
Preferential Defeasibility: Utility in Defeasible Logic Programming ∗

Fernando A. Tohmé 1
and Guillermo R. Simari 2

ftohme@criba.edu.ar grs@cs.uns.edu.ar

Artificial Intelligence Research and Development Laboratory
1Department of Economics and National Research Council (CONICET)

2Department of Computer Science and Engineering
Universidad Nacional del Sur

Av. Alem 1253, (8000) Bah́ıa Blanca, Argentina

Abstract

The development of Logic Programming and Defeasible
Argumentation lead to Defeasible Logic Programming.
Its core resides in the characterization of the warrant
procedure. Defeasible Argumentation has provided a
solid foundation over which the standard formalization
of this procedure has been constructed. A key element
in the warrant procedure is the criterion according to
which two contradicting arguments are compared and
eventually one of them deemed as defeating the other.
The purely syntactic Specificity criterion has consti-
tuted the main choice in the design of the warrant pro-
cedure. Nevertheless, it seems unreasonable to limit
the possibilities of comparison among arguments only
to syntactic criteria.

The justification of the methods of Defeasible Argu-
mentation are largely pragmatic. Therefore, it seems
sensible to expand the set of comparison criteria to
incorporate other pragmatic reasons for choosing one
argument over another. Decision Theory is the nat-
ural choice to model decision-makers. Clearly, as a
discipline, it has characterized and introduced formal
models in all kinds of pragmatic criteria used in actual
choice situations.

Here, we will present the framework of Preferential De-
feasible Logic Programming. This framework extends
the original comparison criteria of specificity redefining
it by allowing different preferential values for activation
sets. This extension leads to interesting results where
the decision is taken considering not only specificity,
but also the corresponding pragmatic relation of pref-
erences.

Introduction and Motivation

The development of defeasible reasoning in the last
decades (Pollock 1987; Simari & Loui 1992; Nute 1994;
Pollock 1995; Chesñevar, Maguitman, & Loui 2000),
lead to the creation of an alternative form of declar-
ative programming, Defeasible Logic Programming

∗Partially supported by Secretaŕıa General de Ciencia y
Tecnoloǵıa de la Universidad Nacional del Sur, the Agencia
Nacional de Promoción Cient́ıfica y Tecnológica (PICT 2002
Nro 13096) and the National Research Council (CONICET),
Argentina

(DeLP) (Garćıa 2000; Garćıa & Simari 2004). This for-
malism blends Logic Programming with Defeasible Ar-
gumentation, allowing the representation of tentative
knowledge and leaving for the inference mechanism the
task of finding the conclusions that the knowledge base
warrants (Chesñevar et al. 2003).

DeLP inherits from Logic Programming (LP) the for-
mal characterization of programs as sets of rules. The
difference is that DeLP considers two kinds of rules. On
one hand, strict rules, which are assumed to represent
sound knowledge and are handled as the rules in LP.
On the other hand, defeasible rules represent tentative
knowledge that may be defeated by other information.

Again as in LP, DeLP operates by answering queries
posed by the users. A query Q succeeds if there exists
a warranted argument A for Q. Arguments are con-
structed using both types of rules and facts (which can
be seen as special cases of strict rules). The inference
mechanism generates all the arguments that either sup-
port or contradict Q. Then, it runs a warrant procedure
that determines which arguments end up undefeated.
If there exists at least one argument warranting Q, it
yields a positive answer.

The core of DeLP resides in the characterization
of the warrant procedure. Defeasible Argumentation
has provided a solid foundation over which the stan-
dard formalization of this procedure has been con-
structed. A key element in the warrant procedure
is the criteria according to which two contradicting
arguments are compared and eventually one of them
deemed as defeating the other (Simari, Chesñevar, &
Garćıa 1994). Pure syntactic criteria like specificity are
both easy to understand and to implement, and there-
fore constituted the main choice in the design of the
warrant procedure (Poole 1985; Simari & Loui 1992;
Stolzenburg et al. 2003).

However, it seems unreasonable to limit the possibil-
ities of comparison among arguments only to syntactic
criteria. The justification of the methods of Defeasi-
ble Argumentation are largely pragmatic, that is, based
on how human reasoners perform in the actual world.
That is why the ultimate test for systems of defeasible
reasoning is how they respond to certain benchmark
problems. Therefore, it seems sensible to expand the

criteria of comparison to incorporate other pragmatic
reasons for choosing one argument over another.

Since the issue is one of how to make choices, it is
natural to resort to the tools of Decision Theory (DT).
In fact, DT’s goal is to capture in formal models the
actual behavior of decision-makers. Therefore, as a dis-
cipline, it has characterized and introduced in formal
models all kinds of pragmatic criteria used in actual
choice situations (Loui 1998).

Any analysis in Decision Theory begins with the
characterization of the preferences of a decision-maker,
in the form of an ordering of the alternatives, one
of which she has to select. Once this order is de-
fined, the rational behavior of the agent is to choose
one of the maximal elements. To obtain sound out-
comes it is required that the ordering of alternatives
be complete and transitive. This so called weak order
can be easily represented by means of a utility func-
tion, that assigns to each alternative its rank (or a
monotone transformation of the rank). In other terms,
each alternative receives a numerical tag and the al-
ternative with the highest value is chosen (Doyle 1990;
Osborne & Rubinstein 1994).

To introduce decision-theoretic tools into DeLP we
have to define what the alternatives are in this case. A
hasty answer could be the arguments that can be con-
structed, but this is not an appropriate option. The
idea of introducing this tools in DeLP is to preserve
its declarative nature but expand the possible set of
warrants for queries. Since the generation of argu-
ments is the task of the inference engine, to assign
utilities to them involves to reintroduce the user in a
process that should remain opaque for her (Loui 1990;
Tohmé 2002). Therefore, the preferences must be al-
ready defined in the characterization of a Defeasible
Logic Program. That leaves only two possibilities: util-
ities must be attached either to rules or to facts. There
are no major reasons to prefer one possibility over the
other, since preferences are to be defined by the user,
who may find reasons to rank both the rules and the
facts to be used in the construction of arguments. No-
tice that if we allow utilities to be attached to rules,
the distinction between strict and defeasible fades away,
since every rule becomes defeasible just because it can
be outranked by another rule. Again, this is a decision
to be left to the user.

The plan of the rest of this paper is as follows. In
section 2 we will present the rudiments of DeLP without
utilities. In section 3 we introduce utilities and describe
how arguments may become ranked by the inference
engine. Section 4 discusses possible extensions for this
work.

Defeasible Logic Programming

In order to discuss the introduction of utilities in DeLP,
we have to present the basics of this formalism (see
(Garćıa & Simari 2004) for a full presentation). It has
a language with three disjoint components:

• Facts, which are ground literals representing atomic
information (or the negation of atomic information).

• Strict Rules of the form L0← L1, . . . , Ln, where L0

is the head and {Li}i>0 is the body. Each Li in the
body or the head is a literal.

• Defeasible Rules of the form L0 –≺L1, . . . , Ln, where
L0 is the head and {Li}i>0 is the body. Each Li in
the body or the head is a literal.

Then, a Defeasible Logic Program P is a set of facts,
strict rules, and defeasible rules. P = (Π,∆), where Π
denotes the set of facts and strict rules, while ∆ denotes
the set of defeasible rules. For each query Q there are
four possible answers: YES, NO, UNDECIDED or UN-
KNOWN.

To determine which answer is correct, we need the
notion of argument. Given a program P = (Π,∆) and
a literal L, 〈A, L〉 is an argument structure for L. A is
a set of defeasible rules in ∆ such that:

1. there exists a defeasible derivation of L from Π ∪ A.
That is, there exists a finite sequence L1, . . . , Ln = L
of ground literals, such that each Li is either a fact
in Π or there exists a rule in Π ∪ A with Li as its
head, and every literal Bj in the body is such that
Bj ∈ {Lk}k<i,

2. there is no literal P such that both P and ¬P have
defeasible derivations from Π ∪ A,

3. A is minimal, i.e., there does not exist A1 ⊆ A such
that A1 satisfies (1) and (2).

An argumentation process proceeds through compar-
isons among arguments. The main criterion of compar-
ison used in DeLP is specificity. Consider a defeasi-
ble logic program P = (Π,∆) with ΠG the set of strict
rules from Π. Let F the set of all literals that can have
a defeasible derivation from Π ∪ ∆. Let 〈A1, L1〉 and
〈A2, L2〉 be two argument structures with L1, L2 ∈ F .
Then 〈A1, L1〉 is strictly more specific than 〈A2, L2〉 if:

• For all H ⊆ F , if there exists a defeasible derivation
of L1 from ΠG ∪H ∪A1 while ΠG ∪H 6` L1, then L2

can be defeasibly derived from ΠG ∪ H ∪ A2, and

• There exists H
′

⊆ F such that there exists a de-
feasible derivation of L2 from ΠG ∪ H

′

∪ A2 and
ΠG ∪H

′

6` L2 but there is no defeasible derivation of
L1 from ΠG ∪ H

′

∪ A1.

Argument 〈A1, L1〉 counterargues another 〈A2, L2〉 at
a literal L if there exists a sub-argument of 〈A2, L2〉,
〈A, L〉, i.e., A ⊆ A2, such that there exists a literal P
verifying both Π ∪ {L,L1} ` P and Π ∪ {L,L1} ` ¬P .

If 〈A1, L1〉 and 〈A2, L2〉 are two argument structures,
〈A1, L1〉 is a proper defeater for 〈A2, L2〉 at literal L iff
there exists a sub-argument of 〈A2, L2〉, 〈A, L〉 such
that 〈A1, L1〉 counterargues 〈A2, L2〉 at L and 〈A1, L1〉
is strictly more specific than 〈A, L〉. Alternatively,
〈A1, L1〉 is a blocking defeater for 〈A2, L2〉 at literal
L iff there exists a sub-argument of 〈A2, L2〉, 〈A, L〉
such that 〈A1, L1〉 counterargues 〈A2, L2〉 at L and nei-
ther 〈A1, L1〉 is strictly more specific than 〈A, L〉 nor is

〈A, L〉 strictly more specific than 〈A, L〉. If 〈A1, L1〉 is
either a proper or a blocking defeater of 〈A2, L2〉, it is
said to be a defeater of the latter.

An argumentation line for an argu-
ment structure 〈A0, L0〉 is a sequence Λ =
[〈A0, L0〉, 〈A1, L1〉, 〈A2, L2〉, · · ·] where for each
i > 0 〈Ai+1, Li+1〉 is a defeater of 〈Ai, Li〉.
ΛS = [〈A0, L0〉, 〈A2, L2〉, 〈A4, L4〉, · · ·] is the se-
quence of supporting argument structures of
Λ, while the sequence of interfering ones is
ΛI = [〈A1, L1〉, 〈A3, L3〉, 〈A5, L5〉, · · ·].

An acceptable argumentation line in a defeasi-
ble program P = (Π,∆) is a finite sequence Λ =
[〈A0, L0〉, · · · , 〈An, Ln〉] such that:

1. Both ΛS and ΛI are concordant, i.e., there is no P
such that both P and ¬P have defeasible derivations
from Π∪

⋃bn

2
c

i=0
A2i and no P

′

with defeasible deriva-

tions for both P
′

and ¬P
′

from Π ∪
⋃bn−1

2
c

i=0
A2i+1.

2. No argument 〈Ak, Lk〉 ∈ Λ is a subargument of an
argument 〈Aj , Lj〉, i.e., Ak 6⊂ Aj , for j < k.

3. For each i < n, if 〈Ai, Li〉 is a blocking defeater of
〈Ai−1, Li−1〉 then 〈Ai+1, Li+1〉 is a proper defeater of
〈Ai, Li〉.

To answer a query Q, the warrant procedure builds
up a candidate argument structure 〈A, Q〉. Then, it
associates to this argument a dialectical tree T〈A,Q〉 as
follows:

1. The root of the tree is labeled, 〈A0, Q0〉, i.e., A0 = A
and Q0 = Q.

2. Let n be a non-root node, with label 〈An, Qn〉 and
Λ = [〈A0, Q0〉, · · · , 〈An, Qn〉] the labels in the path
from the root to n. Let B = {〈B1,H1〉, · · · , 〈Bk,Hk〉}
be the set of all the defeaters for 〈An, Qn〉. For 1 ≤

i ≤ k, if Λ
′

= [〈A0, Q0〉, · · · , 〈An, Qn〉, 〈Bi,Hi〉] is
an acceptable argumentation line, n has a child ni

labeled 〈Bi,Hi〉. If B = ∅ or no 〈Bi,Hi〉 ∈ B is such

that Λ
′

is acceptable, then n is a leaf of the tree.

The nodes of T〈A,Q〉 can be marked, yielding a tagged
tree T ∗

〈A,Q〉 as follows:

• All leaves of T〈A,Q〉 are marked U in T ∗
〈A,Q〉.

• If 〈B,H〉 is the label of a node which is not a leaf,
the node will be marked U in T ∗

〈A,Q〉 if every child is

marked D. Otherwise, if at least one of its children
is marked U , it is marked as D.

Then, given an argument 〈A, Q〉 and its associated
tagged tree T ∗

〈A,Q〉, if the root is marked U , the literal

Q is said to be warranted. A is said to be the warrant
for Q. Therefore, given a query Q the possible answers
will be:

• YES, if Q is warranted.

• NO, if ¬Q is warranted.

• UNDECIDED, if neither Q nor ¬Q are warranted.

• UNKNOWN, if Q is not in the language of the pro-
gram.

Decision-Theoretic Defeat

As the quick overview of DeLP shows, the key for the
warrant procedure is the characterization of the defeat
relation among argument structures. As we have said,
specificity is introduced in the standard characteriza-
tion of DeLP as an example of comparison criterion
among arguments. We claim that an alternative com-
parison criterion may arise from decision-theoretic con-
siderations.

We will extend DeLP to allow utility values both for
facts and rules. In this sense, we speak of decision-

theoretic defeasible logic programs as P
′

= (Π,∆,Φ,B)
where Π and ∆ are as before, while Φ : Π ∪ ∆ → B,
where B is an arbitrary Boolean algebra with top >
and bottom ⊥. The new elements Φ(·) and B represent
the explicit preferences of the user, in the sense that
given two pieces of information µ1, µ2 ∈ Π ∪ ∆ if µ1 is
strictly more preferred than µ2 then Φ(µ1) ÂB Φ(µ2),
where ºB is the order of B. The elements µ of Π ∪ ∆
which are most preferred receive a label Φ(µ) = >.

We do not assume here that Φ assigns > to all strict
rules in Π, and not even that Φ(µ1) ÂB Φ(µ2) for
µ1 ∈ Π and µ2 ∈ ∆. This is because Φ(·) has, un-
like the distinction between strict and defeasible rules,
no epistemic content. Instead, the preferences repre-
sent other kinds of rationales, like the reliability of the
source of information that provided the rule or fact, or
the cost-benefit rates of the pieces of information (since
their use may preclude the use of other pieces in the rea-
soning process), or just the inclination towards the use
of certain information over another. Examples of these
attitudes are pervasive even in scientific reasoning, and
we will not go further into this. Of course, nothing pre-
vents a user from giving the highest preference to strict
rules and facts.

Whatever the reasons are for preferring elements of
Π ∪ ∆, the user has also to define the Boolean algebra
B over which Φ(·) ranges. It can be argued that a more
general ordering could be appropriate but, as we will
see, the inference engine has to perform some operations
over the labels of the pieces of information used in the
process of argumentation. Therefore, the range of Φ(·)
has to be not only an ordered set but also an algebra. In
the simplest case, in which B is just a compact subset
of real numbers with the natural order, we may say that
Φ(µ) is the utility of the piece of information µ.

From the preferences over Π ∪ ∆, we can find pref-
erential values over defeasible derivations. Given a de-
feasible derivation of L from Π ∪ ∆, L1, . . . , Ln = L,
let D be the set {L1, . . . , Ln} and {µ1, . . . , µn} a set of
rules such that µi is the rule that yields Li. Then, that
derivation yields for its conclusion L a value V (L,D) =∧n

i=1
V (Li, µi), where V (L, µ) is defined inductively as

V (L, µ) = Φ(µ) if L is a fact, i.e. the body of the rule
µ is empty, and V (L, µ) = Φ(µ) ∧

∧m

k=1
V (Bk, µk) if µ

is a rule (strict or defeasible) with head L and body
B1, . . . , Bm which is used to derive L and µk is a rule
used to derive Bk. The intuition here is that a conclu-

sion is as strongly preferred as the weakest of either its
premises or the rule used in the derivation.

By extension, an argument structure 〈A, L〉 yields
a value for L, V (L,A) =

∧
D V (L,D), where D is a

derivation that uses all the defeasible rules in A and
only those defeasible rules. That is, it yields the lowest
value among all the derivations of L by using defeasible
rules in A. Notice that, by definition of A there is no

other set A
′

⊂ A that allows the derivation of L, but
more than one selection of strict rules may exist in Π
that allows, jointly with A, to do that.

Let F be the set of all literals that can have a de-
feasible derivation from Π ∪ ∆. Any subset H ⊆ F
has a value V (H) =

∨
L∈H

∧
D V (L,D). This means

that H is as valuable as the most valuable of its el-
ements, which in turn is as valuable as the weakest
of its derivations. We can use this notion to redefine
specificity to yield a relation of preferential specificity.
Consider again ΠG, the set of strict rules from Π. Let
〈A1, L1〉 and 〈A2, L2〉 be two argument structures with
L1, L2 ∈ F . Then 〈A1, L1〉 is strictly more preferen-
tially specific than 〈A2, L2〉 if:

1. For all H ⊆ F , if there exists a defeasible derivation
of L1 from ΠG ∪H ∪A1 while ΠG ∪H 6` L1, then L2

can be defeasibly derived from ΠG ∪ H ∪ A2, and

2. there exists H
′

⊆ F such that there exists a defeasible
derivation of h2 from ΠG ∪ H

′

∪ A2 and ΠG ∪ H
′

6`
L2 but there is no defeasible derivation of L1 from
ΠG ∪ H

′

∪ A1.

3. For every H verifying (1) and H
′

verifying (2),

V (H) ºB V (H
′

).

Example 1 Consider a classical example in defeasi-
ble argumentation where preferences are defined for
B = {0, 1}, with 0 < 1, (the preferences are indicated
in parenthesis next to the corresponding pieces of infor-
mation):

Π = {bird(X) –≺ penguin(X) (1),
penguin(tweety) (0), bird(tweety) (1)}

∆ = {¬flies(X) –≺ penguin(X) (1),
f lies(X) –≺ bird(X) (1)}

Notice that bird(tweety) yields two values:
V (bird(tweety), {penguin(tweety), bird(tweety)}) =
min(0, 1) = 0 and V (bird(tweety), ∅) = 1, because the
fact that tweety is a penguin has a preference of 0 while
the rule used to derive that it is a bird has a preference
of 1.

Consider two possible arguments:

〈{¬flies(X) –≺ penguin(X)},¬flies(tweety)〉 and

〈{flies(X) –≺ bird(X)}, f lies(tweety)〉

Then, if we consider H = {penguin(tweety)} and H
′

=
{bird(tweety)} we have that

H ∪ {bird(X)← penguin(X)} 6` ¬flies(tweety),

but

H ∪ {bird(X)← penguin(X)}∪
{¬flies(X) –≺ penguin(X)}

allows the defeasible derivation of ¬flies(tweety). Fur-
thermore,

H ∪ {bird(X)← penguin(X)} ∪ {flies(X) –≺ bird(X)}

allows the defeasible derivation of flies(tweety).
On the other hand,

H
′

∪ {bird(X)← penguin(X)} 6` flies(tweety)

but
H

′

∪ {bird(X)← penguin(X)} ∪
{flies(X) –≺ bird(X)}

allows the defeasible derivation of flies(tweety) while

H ∪ {bird(X)← penguin(X)} ∪

{¬flies(X) –≺ penguin(X)}
does not allow the defeasible derivation of
¬flies(tweety). This implies that

〈{¬flies(X) –≺ penguin(X)},¬flies(tweety)〉

is strictly more specific than the argument
{flies(X) –≺ bird(X)} for flies(tweety). But it
is not strictly preferentially more specific, since
V (H

′

) = max(V (bird(tweety), ∅), V (bird(tweety),
{penguin(tweety), bird(tweety)})) = max(1, 0) = 1
while V (H) = V (penguin(tweety), ∅) = 0.

A basic property of this extended version of speci-
ficity is the following:

Proposition 1 If 〈A1, L1〉 is strictly more preferen-
tially specific than 〈A2, L2〉 then 〈A1, L1〉 is strictly
more specific than 〈A2, L2〉.

Proof : Trivial: if 〈A1, L1〉 is strictly more preferen-
tially specific than 〈A2, L2〉 then, it has to verify the
conditions (1), (2) and (3) of the characterization of
strictly-more-preferentially-specific-than relation. Since
conditions (1) and (2) characterize the strictly-more-
specific-than relation, the claim follows. ¤

A particular case in which both relations coincide is
when there exists e ∈ B such that for every µ ∈ Π∪∆,
Φ(µ) = e. But in general, the converse of Proposition

1 requires an additional property of the sets H,H
′

⊆ F
called the activation sets of 〈A1, L1〉 and 〈A2, L2〉, re-

spectively. That is, that V (H) ºB V (H
′

). This means
that:

Proposition 2 The relation strictly-more-preferen-

tially-specific-than in program P
′

= (Π,∆,Φ,B) is
equivalent (i.e., yields the same subset of ARG ×
ARG where ARG is the class of argument struc-
tures) to the relation strictly-more-specific-than in pro-
gram P = (Π,∆) if and only if for every pair of ar-
gument structures 〈A1, L1〉, 〈A2, L2〉 ∈ ARG, 〈A1, L1〉
is strictly-more-specific-than 〈A2, L2〉and for every pair

of their corresponding activation sets H,H
′

⊆ F ,
V (H) ºB V (H

′

).

Proof : (⇒): Assume that for every pair of argument
structures 〈A1, L1〉 is strictly-more-preferentially-
specific-than 〈A2, L2〉 is equivalent to 〈A1, L1〉 being
strictly-more-specific-than 〈A2, L2〉. Therefore, since
condition (3) in the characterization of strictly-
more-preferentially-specific-than must be fulfilled, for
every pair of activation sets H and H

′

we have that
V (H) ºB V (H

′

).
(⇐) Trivial: by definition, if 〈A1, L1〉 is strictly-
more-specific-than 〈A2, L2〉 and for every pair of

their corresponding activation sets H,H
′

⊆ F ,
V (H) ºB V (H

′

) we have that 〈A1, L1〉 is strictly-
more-preferentially-specific-than 〈A2, L2〉. ¤

Based on the relation strictly-more-preferentially-
specific-than, we can find the derived relation of pref-
erential defeat, that is obtained by replacing specificity
with preferential specificity in its characterization. It
follows that the warrant procedure remains the same
with defeat replaced by preferential defeat. We end up
having a notion of preferential warrant that is obtained
through this procedure.

An important property of the warrant procedure is
the following:

Proposition 3 Given a query Q in the preferential

defeasible logic program P
′

= (Π,∆,Φ,B), and an ar-
gument structure 〈A, Q〉, its tagged dialectical tree
is identical to T ∗

〈A,Q〉 in P = (Π,∆) iff the relation

strictly-more-preferentially-specific-than for program P
′

is equivalent to the relation strictly-more-specific-than
in program P over ARGQ, where ARGQ is the class
of all arguments that are either labels of the dialectical
tree T〈A,Q〉 or subarguments of them.

Proof : (⇐) Trivial.

(⇒) Suppose that T ∗
〈A,Q〉 is the same for both P

′

and P, but there are at least two argument struc-
tures 〈A1, L1〉, 〈A2, L2〉 ∈ ARGQ such that 〈A1, L1〉
is strictly-more-specific-than a subargument 〈A, L〉 of
〈A2, L2〉 but not strictly more preferentially specific.
That means that 〈A1, L1〉 is a proper defeater of
〈A2, L2〉 at h but it is not a preferentially proper de-

feater. Therefore, the dialectic tree is different in P
′

than in P. Contradiction. ¤

Corollary 1 Given a query Q and an argument struc-
ture 〈A, Q〉, the answer to Q in the preferential de-

feasible logic program P
′

= (Π,∆,Φ,B) is identical to
its answer in P = (Π,∆) iff the relation strictly-more-

preferentially-specific-than for P
′

is equivalent to the
relation strictly-more-specific-than in P over ARGQ.

Conclusions

We presented in this paper a framework of preferen-
tial defeasible logic programming, which extends DeLP
simply by redefining the relation of specificity, by allow-
ing different preferential values of activation sets. Even

if an argument structure is syntactically more specific
than another, it is not deemed preferentially specific un-
til the corresponding relation of preferences holds over
their activation sets.

It is a matter of further study to see how sensitive
the results of DeLP are to the inclusion of preferential
(utility) values. Our intuition is that quite different
outcomes may be expected, although they always re-
flect some ordering of the information provided by the
user. In either case, the final outcomes of preferential
defeasible logic programming result from blending the
ordering given by the user with a syntactical procedure,
proper of DeLP. Also, the termination result implies the
existence of a wide set of alternatives and a taxonomy
of them could be part of future work.

References

Chesñevar, C. I.; Dix, J.; Stolzenburg, F.; and Simari,
G. R. 2003. Relating defeasible and normal logic pro-
gramming through transformation properties. Theo-
retical Computer Science 290(1):499–529.

Chesñevar, C. I.; Maguitman, A. G.; and Loui, R. P.
2000. Logical Models of Argument. ACM Computing
Surveys 32(4).

Doyle, J. 1990. Rationality and it roles in reasoning.
In AAAI, 1093–1100.

Garćıa, A. J., and Simari, G. R. 2004. Defeasible logic
programming: An argumentative approach. Theory
and Practice of Logic Programming 4(1):95–138.

Garćıa, A. J. 2000. Defeasible Logic Programming:
Definition, Operational Semantics and Parallelism.
Ph.D. Dissertation, Computer Science and Engineer-
ing Department, Universidad Nacional del Sur, Bah́ıa
Blanca, Argentina.

Loui, R. P. 1990. Defeasible specification of utili-
ties. In Kyburg, H.; Loui, R.; and Carlson, G., eds.,
Knowledge Representation and Defeasible Reasoning.
Dordrecht: Kluwer Academic Publishers. 345–359.

Loui, R. P. 1998. Process and policy: Resource-
bounded nondemonstrative reasoning. COMPINT:
Computational Intelligence: An International Journal
14.

Nute, D. 1994. Defeasible logic. In Gabbay, D.; Hog-
ger, C.; and J.A.Robinson., eds., Handbook of Logic in
Artificial Intelligence and Logic Programming, Vol 3.
Oxford University Press. 355–395.

Osborne, M. J., and Rubinstein, A. 1994. A Course
in Game Theory. Cambridge (MA.): MIT Press.

Pollock, J. 1987. Defeasible Reasoning. Cognitive
Science 11:481–518.

Pollock, J. 1995. Cognitive Carpentry: A Blueprint
for How to Build a Person. MIT Press.

Poole, D. L. 1985. On the Comparison of Theories:
Preferring the Most Specific Explanation. In Proc. 9th
IJCAI, 144–147. IJCAI.

Simari, G. R., and Loui, R. P. 1992. A Mathematical
Treatment of Defeasible Reasoning and its Implemen-
tation. Artificial Intelligence 53:125–157.

Simari, G. R.; Chesñevar, C. I.; and Garćıa, A. J. 1994.
The role of dialectics in defeasible argumentation. In
XIV International Conference of the Chilenean Com-
puter Science Society.

Stolzenburg, F.; Garćıa, A. J.; Chesñevar, C. I.; and
Simari, G. R. 2003. Computing generalized specificity.
Journal of Aplied Non-Classical Logics 13(1):87–113.

Tohmé, F. 2002. Negotiation and defeasible decision
making. Theory and Decision 53(4):289–311.

