change using
its knowledge of causal processes.
The analysis performed in Pollock’s work is based on solid foundations from

epistemology and provides an excellent starting point to address perception issues. In
first place, perceptual inputs, called percepts are distinguished from beliefs. Percepts
are the ‘‘non-doxastic states from which beliefs are obtained’’. The basic inference in
perceptual reasoning is from a percept to a belief about the world. In this sense, a
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percept with a content P is considered as a defeasible reason for the agent to
believe P. Next, Pollock defines how to obtain beliefs from percepts using a mech-
anism that is able to overcome the problems mentioned above. The result integrates
perceptual reasoning with the inference engine. We have taken a similar posture in
our proposal. In our approach, we simplify some of the problems described above by
assuming that the agent considers that its perceptions are correct, and that any
existing belief that contradicts a new perception should be abandoned and replaced
by the new one.
Real time issues also play an important role when modeling agent interaction. In

an argument-based MAS setting, a timely interaction is particularly hard to achieve,
as the inference process involved is complex and computationally expensive. To
improve the inference response, we will introduce specialized data structures for
storing pre-compiled knowledge. These structures, called Dialectical Databases, can
be used to speed up the inference process when answering future queries.
A dialectical database keeps a close resemblance to a Truth-Maintenance System

(TMS). This resemblance is not in its design but in its functionality as a structure for
supporting the change in beliefs in dynamic environments. TMS were defined by Jon
Doyle [10] as supporting tools for problem solvers. The function of a TMS is to
record and maintain the reasons an agent has for holding its beliefs. Doyle describes
a series of procedures that determine the current set of beliefs and update it in
accordance with new incoming reasons. Under this view, rational thought is deemed
as the process of finding reasons for attitudes [10]. A given attitude (such as belief,
desire, etc.) is rational if it is supported by some acceptable explanation.
The TMS solve part of the belief revision problem in general problem solvers and

provide a mechanism for making non-monotonic assumptions. As Doyle [10]
mentions, performance is also significantly improved. Even though the overhead
required to record justifications for every program belief might seem excessive, we
must consider the expense of not keeping these records. When information about
derivations is discarded, the same information must be continually re-derived, even
when only irrelevant assumptions have changed. Similar observations could be made
for dialectical databases.
Every node in the TMS has an associated set of justifications. Each justification

represents a different reason for asserting it. The node is believed if and only if at
least one of its justifications is valid.1 In this case it is said to be in the set of beliefs;
otherwise, the node is out of this set. It is important to remark that the distinction
between in and out is not the same as that between true and false. The former
classification refers to current possession of a valid reason for belief; while true and
false evaluate inferences according to its truth value, independently of any reason.
In the TMS, each potential belief to be used as a hypothesis or a conclusion of an

argument must be given its own distinct node. When uncertainty about some
inference P exists, nodes for both P and its negation � P must be provided. Either of
these nodes can either have or lack well-founded arguments, leading to a four-
element belief set (neither P nor � P are believed, exactly one is believed, or both are
believed). The author details the procedures needed to establish the state of every
node, and to update these states in case new justifications or facts are added to the
TMS. Since the appearance of TMS a large body of literature and applications have
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been developed [11–16]. It does not seem as though the original idea was any
technical mechanism in particular, but the general concept of an independent module
for belief maintenance instead [14].
Informally, dialectical databases constitute a repository of structures called dia-

lectical trees, which represent a potential dialectical confrontation of arguments for
and against some belief. The knowledge of an agent is represented as an ODeLP
program. The complete set of potential dialectical trees corresponding to a given
program is built in advance and stored in a dialectical database. As the situation
changes, different dialectical trees become able to support their conclusion and in
that manner the beliefs of the agent change. In the rest of this work we will formally
introduce the elements necessary for the construction of a dialectical database.
The remainder of this paper is organized as follows. Section 2 summarizes the

main features of the ODeLP formalism. Section 3 introduces the notion of dialectical
databases, discussing its role as a tool to speed up inference in ODeLP. Section 4
presents a worked example. Finally, Section 5 summarizes the main conclusions that
have been obtained.

2. ODeLP: observation-based DeLP

Defeasible argumentation [3, 17, 35] has evolved as a successful approach to formalize
defeasible, commonsense reasoning. In the last few years particular attention has been
given to argument-based extensions of logic programming, which has turned out to be
a suitable paradigm, as it provides a natural vehicle for modeling argumentative
inference. Argument-based applications have been developed in many areas, such as
agent theory, knowledge engineering, and legal reasoning, among others [18–21].
DeLP [5] is a defeasible argumentation formalism based on logic programming that

uses defeasible argumentation to decide between contradictory conclusions through a
dialectical analysis. Codifying the knowledge base of the agent by means of a DeLP
program provides a good trade-off between expressivity and implementability. Re-
cently, extensions of DeLP that integrate possibilistic logic and vague knowledge
along with an argument-based framework have also been proposed [22, 23].
In such applications, DeLP is intended to model the behavior of a single intelligent

agent in a static scenario. DeLP lacks the appropriate mechanisms to represent
knowledge in dynamic environments, where agents must be able to perceive the
changes in the world and integrate them into their existing beliefs [9]. The ODeLP
framework aims at solving this limitation by modeling perception as new facts to be
added to the agent’s knowledge base. Since adding such new facts may result in
inconsistencies, an associated updating process is used to solve them. The definitions
that follow summarize the main features of ODeLP.

2.1. Language

The language of ODeLP is based on the language of extended logic programming.
To characterize the different elements associated with the ODeLP language we will
introduce the notion of signature, as usual in logic programming.
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Definition 1 (Signature). A signature R is a tuple hV;Pred, Funci, where V is a
countable set of variables, Pred is a finite set of predicates, and Func is a finite set of
functions, such that V \ ðPred [ FuncÞ ¼ ;.

As in PROLOG standard notation, variables are denoted with identifiers starting
with uppercase letters while functions and predicates start with lowercase letters.
Every signature has an associated arity function that assigns a natural number to
each function and predicate. As usual, constants are functions with arity 0 and
propositions are predicates with a arity 0. The set of symbols that can be used in
ODeLP programs is defined as follows:

Definition 2 (Alphabet). The alphabet generated from a given signature R is com-
posed by the members of R, the symbol ‘‘�’’ denoting strong negation [4] and the
symbols ‘‘(’’, ‘‘)’’, ‘‘.’’ and ‘‘,’’.

Terms represent objects in the environment that belong to the agent’s epistemic
model. As usual, the notions of atom and literal are defined on the basis of the
notion of term.

Definition 3 (Term). Let R ¼ hV;Pred;Funci be a signature. A term of R is induc-
tively defined as follows:

1. every variable V 2V is a term,
2. every constant c 2 Func is a term,
3. if f 2 Func; arity ð f Þ ¼ n and t1; . . . ; tn are terms then fðt1; . . . ; tnÞ is also a term.

Definition 4 (Atom). Let R ¼ hV;Pred;Funci be a signature, t1; . . . ; tn terms of R
and p 2 Pred such that arityðpÞ ¼ n then pðt1; . . . ; tnÞ is an atom of R.

Definition 5 (Literal). Let R be a signature, then every atom A of R is a positive
literal, while every negated atom � A is a negative literal. A literal of R is a positive
literal or a negative literal.

Definition 6 (Complement of a literal) . Let L be a literal and A an atom. The
complement of L, noted as L, is defined as follows:

L ¼ A ifL ¼� A
� A ifL ¼ A

n

Programs in ODeLP are formed by observations and defeasible rules. Obser-
vations correspond to facts in the context of logic programming, and repre-
sent the knowledge an agent has about the world. Defeasible rules provide a
way of performing tentative reasoning as in other argumentation formalisms
[19, 24].
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Definition 7 (Observation) (Defeasible Rule). An observation is a ground literal L
representing some fact about the world (obtained through the agent’s perception
mechanism) that the agent believes to be correct. A defeasible rule has the form L0

L1;L2; . . . ;Lk, where L0 is a literal and L1;L2; . . . ;Lk is a non-empty finite set of
literals.

Intuitively a defeasible rule L0 L1;L2; . . . ;Lk can be read as ‘‘L1;L2; . . . ;Lk

provide a tentative reasons to believe in L0’’ [24].

Definition 8 (ODeLP Program): An ODeLP program P is a pair hW;Di, where W is
a finite set of observations and D is a finite set of defeasible rules. In a program P, the
set W must be non-contradictory (i.e., it is not the case that Q 2 W and Q 2 W, for any
literal Q).

Example 1. Figure 1 shows an ODeLP program for performing basic email filtering.
In this program observations stand for different characteristics of email messages.
Thus, virus(X) stands for ‘‘message X has a virus’’; local(X) indicates that
‘‘message X is from the local host’’; filters(X) specifies that ‘‘message X should be
filtered’’ redirecting it to a particular folder; black list(X) indicates that ‘‘message
X is considered dangerous’’ because of the server it is coming from; and contacts(X)

indicates that ‘‘the sender of message X is in the contact list of the user’’.
The first rule expresses that if the email does not match with any user-defined

filter then it usually should be moved to the ‘‘inbox’’ folder. The second rule
indicates that unfiltered messages in the ‘‘junk’’ folder usually should not be moved
to the inbox. According to the third rule, messages to be filtered should not be
moved to the inbox. The following two rules establish that a message should be
moved to the ‘‘junk’’ folder if it is marked as spam or it contains viruses. Finally

Figure 1. An ODeLP program Pmail for email filtering.
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there are three rules for spam classification: a message is usually labeled as spam if
it comes from a server that is in the blacklist. Nevertheless, even if an email comes
from a server in the blacklist it is not labeled as spam when the sender is in the
contact list of the user. Besides, a message from the local host is usually not
classified as spam.

2.2. Inference mechanism

Given an ODeLP program P, a query posed to P corresponds to a ground literal Q
which must be supported by an argument [5, 24]. Arguments are built on the basis of
a defeasible derivation computed by backward chaining applying the usual SLD
inference procedure used in logic programming [25]. Observations play the role of
facts and defeasible rules can be seen as inference rules. In addition to provide a
proof supporting a ground literal, such a proof must be non-contradictory and
minimal for being considered an argument in ODeLP. Formally:

Definition 9 (Defeasible Derivation). Let P ¼ hW;Di be an ODeLP program and
let Q be a ground literal. A finite sequence of ground literals,

s ¼ Q1;Q2; . . . ;Qn�1;Q

is said to be a defeasible derivation for Q from P (abbreviated P j� Q) if for every
Qi; 1 � i � n

1. the literal Qi belongs to W, or
2. there exists a defeasible rule r 2 D and a ground instance t of r, t ¼ Qi L1; . . . ;Lm,

where L1; . . . ;Lm are ground literals previously occurring in the sequence s.

Definition 10 (Argument – Sub-argument). Given an ODeLP program P, an
argumentA for a ground literal Q, also denoted hA;Qi, is a subset of ground instances
of the defeasible rules in P such that:

1. there exists a defeasible derivation for Q from W [A,
2. W [A is non-contradictory,
3. There is no A0 �A such that W [A0 j� Q.

Given two arguments hA1;Q1i and hA2;Q2i, we will say that hA1;Q1i is a sub-
argument of hA2;Q2i iff A1 �A2.

As in most argumentation frameworks, arguments in ODeLP can attack each
other. This situation is captured by the notion of counterargument. Defeat among
arguments is defined combining the counterargument relation and a preference
criterion ‘‘ ’’. Specificity [24, 26, 27] is the syntactic preference criterion used by
default in ODeLP, although other alternative criteria could be used. Specificity
favors those arguments which are more direct (i.e., less use of defeasible rules) or
more informed (i.e., contain more specific information) [24].
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Definition 11 (Counter-argument). An argument hA1;Q1i counter-argues an argu-
ment hA2;Q2i at a literal Q if and only if there is a sub-argument hA;Qi of hA2;Q2i
such that Q1 and Q are complementary literals.

Definition 12 (Defeater). An argument hA1;Q1i defeats hA2;Q2i at a literal Q if and
only if there exists a sub-argument hA;Qi of hA2;Q2i such that hA1;Q1i counter-
argues hA2;Q2i at Q, and either:

1. hA1;Q1i is strictly preferred over hA;Qi according to the preference criterion ‘‘ ’’
(then hA1;Q1i is a proper defeater of hA2;Q2i), or

2. hA1;Q1i is unrelated to hA;Qi by ‘‘ ’’ (then hA1;Q1i is a blocking defeater of
hA2;Q2i).

Defeaters are arguments and may in turn be defeated. Thus, a complete dialectical
analysis is required to determine which arguments are ultimately accepted. Natu-
rally, such analysis results in a tree structure called dialectical tree, in which nodes
are labeled as undefeated (U-nodes) or defeated (D-nodes) according to a marking
procedure [5, 28]. Formally:

Definition 13 (Dialectical Tree). The dialectical tree for an argument hA;Qi, denoted
ThA;Qi, is recursively defined as follows:

1. A single node labeled with an argument hA;Qi with no defeaters ( proper or
blocking) is by itself the dialectical tree for hA;Qi.

2. Let hA1;Q1i; hA2;Q2i; . . . ; hAn;Qni be all the defeaters (proper or blocking) for
hA;Qi. The dialectical tree for hA;Qi;ThA;Qi, is obtained by labeling the root
node with hA;Qi, and making this node the parent of the root nodes for the dia-
lectical trees of hA1;Q1i; hA2;Q2i; . . . ; hAn;Qni.

Definition 14 (Marking of the Dialectical Tree). Let hA1;Q1i be an argument and
ThA1;Q1i its dialectical tree, then:

1. All the leaves in ThA1;Q1i are marked as a U-node.
2. Let hA2;Q2i be an inner node of ThA1;Q1i. Then hA2;Q2i is marked as U-node iff

every child of hA2;Q2i is marked as a D-node. The node hA2;Q2i is marked as a
D-node if and only if it has at least a child marked as U-node.

Dialectical analysis may in some situations give rise to fallacious argumentation [28].
In ODeLP dialectical trees are ensured to be free of fallacies [27] by applying
additional constraints when building argumentation lines (the different possible paths
in a dialectical tree). The notions that follow have been developed to address these
issues.
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Definition 15 (Argumentation line) (based on [29]). Let P ¼ hW;Di be a ODeLP
program and let hA;Qi be an argument wrt P. An argumentation line starting from
hA;Qi, denoted khA;Qi (or simply k), is a possibly infinite sequence of arguments

khA;Qi ¼ ½hA0;Q0i; hA1;Q1i; . . . ; hAn;Qni; . . .�

satisfying the following conditions:

1. If hA;Qi has no defeaters, then khA;Qi ¼ ½hA;Qi�.
2. If hA;Qi has a defeater hB;Pi in P, then khA;Qi = hA;Qi � khB;Pi.

where the ‘�’ operator stands for adding hA;Qi as the first element of khB;Pi.

In each argumentation line khA;Qi ¼ ½hA0;Q0i; hA1;Q1i; . . . ; hAn;Qni; . . .� the
argument hA0;Q0i is supporting the main query Q0, and every argument hAi;Qii
defeats its predecessor hAi�1;Qi�1i. Thus, for k 	 0; hA2k;Q2ki is a supporting
argument for Q0 and hA2kþ1;Q2kþ1i is an interfering argument for Q0. In other
words, every argument in the line supports Q0 or interferes with it. As a result, an
argumentation line can be split in two disjoint sets: kS of supporting arguments, and
kI of interfering arguments.
On the basis of the above notions, fallacies that could appear in argumentation

lines in ODeLP programs can be classified as follows:

1. An argument A1 could be introduced in an argumentation line both as an inter-
fering and supporting argument, producing a contradictory argumentation line e.g.,
k1 ¼ ½A1;A2;A3;A1; . . .].

2. An argumentA1 could be reintroduced as a supporting argument for itself. In that
case a circular argumentation linewould result, e.g., k2 ¼½A1;A2;A3;A4;A1; . . .�.

Argumentation lines as k1 and k2 should not be considered as acceptable, as they
represent flawed reasoning processes. These fallacious situations can be generalized
to cycles of any length: even cycles evidence contradictory argumentation, whereas
odd cycles indicate circular argumentation. To solve these problems we introduce the
following concepts.

Definition 16 Contradictory set of arguments. A set of arguments
S ¼

Sn
i¼1fhAi;Qiig is contradictory with respect to a program P ¼ hW;Di if and only

if the set W [
Sn

i¼1 Ai allows the derivation of complementary literals.

After the discussion above, we can introduce the notion of acceptable argumentation
line.

Definition 17 (Acceptable argumentation line) (based on [29]). Let P ¼ hW;Di be a
program, and let

k ¼ ½hA0; q0i; hA1;Q1i; . . . ; hAn;Qni; . . .�
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be an argumentation line in P, such that

k0 ¼ ½hA0;Q0i; hA1;Q1i; . . . ; hAk;Qki�

is an initial segment of k. The sequence k0 is an acceptable argumentation line in P if
and only if it is the longest initial segment in k satisfying the following conditions:

1. The sets k0S and k0I are each non-contradictory sets of arguments with respect to P,
2. No argument hAj;Qji in k0 is a sub-argument of an argument hAi;Qii of k0; i < j,
3. In k0 there is no subsequence of arguments

½hAi�1;Qi�1i; hAi;Qii; hAiþ1;Qiþ1i�

such that hAi;Qii is a blocking defeater for hAi�1;Qi�1i, and hAiþ1;Qiþ1i is a blocking
defeater for hAi;Qii.
Let us analyze the rationale for the conditions in Definition 17. Condition 1 pro-

hibits the use of contradictory information on either side (proponent or opponent).
Condition 2 eliminates circular reasoning. Finally, Condition 3 enforces the use of a
stronger argument to defeat an argument which acts as a blocking defeater. The reason
for this policy is justified by the following considerations. Suppose that argumentation
lines containing two consecutive blocking defeaters were allowed, and consider the
following scenario. An argument hA;Li is blocked by hB;� Li which in turn is
blocked by hC;Li. If there are no more arguments to take into account, hA;Li would
be warranted. Nevertheless, the support for L is not better than the support for � L.
An acceptable dialectical tree is defined in turn as a tree where every argumenta-

tion line is acceptable and the notion of warrant in ODeLP is grounded on this
concept. Given a query Q and an ODeLP programP, we will say that Q is warranted
wrt P iff there exists an argument ThA;Qi such that the root of its associated dia-
lectical tree ThA;Qi is marked as a U-node.

Definition 18 (Warrant). Let A be an argument for a literal Q, and let ThA;Qi be its
associated dialectical tree. Argument A is a warrant for Q if and only if the root of
ThA;Qi is marked as a U-node.

Solving a query Q in ODeLP accounts for trying to find a warrant for Q, as shown
in the following example.

Example 2. Consider the program Pmail shown in Example 1. Let move inbox(d) be
a query wrt Pmail. The search for a warrant for move inboxðdÞ will result in an
argument hA; move inboxðdÞi, with

A ¼ fmove inboxðdÞ � filtersðdÞg

allowing to conclude that message d should be moved to the folder Inbox, as it has
no associated filter. However, there exists a defeater for hA; move inboxðdÞi, namely
hB;� move inboxðdÞi, as there are reasons to believe that message d is spam:2
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B ¼ f � move inboxðdÞ � filtersðdÞ; move junkðdÞ;
move junkðdÞ spamðdÞ; spamðdÞ black listðdÞg

Using specificity as the preference criterion, hB;� move inboxðdÞi is a proper
defeater for hA; move inboxðdÞi. However, two other defeaters can be found for
hB;� move inboxðdÞi, since message d comes from the local host, and the sender is
in the user’s contacts list:

– hC;� spamðdÞi;where C ¼ f� spamðdÞ black listðdÞ; contactsðdÞg.
– hD;� spamðdÞi;where D ¼ f� spamðdÞ localðdÞg.

There are no more arguments to consider, and the resulting dialectical tree is shown in
Figure 2. The marking procedure determines that the root node hA; move inboxðdÞi
is an U-node and hence the original query is warranted.

2.3. Modeling beliefs and perceptions in ODeLP

ODeLP models the beliefs of an agent in a simple way: given a program P repre-
senting an agent’s knowledge, a literal Q is believed by the agent iff Q is warranted.
In particular, different doxastic attitudes are distinguished wrt a given literal Q:

– believe that Q is true whenever Q is warranted;
– believe that Q is false (i.e., believe Q) whenever Q is warranted; and
– believe that Q is undecided whenever none of the above cases apply.

Consistency is a basic property for agent’s beliefs, in the sense that it is not possible
to believe simultaneously in a literal Q and its complement Q [30]. It can be proven
that agents using ODeLP naturally satisfy this requirement.3

Figure 2. Dialectical tree from Example 2.
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In ODeLP the mechanism for updating the knowledge base of an agent is simple
but effective. We assume that perception is carried out by devices that detect changes
in the world and report them as new facts (literals). The actual devices used will
depend on the particular application domain, and their characterization is outside
the scope of this paper. We also make the assumption that the perception mechanism
is flawless, and new perceptions always supersede old ones. Any perception will be
reported as a new fact Q to be added to the set of observations W. If this new
perception Q is contradictory with W, then necessarily Q 2 W. In such a case, we use
a simple update function [7] that computes a new observation set W0 as
WnfQg [ fQg. Thus new perceptions are always preferred: with a flawless perception
mechanism, the source of the conflict must be a change in the state of world.
Consistency of the set of beliefs is a fundamental property of ODeLP. It can be

shown that the set of warranted arguments obtained from a given program does not
contain a pair of conflicting arguments. To show this property we will first dem-
onstrate some auxiliary results.

Proposition 1. Let P be a program and hA;Qi; hB;Ri two arguments built from P
such that hA;Qi is a defeater of hB;Ri and hA;Qi is warranted wrt P. Let hAs;Qsi
be a supporting argument ofThA;Qi such that hAs;Qsi is a U node. If hAs;Qsi appears
in ThB;Ri it must be also labeled as U node in ThB;Ri.

Proof. To show this property we use structural induction on the subtree rooted in
hAs;Qsi.

Base case. Let us consider the fact that hAs;Qsi does not have defeaters in
ThA1;Q1i. If As belongs to ThA2;Q2i then it must be marked as an U node,
given that no new defeaters can be built.

Inductive step. Let us assume that hAs;Qsi has k defeaters in ThA;Qi, noted as
B1;B2; . . . ;Bk, and hAs;Qsi is present in ThB;Ri. Since As is a U node in
ThA;Qi every defeater of Bi must be a D node in ThA;Qi.

Next we will show that if Bi is present in ThB;Pi then it must be labeled as
D node in this tree. Given that Bi is a D node in ThA;Qi there must exist a
non-defeated supporting argument C in the subtree rooted in Bi.

If we use the inductive hypothesis on this subtree it follows that if C is present
in ThB;Ri it must be labeled as a U node and then Bi must be a D node in
ThB;Ri. It remains to check, what happens when C cannot be introduced as a
defeater of Bi in ThB;Ri. This may follow from one of these reasons:

1. C is contradictory with an interfering argument in the argumentation line in
which C should be added.

2. C is a sub-argument of a previous argument in this argumentation line.

The first scenario is not possible, given that in this case C could not appear in
ThA;Qi since it would be contradictory with a supporting argument in the
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argumentation line. In the second case, C must be a sub-argument of B
(otherwise it could not belong to ThA;QiÞ. Nevertheless, since C is a defeater
of Bi, the set C [Bi [W allows the derivation of complementary literals.
Then B [Bi [W also allows the derivation of complementary literals since
C � B. In this situation it is not possible that Bi be in ThB;Ri, given that it
contradicts a supporting argument in its argumentative line. Thus, if Bi is in
ThB;Ri it must be labeled as a U node in this tree. (

The following statement derives from the previous proposition.

Corollary 1. Let P be a program and hA;Qi; hB;Ri two arguments built from P. If
hA;Qi is a defeater of hB;Ri and hA;Qi is a warranted argument wrt P then hA;Qi
must be labeled as U node in the dialectical tree rooted in hB;Ri.
Proof. By hypothesis, argument hA;Qi is a supporting undefeated argument in
ThA;Qi that is also present in ThB;Ri. From proposition 1 we can infer that hA;Qi
must be a U node in the dialectical tree for hB;Ri: (
Finally, the following lemma proves that the set of beliefs in an ODeLP program is

consistent.

Lemma 1. Let P ¼ hW;Di be an ODeLP program, and let Warr(PÞ be the set of
warranted arguments in P. For any pair of arguments hA;Qi; hB;Ri, such that
hA;Qi 2 Warr(PÞ and hB;Ri 2WarrðPÞ it holds that hA;Qi is not a counterargu-
ment for hB;Ri.

Proof. Suppose by contradiction that there exists a pair of arguments hA;Qi; hB;Ri
such that hA;Qi counter-argues hB;Ri and both belong to WarrðPÞ. We can as-
sume without any loss of generality that hA;Qi defeats hB;Ri and hB;Ri also
counter-argues hA;Qi; that is to say that the relation of counterargument is re-
ciprocal (otherwise there would exist an argument hB0;R0i sub-argument of hB;Ri,
such that hB0;R0i counter-argues hA;Qi and the relation of counter-argumentation
among hB0;R0i and hA;Qi is reciprocal).
Since hA;Qi and hB;Ri are warranted we can assume that there exists a dialec-

tical tree with root in hA;Qi, noted ThA;Qi, that warrants Q and a dialectical tree
ThB;Ri that warrants hB;Ri. Argument hA;Qi defeats hB;Ri and thus hA;Qi must
be marked as a D node in the dialectical tree ThB;Ri, since otherwise hB;Ri could not
be a warranted argument. However, applying corollary 1 argument hA;Qi must be
labeled as U node in the dialectical tree for hB;Ri (since hA;Qi is warranted and
hB;Ri defeats hA;Qi). This contradiction arises from assuming the existence of a
pair of arguments hA;Qi, hB;Ri under the conditions previously stated. (

3. Pre-compiled argumentation: dialectical databases

Based on previous work in TMS and argumentation [31, 32], our goal here is to
integrate pre-compiled argumentation into an agent framework based on ODeLP in
order to address real-time constraints in a MAS setting. To do so, we want an
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ODeLP-based agent to be able to answer queries efficiently, by avoiding re-com-
puting arguments which were already computed before.
There are different options for this task starting from ODeLP program P.

A simple approach would be to record every argument that has been computed so
far. However, a large number of arguments can be obtained from a relatively small
program, thus resulting in a large database. On the other hand, many arguments are
obtained using different instances of the same defeasible rules. Recording every
generated argument could result in storing many arguments which are structurally
identical, only differing on the constants being used to build the corresponding
derivations.
Another important problem arises with perceptions. Note that the set of arguments

that can be built from a program P ¼ hW;Di also depends on the observation set W.
When W is updated with new perceptions, arguments which were previously derivable
from P may no longer be so. If pre-compiled knowledge depends on W, it should be
updated as new perceptions appear. Such an alternative is not suitable, as new per-
ceptions are frequent in dynamic environments. As a consequence, pre-compiled
knowledge should be managed independently from the set of observations W.
Based on the previous analysis we will define a database structure called dialectical

database, which will keep a record of all possible potential arguments in an ODeLP
program P as well as their defeat relations among them. Potential arguments are
formed by non-grounded defeasible rules, depending thus only on the set of rules D
inP. As we will discuss later, attack relations among potential arguments can be also
captured. Potential arguments and the defeat relations among them will be stored in
the dialectical database. This will be analyzed Section 3.1.

3.1. Computing potential arguments in ODeLP

Definition 19 (Instance for a set of defeasible rules). Let A be a set of defeasible rules,
and consider any set A formed by ground instances of the defeasible rules in A. The set
A is said to be an instance of A iff every rule in A results from an instance of a
defeasible rule in A.

Example 3. If A ¼ fsðXÞ � rðXÞ;� rðXÞ pðXÞ then A ¼ sðtÞ � rðtÞ � rðaÞ;
pðaÞg is an instance of A

Definition 20 (Potential argument). Let D be a set of defeasible rules. A subset A of D
is a potential argument for a literal Q, noted as hhA;Qii if there exist a non-contra-
dictory set of literals U and an instance A of A such that hA;Qi is an argument wrt
hU;Di.
In the definition above the set U stands for a state of the world (set of observa-

tions). Note that the set U must necessarily be non-contradictory to model a coherent
scenario.
The first step to obtain the pre-compiled knowledge component of a given pro-

gram P ¼ hW;Di is to record every potential argument that can be obtained from D.
Unfortunately, Definition 20 does not provide an effective procedure for this task.
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Besides, not every subset of the rules in D is a potential argument. As the following
example shows, some additional constraints must be satisfied.

Example 4. Consider the program in Example 1. Then the set of defeasible rules

A ¼ fmove junkðXÞ virusðXÞ;� spamðXÞ localðXÞg

is not a potential argument with respect to D. Given any instance A of A it is easy to
see that A does not satisfy the minimality restriction in Definition 10.
In order to find the set of potential arguments of a given program in an efficient

manner, we will introduce a constructive definition. First, we will define two auxil-
iary concepts.

Definition 21 (Heads-Bodies-Literals [24]). Let A be an argument for Q, then
headsðAÞ is the set of all literals that appear as heads of rules in A. Similarly,
bodiesðAÞ is the set of all literals that appear in the bodies of rules in A. The set of all
literals appearing in A, denoted literalsðAÞ is the set headsðAÞ[ bodiesðAÞ.

Definition 22 (Argument Support).LetA be an argument forQ, wewill say that the set

SðAÞ ¼ bodiesðAÞ � headsðAÞ

is the support of A.

Example 5. For argument hB;� move inboxðdÞi in Example 2,

B ¼ f � move inboxðdÞ � filtersðdÞ;move junkðdÞ;
move junkðdÞ spamðdÞ; spamðdÞ black listðdÞg

the corresponding sets are:

headsðBÞ ¼ f�move inboxðdÞ; move junkðdÞ; spamðdÞg
bodiesðBÞ ¼ f�filtersðdÞ; move junkðdÞ; spamðdÞ; black listðdÞg
literalsðBÞ ¼ f�move inboxðdÞ;� filtersðdÞ;move junkðdÞ;

spamðdÞ; black listðdÞg

Definition 23 (Potential argument – constructive version). Let D be a set of defea-
sible rules. A subset A of D is a potential argument for a literal Q, denoted as hhA;Qii, if
and only if there exists an instance A of A such that:

1. The set literals(A) of literals in A is a non-contradictory set,
2. SðAÞ [Aj� P (where P is a ground instance of Q), and
3. There is no A0 �A such that SðA0Þ [A0j� P.

Both definitions are equivalent, as we will show next:
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Proposition 2. Definition 23 is equivalent to Definition 20.

Proof. ð1Þ ) ð2Þ: Let A be a set of defeasible rules that satisfies the conditions in
Definition 23 and let A be an instance of A. To satisfy the existence condition in
Definition 20 it is enough to consider A as the required argument with U ¼SðAÞ. It
remains to show that A is an argument with respect to hU;Di. As the set of rules in
A is non-contradictory, SðAÞ must also be non-contradictory. In this case it is easy
to prove that A is an argument for P with respect to hU;Di. Let us consider the
conditions in Definition 2: clearly A [ U j� Q, given that U ¼ SðAÞ and
SðAÞ [Aj� Q. Next, it should be the case thatA is non-contradictory with respect
to U. This is easy to show, since literals(A) is non-contradictory. Finally, A also
fulfills the minimality condition, as it is required explicitly by the last condition in
Definition 23.
ð2Þ ) ð1Þ: trivial by definition. (

Pre-compiled knowledge associated with an ODeLP program P ¼ hW;Di will
involve the set of all potential arguments that can be built from P as well as the
defeat relations among them. From Proposition 1 it follows that potential arguments
can be found by analyzing the subsets of D that satisfy with Definition 23.

– Computing potential arguments: to obtain and record every potential argument of
P we use Definition 23. Potential arguments will save time in computing argu-
ments when solving queries. Instead of computing a query for a given ground
literal Q, the ODeLP interpreter will search for a potential argument A for Q such
that a particular instance B of A is an argument for Q wrt P.

– Defeat relations among potential arguments: Recording information about defeat
relations among potential arguments is also useful as it helps to speed up the
construction of dialectical trees when solving queries, as we will see later. To do
this, we extend the concepts of counterargument and defeat for potential argu-
ments. A potential argument hhA1;Qii counter-argues hhA2;Qii at a literal Q if and
only if there is a non-empty potential sub-argument hhA;Qii of hhA2;Qii such that
Q1 and Q are contradictory literals.4 Note that potential counter-arguments may
or may not result in a real conflict between the instances (arguments) associated
with the corresponding potential arguments. In some cases instances of these
arguments cannot co-exist in any scenario (e.g., consider two potential arguments
based on contradictory observations).
The notion of defeat is also extended to potential arguments. Since specificity is a
syntactic-based criterion, a particular version of specificity [27] is applicable to
potential arguments, determining when a potential argument is more informed or
more direct than another.

To search for an argument for a given query Q, we will use the algorithm shown in
Figure 3, that uses backward chaining on the set of defeasible rules performing the
required substitutions. Therefore, for completeness, previous to the presentation of
that algorithm, we introduce some auxiliary definitions related to the concept of
substitution [25].
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Definition 24 (Substitution). A substitution h is a finite set fv1=t1; . . . ; vn=tng where
every vi is a variable, no two variables vi; vj are syntactically equal, and for every i and
every j, vi does not appear in tj. If all of the terms ti; 1 � i � n; are ground, then h is a
ground substitution.

As usual we will write fv1; . . . ; vng=h to denote the result of applying a substitution
h to every member of the set fv1; . . . ; vng. If r is a defeasible rule we will write r=h to
denote the result of applying the substitution h to the body and head of r.

Definition 25 (Instance of a literal by a substitution). Let h ¼ fv1=t1; . . . ; vn=tng be a
substitution and L a literal. Then the instance of L by h is obtained by simultaneously
replacing every occurrence of vi in L for the term ti.

Definition 26 (Composition of substitutions). Let h ¼ fu1=s1; . . . ; un=smg and
r ¼ fv1=t1; . . . ; vn=tng be two substitutions. The composition hr of h and r is the
substitution that is given by the set

fðu1=s1Þr; . . . ; ðun=smÞr; v1=t1; . . . ; vn=tng

removing every ðui=siÞr such that ui ¼ sir and any vj=tj such that vj 2 fu1; . . . ; umg.

Note that the algorithm in Figure 3 requires defeasible rules in the potential
argument to be standarized apart so that they do not contain common variables.

Figure 3. Algorithm to find an instance of a potential argument.
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That is, for any pair of rules r1, r2 in A it must hold that the intersection between the
set of variables in r1 and the set of variables in r2 is empty.
Using potential arguments and their associated defeat relations we can formally

define the notion of Dialectical Database associated with a given ODeLP programP.

Definition 27 (Dialectical Database). Let P ¼ hW;Di be an ODeLP program. The
dialectical database of D, denoted as DD, is a 3-tuple (PotArgðDÞ;Dp;DbÞ such that:

1. PotArg(D) is the set fhhA1;Qii; . . . ; hhAk;Qiig of all the potential arguments that can
be built from D.

2. Dp and Db are relations over the elements of PotArgðDÞ such that for every pair
ðhhA1;Qii; hhA2QiiÞ in Dp (respectively Db) it holds that hhA2;Qii is a proper
(respectively blocking) defeater of hhA1;Qii.

Example 6. Consider the ODeLP program given in Example 1. The dialectical
database of P is composed by the potential arguments shown in Figure 4 and the
defeat relations recorded in Figure 5, where the fact that A1 properly defeats A2 is

Figure 4. Potential arguments for Example 6.
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indicated with an arrow from A1 to A2. Proper defeaters are indicated using a solid
arrow and blocking defeaters are distinguished with a dotted arrow.

3.2. Dialectical databases: a structure for speeding up inference

Given a ODeLP program P, its dialectical database DD can be understood as a
graph from which all possible dialectical trees computable from P can be obtained.
In the original ODeLP framework (as detailed in Section 2), solving a query Q wrt a
given program P ¼ hW;Di accounted for obtaining a warranted argument hA;Qi.
As already discussed, computing warrant involves many intermediate steps which
are computationally expensive (computing arguments, detecting defeaters, building a
dialectical tree, etc.).
Using the dialectical database the inference process can be improved by keeping

track of all possible potential arguments and the defeat relationships among them.
Generating this structure is computationally expensive, and therefore it is important
for the dialectical database not to be recalculated every time a new perception is
incorporated. Note that, if new rules could also be perceived, the dialectical database
should have to be built from scratch every time a new rule is introduced. It is for this
reason that only new facts can be perceived.
Given a query Q, the extended framework (i.e., including the dialectical database)

will select first a potential argument hhA;Lii (such that Q is a ground instance of L)
that can be instantiated into hA;Qi, supporting Q. From the Dp and Db relations in
DD the potential defeaters for hA;Qi can be identified, and also instantiated: tra-
versing the graph we recover the dialectical tree for hA;Qi in a top-down fashion.
The algorithm given in Figure 6 illustrates how the inference process is assisted by

dialectical databases. when computing a warrant for a query Q from a program
P ¼ hW;Di. To do this, the algorithm considers first the potential arguments hhA;Lii

Figure 5. Dialectical database of Example 6.
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such that Q is an instance of L, trying to find an instance hA;Qi of hhA;Lii that is
also an argument with respect to P, according to Definition 19. This is done in
function Find Instance which in case such an instance exists returns it as hA;Qi.
Next, argument hA;Qi is analyzed to see whether it is a warrant for Q. To do this,
the relations Dp and Db are used to find all possible defeaters for hA;Qi. Once the
algorithm finds an instance of the potential defeaters that is in conflict with hA;Qi,
the function Acceptable checks if they are well-formed arguments with respect to
the program P. Then the State function (see algorithm in Figure 7) determines the
marking of these defeaters (i.e., if they are labeled as U-nodes or D-nodes) and
finally this information is used to compute the state of hA;Qi.
The State algorithm used in the inference process takes as input an ODeLP pro-

gram P, an argument hA;Qi based on it, and the interference and support argu-
mentation lines up to this point, denoted as IL and SL, resp. Simply put, IL represents
the set of arguments with an even level in the current path of the tree under con-
struction, and SL the arguments with an odd level. Then the State algorithm works
like the algorithm in Figure 6, analyzing the defeaters for A to define its state.
However, one extra condition must be met: defeaters must also comply with the rules
established for avoiding fallacies. This test is performed by the function Valid.
Figure 8 summarizes the main elements of the ODeLP-based agent architecture.

The agent’s knowledge is represented by an ODeLP program P. Perceptions from
the environment result in changes in the set of observations in P, handled by an
appropriate updating mechanism as discussed previously. In order to solve queries
from other agents, the agent relies on the ODeLP inference engine. Queries are
speeded up by first searching on the potential arguments stored in the dialectical
database, applying the algorithms discussed before. The final answer to a given query
Q will be yes, no or undecided, according to the warrant status of Q with respect toP.

Figure 6. Algorithm for modeling inference in ODeLP assisted by a dialectical database.
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4. A case study

In this section we present a toy example to illustrate the use of a dialectical database
to speed up inference in ODeLP. Let us consider the ODeLP program Pmail ¼ hW;Di
in Example 1 as the knowledge base of an email filtering agent. The associated
dialectical database DD is shown in Example 6.

Figure 7. Algorithm state:

Figure 8. Agent architecture using ODeLP as underlying framework.
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Suppose that the agent has to decide where to place a given message d. To see if d
must be placed in the inbox, the agent tries to solve the query move_inbox(d). As
shown in Example 2, solving this query wrt P involves a dialectical tree with four
arguments (see Figure 2). Let us analyze how the agent would proceed to perform
the same inference using the dialectical database DD. Following the algorithm in
Figure 6, the potential argument hhA5; move inboxðXÞii will be instantiated resulting
in the argument hA; move inboxðdÞi, with A ¼ fmove inboxðdÞ � filtersðdÞg.
From the dialectical database DD it follows that hhA5; move indexðXÞii has defeaters

A1;A2;A3;A4;A6 (see the figure in Example 6), but only A4 is active according to the
current set of observations. This argument is instanciated to
hB;� move inboxðdÞi, whereB ¼ f� move inboxðdÞ � filtersðdÞ; move junkðdÞ;
move junkðdÞ spamðdÞ; spamðdÞ black listðdÞg.
From the graph associated with the dialectical database, two new defeaters are found
from A4, namely A2 and A3. These are, respectively, instanciated to hC;� spamðdÞi,
where C ¼ f� spamðdÞ gblack listðdÞ; contactsðdÞg and hD;� spamðdÞi, where
D ¼ f� spamðdÞ glocalðdÞg. Note that from the information in DD associated
with C3 and C2 there are no more links in the graph to new defeaters for these
potential arguments that can be instanciated to defeat hC;� spamðdÞi or
hD;� spamðdÞi. As a consequence, a dialectical tree identical to the one shown in
Figure 2 has been computed on the basis of the potential arguments present in the
dialectical database and their associated defeat relations.
Consider now a different situation for the same sample program P. Suppose that

the fact spam(d) is added to the set of observations given that the user now spe-
cifically defines this message as spam. Solving the query move_inbox(d) begin as
before with potential argument hhA5; move indexðXÞii instantiated to
hA; move inboxðdÞi, but now the only active defeater for A5 is A3, that instanciates
to hE;� move inboxðdÞi, where

E¼ f� move inboxðdÞ � filtersðdÞ;move junkðdÞ;move junkðdÞ spamðdÞg

This concludes the analysis since A3 has no defeaters and therefore there is no
warrant for move_inbox(d). Note that new perceptions do not provoke changes in
the dialectical base, but nevertheless the set of beliefs of the agent changes and the
fact move_inbox(d) is no longer believed.

5. Conclusions and future work

Solid theoretical foundations for agent design should be based on proper formalisms
for knowledge representation and reasoning [33]. Thus, we have defined a frame-
work for representing knowledge and beliefs of agents in dynamic environments,
where new perceptions can modify the agent’s view about its surroundings. To
comply with real time issues when modeling agent interaction in a MAS setting we
have proposed the notion of dialectical databases.
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We have discussed the main issues in the integration of this component into
ODeLP, such as building the dialectical database, adapting the specificity criterion
for potential arguments and modifying the inference process to take advantage of the
new component. Based on this, we can affirm that the use of pre-compiled knowledge
can improve the performance of argument-based systems in the same way TMS
assist general problem solvers. We believe that the approach presented in this paper
can also be applied to other frameworks, paving the way for the development of
more efficient argument-based applications.
Part of our current work involves extending the analysis of ODeLP properties

presented in [27] to the context of MAS. We are also working on a complexity
analysis of ODeLP for the algorithms used in the construction and utilization of
dialectical databases.
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Notes

�� Extended version of ‘‘An Argument-Based Framework to Model An Agent’s Beliefs in a Dynamic

Environment,’’ ArgMAS 2004, LNAI 3366, pp. 96–111, 2005, I. Rahwan et al. (Eds.)

1. See [10] for a precise definition.

2. For the sake of clarity, we use semicolons to separate elements in an argument A ¼ fe1; e2; . . . ; ekg.
3. For a full discussion of ODeLP properties and their proof the interested reader is referred to [27].

4. Note that PðXÞ and � PðXÞ are contradictory literals although they are non-grounded. The same idea is

applied to identify contradiction in potential arguments.
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