An abstract argumentation framework with varied-strength attacks

Diego C. Martínez Alejandro J. García Guillermo R. Simari

Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Artificial Intelligence Research and Development Laboratory LIDIA,

Department of Computer Science and Engineering, Universidad Nacional del Sur, Bahía Blanca, ARGENTINA Email: {dcm,ajg,grs}@cs.uns.edu.ar

Abstract

In classical abstract argumentation, arguments interact with each other through a single abstract notion of attack. However, several concrete forms of argument conflict are present in the literature, all of them of different nature and strength for a particular context. In this work we define an argumentation framework equipped with a set of abstract attack relations of varied strength. Using this framework, semantic notions dealing with the relative difference of strength are introduced

Introduction

Abstract argumentation systems (Dung 1995; Vreeswijk 1997; Amgoud & Cavrol 1998; 2002; Martínez, García, & Simari 2006b) are formalisms for argumentation where some components remain unspecified towards the study of pure semantic notions. Most of the existing proposals are based on the single abstract concept of attack represented as a binary relation, and according to several rational rules, extensions are defined as sets of possibly accepted arguments. The attack relation is basically a subordinate relation of conflicting arguments. For two arguments \mathcal{A} and \mathcal{B} , if $(\mathcal{A}, \mathcal{B})$ is in the attack relation, then the status of acceptance of \mathcal{B} is conditioned by the status of A, but not the other way around. It is said that argument A attacks B, and it implies a priority between conflicting arguments. One of the most important formalizations on abstract argumentation is the framework defined by Dung in (Dung 1995), where the simplicity of the model allows practical definitions of sets of arguments as possible sets of acceptance. The attack relation in Dung's work is a binary relation between arguments as described previously. However, this relation is not always accurate to model some situations where more detail is needed. In several argumentation scenarios, not every argument conflict has the same weight, as they arise for underlying different reasons.

Consider the following arguments exposing reasons for and against the fairness of a recent increase in agricultural export taxes.

• *IncTaxGood*: The tax on soy bean export is fair, because it makes soy unattractive for local farmers and it incentivates other agriculture production.

- *IncTaxBad*: The tax on soy bean export is not fair, as it drastically reduces the farmer's income, and the taxation is assumed to be used by the government for demagogic purposes.
- *GoodUse*: Government affirms the taxation is needed to bring inflation down
- *GoodIncome*: Government says farmers are having a high income from soy exports anyway.

Although there is a general state of contradiction between these arguments, the nature of this conflict is different from case to case. The argument IncTaxBad contradicts argument IncTaxGood by the exposure of different reasons for a complementary conclusion. Argument GoodUse, in turn, contradicts an assumption of IncTaxBad about the destination of the money and thus the assumption seems to be no longer valid. Finally, a new argument called GoodIncome establishes a government opinion about farmer's welfare. This argument is now in contradiction with one of the premises of IncTaxGood, although this contradiction is clearly based on a subjective point of view. In order to properly analyze the global scenario, it is important to distinguish the difference of strength in every argument conflict. For example, maybe in a formal negotiation argument GoodIncome cannot be freely used, and perhaps argument GoodUse is more likely to be presented in an informal discussion between government and farmer's Union.

Every argumentation system defines one or more notions of argument conflict, leading to an evolved concept of argument attack. For example, several systems use the notion of rebut and undercut conflict (Elvang-Goransson & Hunter 1995). The first one is due to contradictory conclusions between arguments, while the second is due to a contradiction between a conclusion of an argument and a premise of the other. In Defeasible Logic Programming (García & Simari 2004) two kinds of attack (defeat) relations are present. These relations are obtained by applying a preference criterion between conflictive arguments, thus obtaining blocking and proper attacks. An abstract framework capturing this dual interaction is defined in (Martínez, García, & Simari 2006b; 2006a). In (Tohme, Bodanza, & Simari 2008) the aggregation of different abstract attack relations over a common set of arguments is addressed. These attacks represent diversity of criteria on several rational agents willing to

Copyright © 2008, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

reach on agreement about argument conflicts.

The motivation of this work is to distinguish preferences between attack notions, introducing a structure for semantics elaborations on attacks of different strength, as suggested in the running example. We define an argumentation framework equipped with a set of unquestionable abstract attack relations of varied intrinsic force. The nature and structure of every attack is not specified. It is sufficient to state that these attacks are of varied strengths and some of them can be compared to others under this criteria. Using this novel framework with ordered attacks, the classic notions of acceptability of arguments and admissible sets are applied leading to new formalizations of similar ideas. These extended notions are based on a set of restrictions on attacks.

In the next section the abstract framework with varied strength attacks is introduced. Semantic notions dealing with this relative difference of strength are defined in subsequent sections. Finally, a simple operator to safely add arguments in an extension is presented.

Abstract Framework

Our framework includes a set of arguments and a finite set of binary attack relations denoting conflicts of different nature.

Definition 1 (Framework) An AF with varied strength attacks (AFV) is a triplet $\langle Args, Atts, R \rangle$ where Args is a set of arguments, Atts is a set of binary attack relations $\{ \rightarrow_1, \rightarrow_2, \ldots, \rightarrow_n \}$ defined over Args, and R is a binary relation defined over Atts.

The relation $R \subseteq Atts \times Atts$ denotes an order of strength between argument conflicts. Arguments are abstract entities that will be denoted using calligraphic uppercase letters. The set Atts represents different abstract forms of conflicts between arguments, modeled by every $\rightarrow_i \subseteq Args \times Args, 1 \le i \le n$. For two arguments \mathcal{A} and \mathcal{B} , if $\mathcal{A} \rightarrow_i \mathcal{B}$ then it is said that \mathcal{A} attacks \mathcal{B} . In this work R it is only assumed to be reflexive.

Definition 2 (Relative strength) Let $\langle Args, Atts, R \rangle$ be an AFV where $Atts = \{ \rightarrow_1, \rightarrow_2, \dots, \rightarrow_n \}$ For two attack relations \rightarrow_i and $\rightarrow_j, 1 \leq i, j \leq n$, if $(\rightarrow_i, \rightarrow_j) \in R$ and $(\rightarrow_j, \rightarrow_i) \notin R$ then it is said that \rightarrow_i is a stronger attack than \rightarrow_j , denoted $\rightarrow_i \gg \rightarrow_j$. It may also be said that \rightarrow_j is a weaker attack than \rightarrow_i , denoted $\rightarrow_j \ll \rightarrow_i If(\rightarrow_i, \rightarrow_j) \in R$ and $(\rightarrow_j, \rightarrow_i) \in R$ then it is said that \rightarrow_i and \rightarrow_j are equivalent in force, denoted $\rightarrow_i \approx \rightarrow_j If(\rightarrow_i, \rightarrow_j) \notin R$ and $(\rightarrow_j, \rightarrow_i) \notin R$ then it is said that \rightarrow_i and \rightarrow_j are of unknown difference force, denoted $\rightarrow_i? \rightarrow_j$

An attack may be stronger, or equivalent in force, or incomparable to other attacks. Being R reflexive, then $\rightarrow_i \approx \rightarrow_i$ for any attack \rightarrow_i^{1} .

Example 1 Following the introductory example of tax increase, the framework is $\Phi_{tax} = \langle Args, Atts, R \rangle$ where $Args = \{IncTaxGood, IncTaxBad, GoodUse, GoodIncome\}$. Three kinds of attack may be modeled in this example: from argument conclusion to argument conclusion (\rightarrow_{cc}) , from argument conclusion to argument assumption (\rightarrow_{ca}) and subjective contradiction (\rightarrow_{sc}) . Thus, the set of attacks is $Atts = \{\rightarrow_{cc}, \rightarrow_{ca}, \rightarrow_{sc}\}$ where $\rightarrow_{cc} = \{(IncTaxBad, IncTaxGood), (IncTaxGood, IncTaxBad)\}, \rightarrow_{ca} = \{(GoodUse, IncTaxBad)\}$ and $\rightarrow_{sc} = \{(GoodIncome, IncTaxBad)\}$. Note that \rightarrow_{cc} is symmetric. A possible order of strength attacks is $R = \{\rightarrow_{ca} \gg \rightarrow_{cc}, \rightarrow_{sc} \ll_{cc}, \rightarrow_{sc} \ll_{ca}\}$. In this order, the subjective comparison is the weakest form of attacks, while an attack from conclusion to premise is the strongest one.

When an argument has a number of attackers, adversarial pieces of knowledge of different forces are taking place. This scenario is suitable for quality considerations on potential argument extensions. For example, an argument may be required to be defended by an attack involved in a stronger attack relation. In this case, attacks are overruled only be the use of a stronger force. On the other hand, perhaps it is desirable that weaker forms of attack be completely ignored. In legal argumentation doubtful sources of information can lead to the construction of attacking arguments, but these attacks can be considered irrelevant in other contexts.

Observation 1 If $\rightarrow_i \approx \rightarrow_j$ for any $\rightarrow_i, \rightarrow_j \in Atts$, then the result is the Dung's classical abstract framework (Dung 1995) $AF = \langle Args, At \rangle$ where $At = \rightarrow_1 \cup \rightarrow_2$ $\cup \ldots \cup \rightarrow_n$.

We will focus mainly on argument defense. We depict argumentation frameworks using graphs, where arguments are represented as black triangles and a labeled arc (\leftarrow) is used to denote attacks. An arc with label *i* denotes the attack \rightarrow_i . Consider the argumentation framework depicted in Figure 1. Arguments C and D are attacking B, which in turn attacks \mathcal{A} . Thus, it is said that \mathcal{C} and \mathcal{D} are *defenders* of \mathcal{A} against \mathcal{B} . Regarding argument \mathcal{A} , the attack \rightarrow_i is an *offensive* attack, while attacks \rightarrow_j and \rightarrow_k are *defensive* attacks. Two kinds of attack comparison can be made. First, the defensive attack can be compared to the offensive attack, leading to a measure of strength of one particular defense. We call this an offense-defense comparison. In Figure 1, \rightarrow_i can be compared to \rightarrow_i . Second, all the defensive attacks on a single argument can be compared to each other. We call this a defense-defense comparison. In Figure 1, \rightarrow_i can be compared to \rightarrow_k .

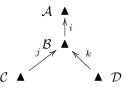


Figure 1: C and D are defending A against B.

The following definition classifies defenders according to a offense-defense comparison.

Definition 3 (Defense strength) Let $\langle Args, Atts, R \rangle$ be an *AFV. Let* $\mathcal{A}, \mathcal{B}, \mathcal{C} \in Args$ such that $\mathcal{B} \rightarrow_i \mathcal{A}$ and $\mathcal{C} \rightarrow_j \mathcal{B}$. *Then*

¹For simplicity, we will omit reflexive cases when describing frameworks

- *C* is a strong defender of *A* against \mathcal{B} if $\rightarrow_j \gg \rightarrow_i$.
- *C* is a weak defender of *A* against *B* if $\rightarrow_i \ll \rightarrow_i$.
- *C* is a normal defender of *A* against *B* if $\rightarrow_i \approx \rightarrow_i$.
- *C* is an unqualified defender of *A* against *B* if \rightarrow_j ? \rightarrow_i .

As attacks are ordered by its force, strong defenders are considered better than normal defenders. In the same manner, normal defenders are considered better than unqualified defenders.

When applying a defense-defense comparison it is important to observe that a defense achieved by the stronger force is naturally predominant. We said then that some defenders *dominate* other in the task of defense.

Definition 4 (Dominant defender) Let $\langle Args, Atts, R \rangle$ be an AFV. Let $\mathcal{A}, \mathcal{B}, \mathcal{C}$ and \mathcal{D} be arguments in Args such that $\mathcal{B} \rightarrow_i \mathcal{A}, \mathcal{C} \rightarrow_j \mathcal{B}$ and $\mathcal{D} \rightarrow_k \mathcal{B}$. Argument \mathcal{C} is said to dominate \mathcal{D} as a defender if $\rightarrow_i \gg \rightarrow_k$.

For an attacked argument, the ideal defense against an attacker \mathcal{X} is achieved by a strong defender \mathcal{Y} such that \mathcal{Y} is not dominated by any other defender on the same argument \mathcal{X} . However, this is not always possible. For example, there may not be strong defenders, but there is a normal defender which dominates all other defenders. What is important is to distinguish the relative difference of strength.

Example 2 Consider the AFV of Figure 2, where $\rightarrow_1 \gg \rightarrow_2$, $\rightarrow_2 \gg \rightarrow_3$, \rightarrow_4 ? \rightarrow_2 and $\rightarrow_4 \gg \rightarrow_3$. Every argument achieve its defense with different strength. Argument \mathcal{E} is a strong defender of \mathcal{A} . Argument \mathcal{C} is a weak defender of \mathcal{A} while \mathcal{F} is an unqualified defender of \mathcal{A} . In this case, \mathcal{F} dominates \mathcal{C} as \rightarrow_4 is a stronger attack than \rightarrow_3

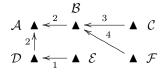


Figure 2: Defenses of varied strength

In the following section, the classic notions of acceptability of arguments and admissible sets are applied to the abstract framework with varied-strength attacks.

Admissibility semantics

Argumentation semantics is about argument classification through several rational positions of acceptance. A central notion in most argument extensions is *acceptability*.

Definition 5 (Classic Acceptability) (Dung 1995) An argument A is acceptable with respect to a set of arguments S if and only if every attacker B of A has an attacker in S.

Acceptability is the basis of many argumentation semantics and leads to the notion of *admissibility*, which is applied to conflict-free sets. A set of arguments $S \subseteq Args$ is said to be *conflict-free* if for all $\mathcal{A}, \mathcal{B} \in S$ it is not the case that $\mathcal{A} \rightarrow_i \mathcal{B}$ for any $\rightarrow_i \in Atts$. The classical admissible set notion is as follows. **Definition 6 (Classic Admissibility)** (Dung 1995) A set of arguments S is said to be admissible if it is conflict-free and every argument in S is acceptable with respect to S.

An admissible set is able to defend any argument included in that set. These widely accepted definitions are suitable for an AFV, where an attack is interpreted as any $\rightarrow_i \in Atts$ However, when a specific strength constraint is desired in argument defense, this global notion of acceptability is no longer sufficient. In that case, there is a need to capture defense under certain conditions, as shown in the following definition.

Definition 7 (Attack scenario) Let $\langle Args, Atts, R \rangle$ be an *AFV*, $\mathcal{A} \in Args$, $S \subseteq Args$ and $P \subseteq \{\gg, \ll, \approx, ?\}$. The pair p = [S, P] is called an (attack) scenario of Φ . The set *P* is called the defense condition of *p*.

Definition 8 (Constrained Acceptability.) Let Φ be an *AFV, and let* [S, P] be an attack scenario in Φ . An argument \mathcal{A} is acceptable with respect to [S, P] if, and only if, for any argument \mathcal{X} such that $\mathcal{X} \to_i \mathcal{A}$, there is an argument $\mathcal{Y} \in S$ such that $\mathcal{Y} \to_j \mathcal{X}$ and $\to_j \rho \to_i$ where $\rho \in P$.

The set $P \subseteq \{\gg, \ll, \approx, ?\}$ is a form of defense condition that must be satisfied for every defender of an argument. In this way we are modelling conditions regarding difference of strength between offensive and defensive attacks.

Example 3 Consider the framework of Figure 2. Argument \mathcal{A} is acceptable with respect to $[\{\mathcal{E}, \mathcal{F}\}, \{\gg, ?\}]$ but not with respect to $[\{\mathcal{C}, \mathcal{E}\}, \{\gg, ?\}]$.

Having Definition 8, the derived notion of constrained admissibility is straightforward.

Definition 9 (Constrained Admisibility) Let Φ be an AFV, and let [S, P] be an attack scenario in Φ . The pair [S, P] is called an admissible scenario if, and only if, S is conflict free and every argument $\mathcal{X} \in S$ is acceptable with respect to [S, P].

In the abstract framework depicted in Figure 2, the pair $[\{\mathcal{A}, \mathcal{E}, \mathcal{F}\}, \{\gg, ?\}]$ is an admissible scenario.

Proposition 1 If [S, P] is an admissible scenario then

- 1. [S, Q] is also an admissible scenario, for any $Q \supseteq P$.
- 2. S is (classical) admissible.
- 3. If [T, P], $T \subseteq Args$, is an admissible scenario and $S \cup T$ is conflict-free then $[S \cup T, P]$ is also an admissible scenario

Proof:

- 1. If $A \in S$ is acceptable with respect to [S, P] then all its defenders are present in S and the defense condition P is satisfied. Adding new forms of defense constraints to an already admissible scenario can not disrupt these facts and therefore the admissibility property is kept.
- From previous proof, [S, {≪, ≫, ?, ≈}] is an admissible scenario and thus every argument in S is defended under all conditions. Then S is admissible.

- The set T includes defenders for every argument in T, and therefore every argument in S ∪ T has its defenders in S ∪ T. As in both cases all the defense conditions are met, then [S ∪ T, P] is an admissible scenario

In the following section the comparison between defenders is presented in order to characterize the inner strength of an admissible set.

Defense-defense comparison

Constrained acceptability focuses on the use of defenders by imposing restrictions on its attacks. Thus, some attacks will not be eligible for defense. However, as stated before, for a given valid defense it is possible to evaluate the quality of a defender among its partners.

Definition 10 (Stronger Defense) Let $\langle Args, Atts, R \rangle$ be an AFV, $\mathcal{A} \in Args, S_1, S_2 \subseteq Args$ and $P, Q \subseteq \{\gg, \ll, \approx, ?\}$ such that \mathcal{A} is acceptable with respect to $[S_1, P]$. The pair $[S_2, Q]$ is said to be a stronger collective defense of \mathcal{A} if \mathcal{A} is acceptable with respect to $[S_2, Q]$, and

- 1. There are no two arguments $\mathcal{X} \in S_1$ and $\mathcal{Y} \in S_2$ such that \mathcal{X} dominates \mathcal{Y}
- 2. For at least one defender $\mathcal{X} \in S_1$ of \mathcal{A} , there exists an argument $\mathcal{Y} \in S_2 S_1$ such that \mathcal{Y} dominates \mathcal{X} .

A pair $[S_2, P]$ is a stronger collective defense of \mathcal{A} if at least one defender in S_1 is dominated by a defender in S_2 and no argument in S_1 dominates an argument in S_2 .

Example 4 Consider the AFV of Figure 3 where \rightarrow_2 ? \rightarrow_i with $i \in \{1, 3, 4, 5\}$, $\rightarrow_3 \gg \rightarrow_1$, $\rightarrow_1 \approx \rightarrow_4$ and $\rightarrow_5 \gg \rightarrow_1$, $\rightarrow_3 \gg \rightarrow_4$. Argument \mathcal{A} is acceptable with respect to

- $p_1 = [\{\mathcal{D}, \mathcal{F}\}, \{\gg\}]$
- $p_2 = [\{\mathcal{E}, \mathcal{F}\}, \{\gg, \approx\}].$
- $p_3 = [\{\mathcal{G}\}, \{?\}]$

The pair p_1 constitutes a stronger collective defense than p_2 because \mathcal{D} dominates \mathcal{E} . No pair constitutes a stronger collective defense than p_3 , nor p_3 can be stronger defense than any other, as \rightarrow_2 is incomparable to every other notion of attack.

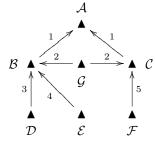


Figure 3: Stronger defenses

Example 5 Consider the AFV of Figure 4 where $\rightarrow_1 \ll \rightarrow_i$, $2 \leq i \leq 4, \rightarrow_3 \gg \rightarrow_2$ and $\rightarrow_4 \gg \rightarrow_3$. Argument \mathcal{A}

is acceptable with respect to $[\{C\}, \{\gg\}]$, $[\{D\}, \{\gg\}]$ and $[\{\mathcal{E}\}, \{\gg\}]$. Given the difference of strength between atacks, $[\{\mathcal{E}\}, \{\gg\}]$ is a stronger collective defense than $[\{D\}, \{\gg\}]$, which is in turn a stronger collective defense than $[\{C\}, \{\gg\}]$.

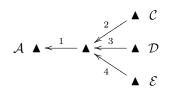


Figure 4: Several defenses for A.

In the following section we formalize a notion of strength equilibrium between arguments. This is a property that can be exhibited by admissible sets under certain conditions.

Looking for best defenders

When several admissible sets are present as an alternative for acceptance, the strength of defenses can be observed towards a concrete acceptance decision. What seems to be relevant here is to choose those extensions providing best defenses for its elements.

Example 6 Consider the AFV of Figure 5 where $\rightarrow_2 \gg \rightarrow_1$. Argument \mathcal{A} is acceptable with respect to $p_1 = [\{\mathcal{D}\}, \{\approx\}]$. It is also acceptable with respect to $p_2 = [\{\mathcal{C}\}, \{\gg\}]$. Note that p_2 is a stronger defense than p_1 as \mathcal{C} dominates \mathcal{D} . The only (and therefore the stronger one) defense for \mathcal{F} is p_1 and for \mathcal{H} it is p_2 . The pairs $adm_1 = [\{\mathcal{A}, \mathcal{D}, \mathcal{F}\}, \{\gg, ?\}]$ and $adm_2 = [\{\mathcal{A}, \mathcal{C}, \mathcal{H}\}, \{\approx, ?\}]$ are both admissible scenarios. However, adm_1 exhibits more strength, as every argument is defended by its stronger available defense.

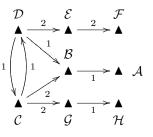


Figure 5: $[\{\mathcal{A}, \mathcal{D}, \mathcal{F}\}, \{\gg, ?\}]$ is a strong admissible set

Definition 11 (Top-admissibility) Let $\langle Args, Atts, R \rangle$ be an AFV, $S \subseteq Args$ and $P \subseteq \{\gg, \ll, \approx, ?\}$. A pair [S, P] is said to be a top-admissible set if,

- [S, P] is an admissible scenario and
- For any argument A ∈ S, no other admissible scenario includes a stronger defense of A.

A top-admissible scenario is such that every argument in the scenario is defended by a strongest defense. Clearly, is a very restrictive requirement as a strongest defense may not always be available. **Example 7** Consider the AFV of Figure 6 where $\rightarrow_2 \gg \rightarrow_1$ The scenario $p_1 = [\{\mathcal{A}, \mathcal{C}, \mathcal{F}\}, \{\gg, \approx\}]$ is top-admissible. Also $p_2 = [\{\mathcal{A}, \mathcal{D}, \mathcal{F}\}, \{\gg, \approx\}]$ is top admissible as \mathcal{A} has no dominant defenders. The scenario $p_3 = [\{\mathcal{A}, \mathcal{C}, \mathcal{D}, \mathcal{G}\}, \{\gg, \approx\}]$ is not top-admissible as \mathcal{F} is a stronger defender of \mathcal{C} and \mathcal{D} .

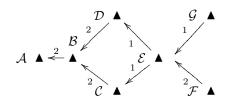


Figure 6: $[\{\mathcal{A}, \mathcal{D}, \mathcal{F}\}, \{\gg, \approx\}]$ top-admissible

As some arguments are defended in several ways with different strengths, it may be possible to *choose*, for a given argument, the best set of defenders. However, in some scenarios the best defense is not necessarily the strongest one. The following definition captures a notion of simple defense upgrade. This upgrade is specifically applied to *direct defenders* of a single argument in an admissible scenario. A *direct defender* of an argument \mathcal{A} is an attacker of an attacker of \mathcal{A} . An *indirect defender* is defending a direct or indirect defender of \mathcal{A} .

Definition 12 (Upgraded defense) Let $\langle Args, Atts, R \rangle$ be an AFV, $S_1, S_2 \subseteq Args$ and $P \subseteq \{\gg, \ll, \approx, ?\}$. Let $p_1 = [S, P]$ be an admissible scenario and let \mathcal{A} be an argument in S such that $p_2 = [S_2, P]$ is a stronger defense of \mathcal{A} . The scenario obtained by upgrading the defense of \mathcal{A} by p_2 in p_1 is $p\uparrow_{\mathcal{A}}^{p_2} = [(S - def_{p_1}(\mathcal{A})) \cup def_{p_2}(\mathcal{A}), P]$ where $def_{p_i}(\mathcal{A})$ is the set of direct defenders of \mathcal{A} in $p_i, 1 \le i \le 2$.

The upgrade of defense of an argument A in a set S is simply the removal of its defenders in S and a subsequent addition of other defenders. Note that the structure of S is being disrupted: probably a part of the defense will remain the same, but others defenders were replaced. However, the result of this replacement may still be an admissible set.

Example 8 Consider the AFV of Figure 6. The scenario $p_1 = [\{\mathcal{A}, \mathcal{C}, \mathcal{F}\}, \{\gg, \approx\}]$ is top-admissible and no upgrade defense is possible. The scenario $p_3 = [\{\mathcal{A}, \mathcal{C}, \mathcal{D}, \mathcal{G}\}, \{\gg, \approx\}]$ is not top-admissible. Argument \mathcal{C} is acceptable with respect to $q = [\{\mathcal{F}\}, \{\gg, \approx\}]$ which is a stronger defense than that provided by p_3 . The scenario $p\uparrow_{\mathcal{C}}^{\uparrow}$ is admissible.

If the upgrade leads to an admissible set, then perhaps this upgrade favors some arguments with stronger defenses. In Example 8, the upgrade $p\uparrow_{\mathcal{C}}^{q}$ also provides a stronger defense for \mathcal{D} . This leads to the notion of an equilibrated-admissible scenario.

Definition 13 (Equilibrated-admissibility) Let

 $\langle Args, Atts, R \rangle$ be an AFV, $S \subseteq Args$ and $P \subseteq \{\gg, \ll, \approx, ?\}$. A pair [S, P] is said to be an equilibrated-admissible scenario if,

• [S, P] is an admissible scenario and

 For every argument A ∈ S, any upgrade of A's defense will weakens the defense of some of the rest of the arguments.

An admissible scenario can be viewed as a kind of contract among the participants. Every argument is defended by arguments in the set. An argument \mathcal{A} in an equilibrated scenario p cannot change its defenders $def_p(\mathcal{A})$ by stronger ones and provide, by that change, a stronger defense for some of the arguments in $S - def_p(\mathcal{A})$. Thus, \mathcal{A} is somehow tied up with arguments in $S - \{\mathcal{A}\}$, as its defense cannot be freely changed without harming other arguments. Clearly some arguments are dropped out, *i.e.* the old defenders, but the new defenders leave other arguments with lower defenses or, at worst, whithout defense at all.

Example 9 Consider the AFV of Figure 7 where $\rightarrow_2 \gg \rightarrow_1$ The pairs $p_1 = [\{\mathcal{A}, \mathcal{C}, \mathcal{F}\}, \{\gg, \approx\}]$ and $p_2 = [\{\mathcal{A}, \mathcal{D}, \mathcal{F}\}, \{\gg, \approx\}]$ are two admissible scenarios. Note that p_2 is a stronger collective defense for \mathcal{A} than p_1 , as \mathcal{C} dominates \mathcal{D} when defending \mathcal{A} . In a similar way, p_1 is a stronger collective defense for \mathcal{F} than p_2 , as \mathcal{D} dominates \mathcal{C} when defending \mathcal{F} . Therefore, p_1 and p_2 are not top-admissible scenarios as they are not providing the strongest defense for one of its arguments. Even more, no argument in such scenarios can "upgrade" its defense whitout affecting the defense of other arguments. For example, \mathcal{A} cannot prefer \mathcal{D} as a defeater without lowering the defense of \mathcal{F} (which is not a defender of \mathcal{A}).

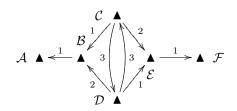


Figure 7: Several defenses for A.

There is an inner equilibrium in the admissible scenarios p_1 and p_2 of Example 9. All defenses are as good as possible given the set of arguments in every scenario. An upgrade of defense of any participant will weakens the defense of other members. This can be viewed as a rational position of a dialoguing agent which examines its own knowledge base and does not choose arguments with the strongest defense in order to maintain a good defense in other arguments.

Top admissibility and equilibrated admissibility are dealing with inner strength of admissible extensions. The first one requires a strongest defense in the framework, while the second one requires a strongest defense in a given scenario shared with other arguments.

Proposition 2 Any top-admissible scenario p is equilibrated

Proof: If *p* is a top-admissible scenario, then every defense is as strong as it is possible in the whole framework. Then no defense upgrade can be applied and thus *p* is an

equilibrated admissible scenario. \Box

An equilibrated scenario is not necessarily topadmissible, as shown in Example 9. This situation arises when two or more arguments are sharing defenders in the same scenario.

Proposition 3 Let Φ be an AFV with p = [S, P] an equilibrated admissible scenario which is not top-admissible. Then there are two arguments $\mathcal{A}, \mathcal{B} \in S$ such that $def_p(\mathcal{A}) \cap$ $def_p(\mathcal{B}) \neq \emptyset$,

Proof: If p is not top-admissible then at least one argument, say A, is not benefited by its strongest defense. However, the available defense of A in p cannot be upgraded because p is equilibrated. This upgrade would affect other argument B, either by weakening its defense or by removal of defenders. Both cases are caused by sharing at least a common defender in the scenario. Then $def_p(A) \cap def_p(B) \neq \emptyset$, \Box

In Example 9, arguments A and F are sharing arguments C and D as defenders, but these defenders are considered of different quality. Argument C, for example, is a normal defender of A and a strong defender of B.

As admissible sets are good candidates for argument acceptance, it is interesting to define a form of expansion of a given set. In the following section we introduce an expansion method which takes defense conditions into account.

Expanding admissible scenarios

Defense conditions are specially interesting in dialectical processes. Deciding on the acceptance of an argument requires the analysis of its direct and indirect attackers and defenders. The bigger the set of arguments, the harder the process of acceptance. Defense conditions are naturally bounding this analysis, as shown in the following proposition.

Proposition 4 Let $\Phi = \langle Args, Atts, R \rangle$ be an AFV where |Atts| = n. Let $p = [S, \{\gg\}]$ be an admissible scenario. Then no argument in S has more than n defenders in a sequence of attacks

Proof: In p every argument is a strong defender. A defender in S can eventually be attacked with the same strength than the attack it provides as defense, but it must be defended with a stronger attack. Thus, a sequence of attacks involving defenses of arguments in S has the form $[\mathcal{D}_1, \mathcal{A}_1, \mathcal{D}_2, \mathcal{A}_3, \mathcal{D}_2, \dots, \mathcal{D}_k]$ where every $\mathcal{D}_i \in S$. Every defensive attack provided by \mathcal{D}_i is necessarily stronger than the defensive attack provided by \mathcal{D}_{i-1} . Having n attacks, this sequence cannot include more than n defenders.

An admissible set $p = [S, \{\gg\}]$ includes only strongly defended arguments. An admissible scenario with defense condition P can be safely expanded into another admissible scenario using a different defense condition Q. This is achieved by the identification of acceptable arguments according to Q

Definition 14 Let p = [S, P] be an attack scenario, and let Q be a set of defense conditions. The expansion of p according to Q is defined as $p \oplus Q = [S' \cup S, P \cup Q]$, where

$$S' = \{ \mathcal{A} \in Args : \mathcal{A} \text{ is acceptable with respect to } [S, Q] \}$$

The admissible scenario $p \oplus Q$ is constructed over p by the inclusion of acceptable arguments under defense condition Q. As it is based on acceptability, the expansion operator preserves admissibility, as stated in the following proposition.

Proposition 5 Let p = [S, P] be an admissible scenario, Q a set of defense conditions. The set $p \oplus Q = [S' \cup S, P \cup Q]$ is also an admissible scenario.

Proof: Suppose $[S' \cup S, P \cup Q]$ is not an admissible scenario. Then either exists an argument in $S' \cup S$ which is not acceptable with respect to $[S' \cup S, P \cup Q]$ or $S' \cup S$ is not conflict-free.

- Suppose there exists $A \in S' \cup S$ is not acceptable with respect to $[S' \cup S, P \cup Q]$. Clearly, $A \notin S$ as p is admissible. Then $A \in S'$ and it is acceptable with respect to [S, Q]. As new defense conditions cannot change this fact, A is acceptable with respect to $[S, P \cup Q]$. As a defense of A is included in S, then it is also included in $S' \cup S$. But then A is acceptable with respect to $[S' \cup S, P \cup Q]$ which is a contradiction.
- Suppose $S' \cup S$ is not conflict-free. Then there are two arguments \mathcal{X} and \mathcal{Y} in $S' \cup S$ such that \mathcal{X} attacks \mathcal{Y} . As p is admissible, clearly both arguments cannot belong to S. (a) suppose \mathcal{Y} belongs to S'. Then \mathcal{X} must be attacked by an argument in S because \mathcal{Y} is acceptable with respect to [S, Q]. Then $\mathcal{X} \notin S'$. However, also $\mathcal{X} \notin S$ as it is not defended by p, which is a contradiction. (b) Suppose $\mathcal{X} \in S'$. Then $\mathcal{Y} \notin S'$ because the attack from \mathcal{X} cannot be defended by [S, Q]. Then $\mathcal{Y} \in S$ and being p an admissible scenario, S includes an attacker of \mathcal{X} . But then \mathcal{X} is not acceptable with respect to p and therefore $\mathcal{X} \notin S$, which is a contradiction.

The expansion operator \oplus adds acceptable arguments to an already admissible set, leading to an admissible scenario. As this addition is based on acceptability on a given set, the order of defense conditions subsequently applied for expansions is determinant on the final scenario. In other words, for an attack scenario p = [S, P] and two sets of defense conditions Q and T, probably $(p \oplus Q) \oplus T \neq (p \oplus T) \oplus Q$.

Example 10 Consider the AFV of Figure 8 where $\rightarrow_2 \gg \rightarrow_1$ and \rightarrow_2 ? \rightarrow_3 The scenario $p_1 = [\{\mathcal{A}, \mathcal{C}\}, \{\gg\}]$ is admissible. Expanding by condition $\{\approx\}$ leads to

$$p2 = p_1 \oplus \{\approx\} = [\{\mathcal{A}, \mathcal{C}, \mathcal{D}\}, \{\gg, \approx\}].$$

Expanding p_2 by $\{?\}$ leads to

 $p_3 = (p_1 \oplus \{\approx\}) \oplus \{?\} = [\{\mathcal{A}, \mathcal{C}, \mathcal{D}, \mathcal{F}\}, \{\gg, \approx, ?\}].$ Note that $(p_1 \oplus \{?\}) \oplus \{\approx\} = [\{\mathcal{A}, \mathcal{C}, \mathcal{D}\}, \{\gg, \approx, ?, \}]$

Although simple, this form of expansion allows the construction of a bigger set of admissible scenarios. The repeated application of the operator \oplus will add arguments according to the specified defense condition. Eventually, when no arguments are acceptable with respect to an admissible scenario p = [S, P] under condition P, then $p \oplus P = p$.

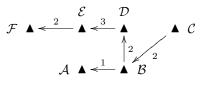


Figure 8: Example 10

Conclusions and future work

In this work we defined an argumentation framework equipped with a set of abstract attack relations of varied strength. This improvement of the Dung's classical framework is a pathway to new elaborations about arguments and preferences, specially the definition of new semantics extensions. In order to achieve this, the notion of defense condition was introduced as a set of requirements in the relative difference of strength between offensive and defensive attacks. Under this defense condition an admissible structure was defined. An admissible scenario is formed by a set of arguments S fulfilling a set of defense conditions P. These conditions are basic requirements on the relative difference of strength between defensive and offensive attacks. A top-admissible scenario is an admissible scenario which includes the strongest defense for every participant An equilibrated scenario is an admissible scenario in which no argument can strengthen its own defense without lowering the defense of other remaining arguments in the same scenario. A simple form of expansion of admissible scenarios taking new defense conditions into account was finally introduced and some properties about these notions were discussed.

Future work has several directions. It is interesting to formalize new notions of defense upgrade. In this work only direct defenders are replaced by stronger ones. An upgrade to a stronger defense including indirect defenders is motivating by its complexity, as several levels of defense convenience must be considered. The framework of varied-strength attacks may be combined with other abstract proposals where the preference is applied to arguments as in (Bench-Capon 2002; García & Simari 2004; Amgoud & Perrussel 2000) to mention a few. This combination is an interesting contribution to the study of the use of preferences in argumentation as ordered attacks were not previously used in this abstract level. We are also interested in the formalization of equilibrated scenarios in dialogue contexts, where rational agent exchange arguments for and against some proposition. The search of well defended arguments is an essential heuristic in this context, and the modelization of varied-strength attacks is suitable to be applied to inter-agent dialogues.

References

Amgoud, L., and Cayrol, C. 1998. On the acceptability of arguments in preference-based argumentation. In *14th Conference on Uncertainty in Artificial Intelligence* (UAI'98), 1–7. Morgan Kaufmann.

Amgoud, L., and Cayrol, C. 2002. A reasoning model based on the production of acceptable arguments. In An-

nals of Mathematics and Artificial Intelligence, volume 34, 1-3. 197–215.

Amgoud, L., and Perrussel, L. 2000. Arguments and Contextual Preferences. In *Computational Dialectics-Ecai* workshop (CD2000), Berlin.

Bench-Capon, T. 2002. Value-based argumentation frameworks. In *Proc. of Nonmonotonic Reasoning*, 444–453.

Dung, P. M. 1995. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. *Artificial Intelligence* 77(2):321–358.

Elvang-Goransson, M., and Hunter, A. 1995. Argumentative logics: Reasoning with classically inconsistent information. *Data Knowledge Engineering* 16(2):125–145.

García, A. J., and Simari, G. R. 2004. Defeasible logic programming: An argumentative approach. *Theory and Practice of Logic Programming* 4(1-2):95–138.

Martínez, D.; García, A.; and Simari, G. 2006a. On acceptability in abstract argumentation frameworks with an extended defeat relation. In *Proc. of I Intl. Conf. on Computational Models of Arguments, COMMA 2006*, 273–278.

Martínez, D.; García, A.; and Simari, G. 2006b. Progressive defeat paths in abstract argumentation frameworks. In *Proceedings of the 19th Conf. of the Canadian Society for Computational Studies of Intelligence 2006*, 242–253.

Tohme, F.; Bodanza, G.; and Simari, G. 2008. Aggregation of attack relations: A social-choice theoretical analysis of defeasibility criteria. In *Foundations of Information and Knowledge Systems (FoIKS). February 11-15, 2008, Pisa, Italy,*.

Vreeswijk, G. A. W. 1997. Abstract argumentation systems. *Artificial Intelligence* 90(1–2):225–279.