An Argument-Based Decision Support System for Assessing Natural Language Usage on the Basis of the Web Corpus

Carlos Iván Chesñevar¹,* Mariona Sabaté-Carrové,²,†
Ana Gabriela Maguitman³,‡
¹Departament of Computer Science, Universitat de Lleida, C/Jaume II, 69—25001 Lleida, Spain
²Departament of English Studies and Linguistics, Universitat de Lleida, Pl. Victor Siurana, 1—25003 Lleida, Spain
³School of Informatics, Indiana University, Bloomington, IN 47406, USA

The last decade bears witness to an exponential growth in the use of the World Wide Web. As a result, a huge number of documents are accessible online through search engines, whose pattern-matching capabilities have turned out to be useful for mining the Web space as a particular kind of linguistic corpus, commonly known as the Web Corpus. This article presents a novel, argumentative approach to providing proactive assistance for language usage assessment on the basis of usage indices, which are good indicators of the suitability of an expression on the basis of the Web Corpus. The user preferences consist of a number of (possibly defeasible) rules and facts that encode different aspects of adequate language usage, defining the acceptability of different terms on the basis of the computed usage indices. A defeasible argumentation system determines if a given expression is ultimately acceptable by analyzing a defeasible logic program that encodes the user’s preferences. © 2006 Wiley Periodicals, Inc.

1. INTRODUCTION AND MOTIVATIONS

The last decade has witnessed an exponential growth of the World Wide Web, resulting in a huge number of documents stored as Web documents. A significant portion of such documents are accessible through search engines, whose pattern-matching capabilities have turned out to be useful for many nonnative speakers of a language who use Google as a reference for examples of language usage and mine the Web space as a particular kind of linguistic corpus, commonly known as Web Corpus.¹⁻⁵

*Author to whom all correspondence should be addressed: e-mail: cic@eps.udl.es.
†e-mail: msabate@dal.udl.es.
‡e-mail: anmaguit@cs.indiana.edu.

In linguistics, language usage is a vital aspect of language, but, unfortunately, traditional dictionaries do not provide much usage information. Language usage patterns are studied and measured by means of surveys in which relevant features are distinguished (e.g., age of the speakers, geographical location, education level, etc.). For such surveys to be reliable sources of information for statistical inference, the size of the samples considered plays a crucial role. Based on this same principle applied to the Web corpus, search engines can help evaluate the usage of language patterns very efficiently. This fact has been exploited to analyze frequencies of natural language expressions in different contexts by means of automated systems, such as concordancers or concordance programs. Such programs have become particularly powerful with the evolution of the Web and provide useful assistance especially for those who have English as a second language (ESL) or English as a foreign language (EFL) or simply for those who need to check the appropriateness of language usage for different language situations and text types.

Most concordancers (e.g., WebCorp and KwicFinder) are based on the presentation of matches of a given pattern obtained by the user within specified constraints (e.g., certain Web domains). Most corpora concordancers supply such a large amount of unclassified information that making use of them often becomes counterproductive in terms of time constrictions. For the linguist, relative and absolute frequencies of distinguished patterns can provide valuable information for assessing language usage. Apart from some online statistical corpora (as, e.g., titania.cobuild.collins.co.uk), which are still rather limited in scope, such information is commonly not available from concordancers, as they offer mostly a “projection” of the Web space according to specifications given by the end user.

Absolute frequencies of natural language expressions can be the source of valuable information only after the end user performs some measured and complex analysis, in which several context-dependent features are taken into account. Consider, for example, a journalist who is uncertain about using a particular term T for a news report written in Spanish, intended for a Spanish-speaking audience in Spain. The fact that the term T has a high absolute frequency in Web documents (e.g., by performing a Google search query) does not imply per se that T is acceptable, as it might have a dialectal use or be a buzz word, that is, a vogue word in one particular language community, for example, Argentina, and consequently the term T should not be used in the news report. However, after analyzing several newspapers, our journalist finds out that many Spanish-speaking media in Spain are also making use of this particular term T, so that it can no longer be seen as a dialectal variation from Argentina, but rather as a word with a well-defined meaning for Spanish speakers in Spain. This last evidence—so thinks our journalist—leads him to believe that the term T can be used in the news report. In epistemological terms, the above analysis is said to be defeasible, in that a reason to adopt a given language pattern as valid may be defeated in the light of additional information.

This article presents a novel approach to studying language usage patterns based on usage indices, which prove to be reliable indicators of the suitability of a term using the Web corpus at hand. Such indices can be easily computed on the basis of information extracted from the Web by means of advanced search...
facilities provided by most search engines (e.g., Google). These facilities allow us to restrict the search to certain domains, to search for phrases, or to specify the language for the results. Associated with a set of results, search engines typically supply an estimation of the number of hits for the user query. This information is exploited in our framework to compute indices reflecting the popularity of certain expressions in a particular language or domain. Usage indices provide a means of characterizing defeasible reasons for assessing language usage, allowing us to conclude whether a given term T is suitable (or not) in a particular context. This defeasible knowledge will be formalized in terms of Defeasible Logic Programming (DeLP), a logic programming formalism for defeasible argumentation. On the basis of this formalization, we define ARGUE TERM, an argument-based computational framework that aims to provide proactive assistance for language usage assessment.

The rest of the article is structured as follows. First, Section 2 summarizes the fundamentals of defeasible argumentation theory, an approach for commonsense reasoning that has gained wide acceptability in the Artificial Intelligence community in the past years. We present the central definitions of DeLP along with a worked example, as this is the particular argumentation framework used in our approach. In Section 3 we introduce the concept of usage indices, which provide a way of analyzing different relative and absolute frequencies of distinguished string patterns on the Web. We also characterize three major groups of linguistic situations in which usage indices can be applied, providing a number of examples that illustrate such situations. Section 4 presents ARGUE TERM, an argumentative framework for providing assessment on language usage based on usage indices, which are encoded as part of a DeLP program capturing defeasible preferences. We will also present a worked example that illustrates the behavior of the proposed framework. Finally, Sections 5 and 6 discuss related work and present the main conclusions obtained, respectively.

2. DEFEASIBLE ARGUMENTATION: FORMALIZING KNOWLEDGE AND COMMONSENSE REASONING ABOUT LANGUAGE USAGE

In this section, we first summarize some of the main concepts associated with defeasible argumentation, and then we present in more detail some characteristics of a particular argument-based formalism called defeasible logic programming (DeLP). Finally we discuss how DeLP can be extended to incorporate additional features to model language usage assessment on the basis of the Web Corpus.

2.1. Background

Artificial Intelligence (AI) has long dealt with the challenge of modeling commonsense reasoning, which almost always occurs in the face of incomplete and potentially inconsistent information. A logical model of commonsense reasoning demands the formalization of principles and criteria that characterize valid patterns of inference. In this respect, classical logic has proven to be inadequate,
because it behaves monotonically and cannot deal with inconsistencies at the object level. When a rule supporting a conclusion may be defeated by new information, it is said that such reasoning is defeasible. When we chain defeasible reasons or rules to reach a conclusion, we have arguments instead of proofs. Arguments may compete, rebutting each other, so a process of argumentation is a natural result of the search for arguments. Adjudication of competing arguments must be performed, comparing arguments to determine what beliefs are ultimately accepted as warranted or justified. Preference among conflicting arguments is defined in terms of a preference criterion that establishes a partial order \(\leq \) among possible arguments; thus, for two arguments \(A \) and \(B \) in conflict, it may be the case that \(A \) is strictly preferred over \(B \) (\(A > B \)), that \(A \) and \(B \) are equally preferable (\(A \geq B \)), or that \(A \) and \(B \) are not comparable with each other. In the above setting, because we arrive at conclusions by building defeasible arguments, and because mathematical argumentation is usually called argumentation, we sometimes call this kind of reasoning defeasible argumentation.

For the sake of example, let us consider the well-known example of nonmonotonic reasoning in AI about the flying abilities of birds, recast in argumentative terms. Consider the following sentences:

1. Birds usually fly.
2. Penguins usually do not fly.
3. Penguins are birds.

The first two sentences correspond to defeasible rules (rules that are subject to possible exceptions). The third sentence is a strict rule, where no exceptions are possible. Given now the fact that Tweety is a penguin, two different arguments can be constructed:

In this particular situation, two arguments arise that cannot be accepted simultaneously (as they reach contradictory conclusions). Note that argument B seems rationally preferable over argument A, as it is based on more specific information. As a matter of fact, specificity is commonly adopted as a syntax-based criterion among conflicting arguments, preferring those arguments that are more informed.

\[^a \text{Let } \mathcal{L} \text{ be a logical language and let } S, S' \text{ be arbitrary sets well-formed formulas in } \mathcal{L}, \text{ such that } S \subseteq S'. \text{ An inference relationship } \vdash \text{ is monotonic whenever } S \vdash f \text{ implies that } S' \vdash f, \text{ for any arbitrary well-formed formula } f \text{ in } \mathcal{L}. \text{ Classical logic is monotonic (new information cannot invalidate already existing theorems), whereas commonsense reasoning is not. For a discussion see Ref. 12.} \]
or more direct.14,15 In this particular case, if we adopt specificity as a preference criterion, argument B is justified, whereas A is not (as it is defeated by B). The above situation can easily become much more complex, as an argument may be defeated by a second argument, which in turn can be defeated by a third argument, reinstating the first one.

To illustrate a more complex situation involving argumentative reasoning, we will consider in the subsequent analysis a knowledge base K_{english} that contains incomplete and potentially inconsistent information about English language usage. We will formalize the contents of K_{english} in terms of the following defeasible and strict rules:

1. English words are usually acceptable in English texts.
2. Archaisms are usually not acceptable in English texts.
3. Words intended for biblical texts are not usually considered archaisms.
4. Old English words are usually archaisms.
5. Biblical texts in English are English texts.
6. Medical texts in English are English texts.
7. Old English words are English words.

Note that rules 1, 2, 3, and 4 are defeasible, whereas rules 5, 6, and 7 are strict. Let us assume that we are concerned about assessing the correctness of an English translation of a biblical text. More concretely, we are given an old English word “thou,” which appears in a biblical text t_{bib}. Different arguments leading to conflicting conclusions could be obtained from the above knowledge base K_{english}, namely:

1. Argument A (based on strict rules 5, 7, defeasible rule 1): “thou” is an old English word. The text t_{bib} is a biblical text. Biblical texts in English are English texts. English words are usually acceptable in English texts. Therefore “thou” is acceptable in text t_{bib}.
2. Argument B (based on strict rule 5, defeasible rules 2, 4): “thou” is an archaism. Archaisms are usually not acceptable in English texts. The text t_{bib} is a biblical text. Biblical texts in English are English texts. Therefore “thou” is not acceptable in text t_{bib}.
3. Argument C (based on strict rule 5, defeasible rule 3): “thou” is not an archaism, since old English words intended for biblical texts are not usually considered archaisms, and “thou” appears in a biblical text t_{bib}.

Assuming that we adopt specificity as a preference criterion, as done before, it can be established that argument B is strictly more specific than argument A, and argument C is strictly more specific than argument B. To determine the epistemic status of, for example, argument A, all possible defeaters for A have to be analyzed. As defeaters are arguments, they may, in their turn, be defeated by other arguments. This situation prompts for a recursive analysis, in which to determine whether our initial argument A is ultimately acceptable, its defeaters, the defeaters for these defeaters, and so on, should be taken into account.

The interplay among the three arguments above can be summarized as follows: There is an argument A supporting the conclusion that “thou” is acceptable. On the basis of the knowledge base K_{english}, this argument can only be defeated by a second, more specific argument B, supporting the conclusion that “thou” is not acceptable, as it is an archaism. At this intermediate point, argument A is defeated and not justified. But there is an argument C that defeats argument B, stating that
“thou” is not an archaism in the particular context of biblical texts. In this sequence of arguments, argument C reinstates indirectly argument A, defeating argument B, and making argument A ultimately justified.

Argument-based approaches to modeling commonsense reasoning drove the development of new logical languages, resulting in new formalisms that extended classical logic for performing nonmonotonic reasoning. In this context, defeasible argumentation evolved in the past decade as a successful computational approach to formalize commonsense reasoning. In the past few years particular attention has been given to extensions of logic programming, which has turned out to be a suitable language for formalizing knowledge representation and argumentative inference. In the next subsection we will introduce defeasible logic programming, a defeasible argumentation formalism based on logic programming.

2.2. Defeasible Logic Programming: Fundamentals

Defeasible logic programming is a defeasible argumentation formalism based on logic programming. A defeasible logic program is a set $K = (\Pi, \Delta)$ of Horn-like clauses, where Π and Δ stand for sets of strict and defeasible knowledge, respectively. The set Π of strict knowledge involves strict rules of the form $p \leftarrow q_1, \ldots, q_k$ and facts (strict rules with empty body), and it is assumed to be noncontradictory. The set Δ of defeasible knowledge involves defeasible rules of the form $p \dashv\vdash q_1, \ldots, q_k$, which stands for “$q_1, \ldots, q_k$ provide a tentative reason to believe p.” In DeLP contradiction stands for deriving two complementary literals with respect to strict (p and $\neg p$) or default negation (p and $\not p$). The underlying logical language is that of extended logic programming, enriched with a special symbol “$\dashv\vdash$” to denote defeasible rules. Both default and classical negation are allowed (denoted \not and \neg, respectively). Syntactically, the symbol “$\dashv\vdash$” is all that distinguishes a defeasible rule $p \dashv\vdash q_1, \ldots, q_k$ from a strict (nondefeasible) rule $p \leftarrow q_1, \ldots, q_k$. DeLP rules are thus Horn-like clauses to be thought of as inference rules rather than implications in the object language.

Example 1. Consider the commonsense knowledge base $K_{english}$ for modeling defeasible criteria about usage of English language presented before. Such a knowledge base could be modeled as a DeLP program $P_{english} = (\Pi, \Delta)$ as follows:

\[
\begin{align*}
\text{englishText(Text)} & \leftarrow \text{biblicalText(Text)} \\
\text{englishText(Text)} & \leftarrow \text{medicalText(Text)} \\
\text{englishWord(Word)} & \leftarrow \text{oldEnglishWord(Word)} \\
\Pi = \text{englishWord(body)} & \\
\text{oldEnglishWord(thou)} & \\
\text{biblicalText(t_bib)} & \\
\text{medicalText(t_medical)} & \\
\end{align*}
\]
Note that the strict rules in Π correspond to the rules 5, 6, and 7 in the knowledge base K_{english}, whereas the defeasible rules in Δ correspond to the rules 1, 2, 3, and 4. To make our example richer, we have also included some additional information concerning medical texts. Facts in Π tell us that “thou” is an old English word, “body” is an English word, and t_{bib} and t_{medical} are biblical and medical texts in English, respectively.

Deriving literals in DeLP results in the construction of arguments. An argument \mathcal{A} is a (possibly empty) set of ground defeasible rules that together with the set Π provide a logical proof for a given literal h, satisfying the additional requirements of noncontradiction and minimality.

Definition 1. Given a DeLP program \mathcal{P}, an argument \mathcal{A} for a query q, denoted $\langle \mathcal{A}, q \rangle$, is a subset of ground instances of defeasible rules in \mathcal{P} and a (possibly empty) set of default ground literals “not L,” such that

1. There exists a defeasible derivation for q from $\Pi \cup \mathcal{A}$.
2. $\Pi \cup \mathcal{A}$ is noncontradictory (i.e., $\Pi \cup \mathcal{A}$ does not entail two complementary literals p and $\neg p$).
3. \mathcal{A} is minimal with respect to set inclusion.

An argument $\langle \mathcal{A}_1, Q_1 \rangle$ is a subargument of another argument $\langle \mathcal{A}_2, Q_2 \rangle$ if $\mathcal{A}_1 \subseteq \mathcal{A}_2$. Given a DeLP program \mathcal{P}, $\text{Args}(\mathcal{P})$ denotes the set of all possible arguments that can be derived from \mathcal{P}.

The notion of defeasible derivation corresponds to the usual query-driven SLD derivation used in logic programming, performed by backward chaining on both strict and defeasible rules; in this context a negated literal $\neg p$ is treated just as a new predicate name no_p. Minimality imposes a kind of “Occam’s razor principle”18 on arguments: Any superset \mathcal{A}' of \mathcal{A} can be proven to be “weaker” than \mathcal{A} itself, as the former relies on more defeasible information. The noncontradiction requirement forbids the use of (ground instances of) defeasible rules in an argument \mathcal{A} whenever $\Pi \cup \mathcal{A}$ logically entails two complementary literals. It must be noted that given an $\langle \mathcal{A}, q \rangle$, the set \mathcal{A} only accounts for the defeasible rules required for in the derivation of the conclusion q.

Example 2. Consider the DeLP program P_{english} from example 1. Then

$$\mathcal{A}_1 = \{{\text{acceptable}}(\text{thou}, t_{\text{bib}}) \rightarrow \text{englishWord(\text{thou})}, \text{englishText}(t_{\text{bib}})\}$$
is an argument for $\text{acceptable}(\text{thou}, \text{tib})$. Note that $\text{acceptable}(\text{thou}, \text{tib})$ can be derived by backward chaining from $\Pi \cup \mathcal{A}_1$, \mathcal{A}_1 is noncontradictory (no contradictory literals p and $\neg p$ can be derived from $\Pi \cup \mathcal{A}_1$), and \mathcal{A}_1 is minimal (because $\text{acceptable}(\text{thou}, \text{tib})$ cannot be derived from Π). We have also that

$$\mathcal{A}_2 = \{\neg \text{acceptable}(\text{thou}, \text{tib}) \rightsquigarrow \text{englishWord}(\text{thou}), \text{englishText}(\text{tib}), \text{archaism}(\text{thou}, \text{tib})\};$$

$$\text{archaism}(\text{thou}, \text{text}) \rightsquigarrow \text{oldEnglishWord}(\text{thou})$$

is an argument for $\neg \text{acceptable}(\text{thou}, \text{tib})$. Note that for the sake of clarity we use semicolons to separate elements in an argument, for example, $\mathcal{A} = \{e_1; e_2; \ldots; e_k\}$. In the latter case, for the argument \mathcal{A}_2 with conclusion $\neg \text{acceptable}(\text{thou}, \text{tib})$, a subargument $\langle \mathcal{A}_2', \text{archaism}(\text{thou}, \text{tib}) \rangle$ can be distinguished, with

$$\mathcal{A}_2' = \{\text{archaism}(\text{thou}, \text{tib}) \rightsquigarrow \text{oldEnglishWord}(\text{thou})\}$$

Definition 2. An argument $\langle \mathcal{A}_1, q_1 \rangle$ is a counterargument for an argument $\langle \mathcal{A}_2, q_2 \rangle$ iff

1. There is a subargument $\langle \mathcal{A}, q \rangle$ of $\langle \mathcal{A}_2, q_2 \rangle$ such that the set $\Pi \cup \{q_1, q\}$ is contradictory.
2. A literal not q_1 is present in some rule in \mathcal{A}_1.

Example 3. Consider the DeLP program from example 1 and the two arguments given in example 2 (viz., the argument $\langle \mathcal{A}_1, \text{acceptable}(\text{thou}, \text{tib}) \rangle$ and the argument $\langle \mathcal{A}_2, \neg \text{acceptable}(\text{thou}, \text{tib}) \rangle$). In this case, $\langle \mathcal{A}_2, \neg \text{acceptable}(\text{thou}, \text{tib}) \rangle$ counterargues $\langle \mathcal{A}_1, \text{acceptable}(\text{thou}, \text{tib}) \rangle$, because the set

$$\Pi \cup \{\neg \text{acceptable}(\text{thou}, \text{tib}), \text{acceptable}(\text{thou}, \text{tib})\}$$

is contradictory.

Given two conflicting arguments associated with a given DeLP program \mathcal{P}, a preference criterion is required in order to decide which of them prevails over the other or if both are equally acceptable. As in most argumentation frameworks, a partial order $\preceq \subseteq \text{Args}(\mathcal{P}) \times \text{Args}(\mathcal{P})$ is used in DeLP, which is induced by the specificity relationship among arguments, as defined in Ref. 18. A discussion on computing specificity efficiently in the context of DeLP can be found in Ref. 19. It must be remarked that other alternative partial orders could also be used as preference criterion among arguments.

Definition 3. An argument $\langle \mathcal{A}_1, q_1 \rangle$ is a defeater for an argument $\langle \mathcal{A}_2, q_2 \rangle$ if $\langle \mathcal{A}_1, q_1 \rangle$ counterargues $\langle \mathcal{A}_2, q_2 \rangle$, and $\langle \mathcal{A}_1, q_1 \rangle$ is preferred over $\langle \mathcal{A}_2, q_2 \rangle$ wrt \preceq. For cases 1 and 2 above, we distinguish between proper and blocking defeaters as follows:
In case 1, the argument \(\langle A_1, q_1 \rangle \) will be called a proper defeater for argument \(\langle A_2, q_2 \rangle \) iff \(\langle A_1, q_1 \rangle \) is strictly preferred over \(\langle A, q \rangle \) wrt \(\preceq \).

In case 1, if \(\langle A_1, q_1 \rangle \) and \(\langle A, q \rangle \) are unrelated to each other, or in case 2, \(\langle A_1, q_1 \rangle \) will be called a blocking defeater for \(\langle A_2, q_2 \rangle \).

Example 4. Consider the DeLP program from example 1 and the arguments \(A_1 \) for concluding \(\text{acceptable}(\text{thou}, t_{\text{bib}}) \) and \(A_2 \) for concluding \(\neg \text{acceptable}(\text{thou}, t_{\text{bib}}) \) in example 3. In this case we have that the argument \(\langle A_2, \neg \text{acceptable}(\text{thou}, t_{\text{bib}}) \rangle \) is a proper defeater for \(\langle A_1, \text{acceptable}(\text{thou}, t_{\text{bib}}) \rangle \), as it is based on more specific information: argument \(A_2 \) relies on the defeasible rule

\[
\neg \text{acceptable}(\text{thou}, t_{\text{bib}}) \leftarrow \text{englishWord}(\text{thou}), \text{englishText}(t_{\text{bib}}), \\
\text{archaism}(\text{thou}, t_{\text{bib}})
\]

which is more informed than the defeasible rule

\[
\text{acceptable}(\text{thou}, t_{\text{bib}}) \leftarrow \text{englishWord}(\text{thou}), \text{englishText}(t_{\text{bib}})
\]

used in \(A_1 \).

An argumentation line starting in an argument \(\langle A_0, Q_0 \rangle \) (denoted \(\lambda^{(A_0, Q_0)} \)) is a sequence \([\langle A_0, Q_0 \rangle, \langle A_1, Q_1 \rangle, \langle A_2, Q_2 \rangle, \ldots, \langle A_n, Q_n \rangle, \ldots] \) that can be thought of as an exhaustive exchange of arguments between two parties, a proponent (evenly indexed arguments) and an opponent (oddly indexed arguments). Each \(\langle A_i, Q_i \rangle \) is a defeater for the previous argument \(\langle A_{i-1}, Q_{i-1} \rangle \) in the sequence, \(i > 0 \). To avoid fallacious reasoning, dialectics imposes additional constraints on such an argument exchange to be considered rationally acceptable in a program \(\mathcal{P} \). These constraints involve disallowing repetition of arguments in argumentation lines (circular argumentation), requiring that the set of arguments belonging to proponent (respectively, opponent) be noncontradictory and enforcing the use of stronger arguments to defeat arguments acting as blocking defeaters. An argumentation line satisfying the above restrictions is called acceptable, and can be proven to be finite.\(^{10}\)

Example 5. Consider the DeLP program \(\mathcal{P} \) from example 1. As already discussed in the previous examples, different arguments can be derived from \(\mathcal{P} \). Argument \(A_1 \) for concluding \(\text{acceptable}(\text{thou}, t_{\text{bib}}) \) was shown to be defeated by argument \(A_2 \) for \(\neg \text{acceptable}(\text{thou}, t_{\text{bib}}) \), with

\[
A_1 = \{ \text{acceptable}(\text{thou}, t_{\text{bib}}) \leftarrow \text{englishWord}(\text{thou}), \text{englishText}(t_{\text{bib}}) \} \\
A_2 = \{ \neg\text{acceptable}(\text{thou}, t_{\text{bib}}) \leftarrow \text{englishWord}(\text{thou}), \\
\text{englishText}(t_{\text{bib}}), \\
\text{archaism}(\text{thou}, t_{\text{bib}}) \}; \\
\text{archaism}(\text{thou}, t_{\text{bib}}) \leftarrow \text{oldEnglishWord}(\text{thou}) \}
\]

\(^{b}\)For an in-depth treatment of dialectical constraints in DeLP the reader is referred to Ref. 10.
Note that the latter argument can, in its turn, be defeated by a third argument \(A_3 \) for concluding \(\neg \text{archaism} (\text{thou}, t_{bib}) \), with

\[
A_3 = \{ \neg \text{archaism} (\text{thou}, t_{bib}) \rightarrow \neg \text{oldEnglishWord} (\text{thou}), \text{biblicalText} (t_{bib}) \}
\]

which is a proper defeater for \(\langle A_2, \neg \text{acceptable} (\text{thou}, t_{bib}) \rangle \). Note that no defeater for \(\langle A_3, \neg \text{archaism} (\text{thou}, t_{bib}) \rangle \) can be obtained from \(P \). The sequence of arguments

\[
[\langle A_1, \text{acceptable} (\text{thou}, t_{bib}) \rangle, \langle A_2, \neg \text{acceptable} (\text{thou}, t_{bib}) \rangle, \\
\langle A_3, \neg \text{archaism} (\text{thou}, t_{bib}) \rangle]
\]

constitutes an argumentation line. Note that this can be thought of as an exchange of arguments or dialogue between two parties, Pro and Con, where Pro is defending the hypothesis that \(\text{thou} \) is acceptable, and Con is supporting the opposite stance. Pro advances argument \(A_1 \), which is defeated by Con with argument \(A_2 \). Then Pro rebuts \(A_2 \) by advancing a third argument \(A_3 \), which defeats \(A_2 \). No more arguments can be advanced in the dialogue. Note that Pro “wins” the dialogue, as defeating \(A_2 \) accounts for reinstating Pro’s first argument \(A_1 \).

Given a DeLP program \(P \) and an initial argument \(\langle A_0, Q_0 \rangle \), the set of all acceptable argumentation lines starting in \(\langle A_0, Q_0 \rangle \) accounts for a whole dialectical analysis for \(\langle A_0, Q_0 \rangle \) (i.e., all possible dialogues rooted in \(\langle A_0, Q_0 \rangle \)), formalized as a dialectical tree.

Definition 4. Let \(P \) be a DeLP program, and let \(\langle A_0, Q_0 \rangle \) be an argument in \(P \). A dialectical tree for \(\langle A_0, Q_0 \rangle \), denoted \(T_{\langle A_0, Q_0 \rangle} \), is a tree structure defined as follows:

1. The root node of \(T_{\langle A_0, Q_0 \rangle} \) is \(\langle A_0, Q_0 \rangle \).
2. \(\langle B', H' \rangle \) is an immediate child of \(\langle B, H \rangle \) if there exists an acceptable argumentation line \(\lambda^\langle A_i, Q_i \rangle = [\langle A_0, Q_0 \rangle, \langle A_1, Q_1 \rangle, \ldots, \langle A_n, Q_n \rangle] \) such that there are two elements \(\langle A_{i+1}, Q_{i+1} \rangle = \langle B', H' \rangle \) and \(\langle A_i, Q_i \rangle = \langle B, H \rangle \), for some \(i = 0 \ldots n - 1 \).

Example 6. Consider again the DeLP program \(P \) from example 1 and the argumentation line computed in example 5. Note that in the case of the argument \(A_1 \) for \(\text{acceptable} (\text{thou}, t_{bib}) \), this is the only possible argumentation line. Hence, the dialectical tree rooted in the argument \(\langle A_1, \text{acceptable} (\text{thou}, t_{bib}) \rangle \) has a unique branch, as shown in Figure 1 (left).

\[
\begin{align*}
\langle A_1, \text{acceptable} (\text{thou}, t_{bib}) \rangle & \quad \langle A_1, \text{acceptable} (\text{thou}, t_{bib}) \rangle \ (U) \\
\langle A_2, \neg \text{acceptable} (\text{thou}, t_{bib}) \rangle & \quad \langle A_2, \neg \text{acceptable} (\text{thou}, t_{bib}) \rangle \ (D) \\
\langle A_3, \neg \text{archaism} (\text{thou}, t_{bib}) \rangle & \quad \langle A_3, \neg \text{archaism} (\text{thou}, t_{bib}) \rangle \ (U)
\end{align*}
\]

Figure 1. Dialectical tree for \(\langle A_1, \text{acceptable} (\text{thou}, t_{bib}) \rangle \) (example 1) before applying the marking procedure (left side) and after (right side).
Nodes in a dialectical tree $T_{(A_0, Q_0)}$ can be marked as undefeated and defeated nodes (U-nodes and D-nodes, respectively). A dialectical tree will be marked as an AND-OR tree: all leaves in $T_{(A_0, Q_0)}$ will be marked U-nodes (as they have no defeaters), and every inner node is to be marked as D-node iff it has at least one U-node as a child and as U-node otherwise. An argument $\langle A_0, Q_0 \rangle$ is ultimately accepted as valid (or warranted) with respect to a DeLP program \mathcal{P} iff the root of its associated dialectical tree $T_{(A_0, Q_0)}$ is labeled as U-node.

Example 7. Consider the dialectical tree for $\langle A_1, \text{acceptable}(\text{thou}, \text{tbib}) \rangle$ shown in example 6. Figure 1 (right) shows the resulting dialectical tree after applying the marking procedure described before.

Given a DeLP program \mathcal{P}, solving a query q with respect to \mathcal{P} accounts for determining whether q is supported by a warranted argument. Different doxastic attitudes are distinguished when answering q according to the associated status of warrant, in particular:

1. Answer Yes: Believe q when there is a warranted argument for q that follows from \mathcal{P}.
2. Answer No: Believe $\neg q$ when there is a warranted argument for $\neg q$ that follows from \mathcal{P}.
3. Answer Undecided: Believe q is undecided whenever neither q nor $\neg q$ is supported by warranted arguments in \mathcal{P}.

It should be noted that the computation of warrant cannot lead to contradiction: If there exists a warranted argument $\langle A, h \rangle$ on the basis of a program \mathcal{P}, then there is no warranted argument $\langle B, \neg h \rangle$ based on \mathcal{P}.

Example 8. Consider the DeLP program from example 1. A sequence of possible queries associated with \mathcal{P} and the associated output according to DeLP semantics is shown below:

- Given the query $\text{acceptable}(\text{thou}, \text{tbib})$, the associated answer is Yes, as there is a warranted argument $\langle A_1, \text{acceptable}(\text{thou}, \text{tbib}) \rangle$ supporting the conclusion $\text{acceptable}(\text{thou}, \text{tbib})$ (as shown in the previous examples).
- Given the query $\text{acceptable}(\text{thou}, \text{tmedical})$, the associate answer is No. There is an argument $\langle B_1, \text{acceptable}(\text{thou}, \text{tmedical}) \rangle$, with
 $$B_1 = \{\text{acceptable}(\text{thou}, \text{tmedical}) \leftarrow \text{englishWord}(\text{thou}), \text{englishText}(\text{tmedical})\}$$
 which is defeated by argument $\langle B_2, \neg\text{acceptable}(\text{thou}, \text{tmedical}) \rangle$, with
 $$B_2 = \{\neg\text{acceptable}(\text{thou}, \text{tmedical}) \leftarrow \text{englishWord}(\text{thou}), \text{englishText}(\text{tmedical}), \text{archaism}(\text{thou})\}$$

There are no more arguments to consider (note that in this case, the second argument has no defeaters). After computing and marking the associated dialectical tree as described in Definition 4, the root of the tree turns out to be labeled as D-node. On the contrary, when analyzing the complementary literal $\neg\text{acceptable}(\text{thou}, \text{tmedical})$, we get one single argument (viz., $\langle B_2, \neg\text{acceptable}(\text{thou}, \text{tmedical}) \rangle$). Consequently, the associated dialectical tree rooted in $\langle B_2, \neg\text{acceptable}(\text{thou}, \text{tmedical}) \rangle$ (i.e., $\bar{T}_{(B_2, \neg\text{acceptable}(\text{thou}, \text{tmedical})})$) has a single node, marked as U-node. Therefore $\langle B_2, \neg\text{acceptable}(\text{thou}, \text{tmedical}) \rangle$ is warranted.
Given the query \(\text{acceptable}(\text{body}, t_{\text{medical}}) \), the resulting answer would be \(\text{Yes} \). There is an argument \((C_1, \text{acceptable}(\text{body}, t_{\text{medical}})) \), with
\[
C_1 = \{ \text{acceptable}(\text{body}, t_{\text{medical}}) \rightarrow \text{englishWord}(\text{body}), \text{englishText}(t_{\text{medical}}) \}
\]
for which no defeaters can be found. Therefore the corresponding dialectical tree \(T_{C_1, \text{acceptable}(\text{body}, t_{\text{medical}})} \) has a single node, marked as \(U \)-node. Therefore the argument \((C_1, \text{acceptable}(\text{body}, t_{\text{medical}})) \) is warranted.

2.3. Using DeLP for Language Usage Assessment

In the past years, defeasible logic programming has been successfully used in a variety of real-world applications based on argumentation, such as Web recommendation systems,\(^{20,21}\) clustering classification,\(^{22}\) and multiagent systems,\(^{23}\) among others. As we have seen in the previous analysis, situations involving language usage can be also modeled in terms of DeLP programs. In the particular case of archaisms, we could assume that they could be encoded as a list of facts in a DeLP program modeling language usage, providing thus a “dictionary” of archaisms in English language. Thus, on the basis of such background knowledge, DeLP rules will allow us to infer the acceptability of different terms by posing suitable queries.

However, defining concepts associated with language usage is not always such an easy task. In the case of archaisms, the corpus of words associated with this concept tends to suffer only minor changes as times goes by. Other concepts (such as the notion of “buzz words” or “vogue expressions”) are constantly undergoing change and modifications and cannot be so easily captured in DeLP. Let us consider again the case of the journalist described in the introduction: Making a list of terms that are “...geographical variations corresponding to one country but are widely used in other countries because of their popularity in the media” does not seem so easy to model.

Our proposal aims at enriching DeLP capabilities for modeling common-sense reasoning about language usage by incorporating specialized built-in predicates called usage indices. Usage indices will provide a way of characterizing defeasible reasons for assessing language usage, allowing us to conclude whether a given term \(T \) is suitable (or not) in a particular context on the basis of the current Web corpus. As we will see, such indices can be easily computed on the basis of information extracted from the Web by means of advanced search facilities provided by most search engines (e.g., Google). The resulting defeasible knowledge will be formalized in terms of DeLP, a logic programming formalism for defeasible argumentation. On the basis of this formalization we define ARGUE\textsc{Term}, an argument-based computational framework that aims to provide proactive assistance for language usage assessment.

3. USAGE INDICES: DETECTING PATTERNS ON THE WEB

An extensive number of sample sentences in different natural languages have been accumulated as Web documents on the World Wide Web. A significant portion of such documents are accessible through search engines, whose pattern-matching capabilities have turned out to be useful to exploit the Web Corpora. The
Web as a corpus offers a number of advantages in comparison with traditional linguistic corpora, namely:

- **Updated and free information.** Building up large linguistic corpora requires considerable effort, and keeping them up to date might prove to be a difficult, if not impossible, task. The Web corpus is huge and exists as it is, namely, as a free tool.

- **State-of-the-art linguistic database.** The Web corpus reflects the current status of language, as Web documents are created, updated, and eventually deleted. Different language registers and levels of formality (colloquial, formal, standard, etc.) and text types (technical, scientific, medical, legal, journalistic, etc.) can be found on the Web corpus.

- **User-friendly handling of documents.** Several Web-based applications have been developed for effective pattern matching, clustering, and text classification. Such applications provide a natural tool for dealing with Web-based corpora.

To analyze relevant features of language usage patterns in Web-based corpora, values associated with absolute or relative frequencies of string patterns with respect to different Web domains turn out to be particularly useful. We call such values *usage indices*. Such usage indices can be easily computed by means of advanced search facilities provided by most search engines (e.g., Google).

Next we introduce some definitions to formalize this concept. In the sequel, strings will be denoted with lowercase letters \(s, t, u, \ldots \), possibly subscripted. We will use \(d_1, d_2, \ldots \) to denote different Web domains. Sans serif font will be used for natural language expressions to be analyzed, for example, this is an example. Henceforth the term *domain* will be used indistinctly to refer to complete Web domain names (e.g., ‘google.com’) as well as to the suffix portions of Web domain names (e.g., ‘.com’). The distinguished constant name *Web* will be used to characterize the collection of all existing Web domains.

Given a domain \(d \), we will use \(\| d \| \) to denote the number of Web pages found in the domain \(d \). This notation can be extended to a set of domains \(D = \{ d_1, d_2, \ldots, d_k \} \) as \(\| D \| = \sum_{i=1}^{k} \| d_i \| \). Similarly, given a domain \(d \) and a string \(s \), we will use \(\| d \|_s \) to denote the number of hit counts for \(s \) with respect to \(d \), that is, the number of Web pages in domain \(d \) containing the string \(s \). Usage indices will be based on computing occurrences in sets of domains, as presented below.

Definition 5. Let \(s \) be a string, and let \(D, D_1, \) and \(D_2 \) be nonempty sets of Web domains, with \(D = \{ d_1, d_2, \ldots, d_k \} \). We define the concepts of general usage \(U_g \):

5Paper dictionaries and reference books such as the *Collins Cobuild English Usage Dictionary*, 1992, although appropriate and updated, are doomed to becoming obsolete and limited in scope.

6Even though concordancers continue to be widely used in linguistic study and the study of usage for reference (see Ref. 24), Google searches provide a wider range of usage data for vocabulary, grammar, and even punctuation.

7In the sequel, we will assume that domain names included in a domain set do not overlap, that is, given a set of domains \(D = \{ d_1, \ldots, d_k \} \) they satisfy that if \(i \neq j \), then \(d_i \) is not a suffix domain of \(d_j \). In addition, we will assume that all domains contain at least one Web page.

8The special syntax `site:`, available in certain search engines (e.g., Google), restricts the search to a specified domain, allowing us to obtain an estimation of \(\| d \|_s \) and \(\| d \| \) by means of the queries “s site:d” and “site:d,” respectively.
constrained usage U_c, ratio usage U_r, prefix usage U_p, and relative usage U_{rel} as follows:

- $U_c(s) = \|Web\|_s$.
- $U_c(s, D) = \|D\|_s = \sum_{i=1}^{k} |d_i|_s$.
- $U_r(s, D_1, D_2) = \frac{U_c(s, D_1) + 1}{U_c(s, D_2) + 1} \times \frac{\|D_2\|}{\|D_2\|}$.
- $U_p(s_1, s, D) = \frac{U(s_1, s, D)}{U_c(s, D)}$ if $U_c(s, D) \neq 0$, and 0 otherwise.
- $U_{rel}(s_1, s_2, D) = \frac{U_c(s_1, D) + 1}{U_c(s_2, D) + 1}$.

Given a string s, the constrained usage $U_c(s, D)$ represents the number of pages containing s restricted to the set D of Web domains. The ratio usage $U_r(s, D_1, D_2)$ represents the ratio of the frequency of pages with s in D_1 to the frequency of pages with s in D_2. The prefix usage U_p informs about the likelihood of finding a string s_i immediately preceding another string s in a page from some domain in D. Finally, the relative usage U_{rel} allows us to contrast the usage of two different strings s_1 and s_2 with respect to a given domain set D.

Example 9. Consider the strings $s_1 = \text{rearing children}$, $s_2 = \text{parents}$, and $s_3 = \text{of twins}$. Let $d_1 = \text{.uk}$ and $d_2 = \text{.babycentre.co.uk}$. Then it holds that

$$\|\text{Web}\| = 3307998701$$
$$\|\{d_1\}\| = 28000000$$
$$U_c(s_1, \{d_1\}) = 435$$
$$U_c(s_1, \text{Web}) = 13700$$

$$U_r(s_1, \{d_1\}, \text{Web}) = \frac{436}{13701} \times \frac{3307998701}{28000000} = 3.76$$

$$U_p(s_2, s_3, \{d_2\}) = 677/747 = 0.906$$

Note in the above example that statistical-based inferences can be performed from usage indices (e.g., 90% of occurrences of the phrase of twins associated with the URL ‘.babycentre.co.uk’ are preceded by the word parents). Note also that the above computations are time dependent (as they depend on the current Web corpus).

Several language usage phenomena can be analyzed in the light of the usage indices that we have defined. We distinguish three major groups for study: (1) the analysis of calque or mimetism in nonnative English speakers, (2) the study of dialectal usage of language, and (3) the scope of common usage-related phenomena at the written level. These major groups will be discussed in detail in the next subsections.

8In some of the definitions that follow, we adopt the usual strategy of computing some ratios of the form $\max(value_1, value_2)$ as $(value_1 + 1)/(value_2 + 1)$ to avoid the case of division by zero.

9Computations of usage indices in this article were performed using Google with the existing Web corpus on Feb. 19, 2004. Due to space limitations, a detailed computation of some usage indices is not included.
3.1. Studying Calque in Texts of Non-Native-English Speakers

People using English as a foreign language (EFL) tend to make mistakes whenever they convert into English equivalents those syntactic structures that are valid in their mother tongue. This phenomenon is known in translation theory as *calque d’expression*. Some irregular patterns are more frequent among native speakers of Romance languages (e.g., Spanish), whereas others are more frequent among native speakers of Germanic ones (e.g., Dutch). Usage indices can be used to analyze and provide assessment on such situations, by filtering occurrences according to the Web domains associated with particular countries.

Example 10. Consider the case of the English verb to associate, that normally takes the preposition with (e.g., in association with . . ., this is associated with . . .). The Spanish verb asociar has an equivalent meaning, and two prepositions are possible: asociar a (quite frequent) or asociar con (not so frequent).

Remarkably there exists a common *calque d’expression* of the Spanish preposition a into the English preposition to, derived from cases such as to go to school = ir a la escuela and This is going to be sent to my parents = esto va a ser enviado a mis padres. Thus, a common tendency by non-native-English speakers whose mother tongue is Spanish is to apply to instead of other prepositions that would be used by native speakers instead.

The extent of this phenomenon in a Romance language in comparison with Germanic languages in general and the English language in particular can be analyzed by computing hit counts for be associated to and be associated with in domains ‘.es’, ‘.de’, ‘.uk’. The usage index U_{rel} helps provide a measure of the above phenomenon. Let $s_1 = \text{be associated to}$, and $s_2 = \text{be associated with}$. Computing $U_{rel}(s_1, s_2, \text{Web})$ we have:

$$U_{rel}(s_1, s_2, \text{Web}) = \frac{(U_r(s_1, \text{Web}) + 1)}{(U_r(s_2, \text{Web}) + 1)} = \frac{43900}{1880000} = 0.02$$

Similarly, we get the following results for other domains:

$$U_{rel}(s_1, s_2, \text{.es'}) = \frac{600}{3300} = 0.18$$

$$U_{rel}(s_1, s_2, \text{.de'}) = \frac{1780}{23700} = 0.08$$

$$U_{rel}(s_1, s_2, \text{.uk'}) = \frac{938}{125000} = 0.008$$

*For a study on English lexical structures converted into their Spanish counterparts, also known as *false friends*, see Ref. 26.*

International Journal of Intelligent Systems DOI 10.1002/int
From the above figures it follows that in Australian and British Web pages the proportion of the use of be associated to with respect to be associated with is less than 1%, whereas in the the whole Web space it is only 2%. Notably there is a considerably stronger incidence of this phenomenon in non-native-English speakers (particularly Spanish speakers [18%] in contrast with in German ones [8%]). This can be explained in terms of the calque d’expression discussed above.

3.2. Assessing the Dialectal Usage of Language

Several dialectal aspects deriving from language usage may also be evaluated using the proposed approach. An example could be the assessment of language usage across linguistic communities that share a common natural language. A particularly interesting case is the geographical variations of widespread languages such as English and Spanish. There are many well-known examples of lexical differences between American and British English (e.g., elevator and lift) or Mexican Spanish and peninsular Spanish (e.g., carro and coche). Clearly, there is a series of dialectal expressions (geographical variations) that will be fairly standard in some particular areas but may well not necessarily be understood by speakers from other geographical areas.

A more subtle phenomenon occurs with the use of a particular syntactic structure that is not a regionalism, but for some reason is more common and/or frequent in a particular country than in others. Such a phenomenon can also be surveyed by applying the usage indices presented before, as shown in the following examples.

Example 11. In Spain, the sentence ¿A qué esperas para comprarlo? (= What are you waiting for to buy it?) is commonly used in everyday language, whereas an Argentinian speaker would rather say ¿Qué esperas para comprarlo?, removing the preposition A from the sentence. In fact, the use of such a preposition in front of the above question will sound rather strange for Spanish speakers in Argentina.

The extent of this language phenomenon is very difficult to assess, as it involves everyday language usage, strongly influenced by the mass media. Such utterances are difficult to find in standard language corpora (in, say, the British National Corpus). We can get a better understanding of this phenomenon by computing the hit counts associated with a qué esperas and qué esperas in the Web domains corresponding to Argentina and Spain (i.e., ’.ar’ and ’.es’), as shown in Figure 2. From this, the following usage indices can be computed:

\[
U_p(a, \text{que esperas}, \text{’.ar’}) = \frac{632}{22000} = 0.03
\]

\[
U_p(a, \text{que esperas}, \text{’.es’}) = \frac{15400}{17400} = 0.89
\]
This shows that only 3% of Web documents found on Argentinian Web sites have the preposition a before the string qué esperas, in contrast with 89% of occurrences in Spanish Web sites.

Example 12. The sentence in Spanish merece la pena intentarlo (= it is worth doing it) is commonly used in Spain, whereas in other Spanish-speaking countries such phrasing tends to be replaced by vale la pena intentarlo. It must be remarked that vale and merece are, in this context, semantically equivalent. Thus, both sentences are grammatically correct in Spanish and understood by Spanish speakers both in Spain and Argentina. However, a Spanish speaker seems to be more prone to use the first version than an Argentinian one. This situation can be handled in terms of computing hit counts for [merece|vale|θ]la pena intentarlo, using the domains associated with Spain and Argentina, as shown in Figure 3. We can compute the following prefix usage indices:

\[
U_p(\text{merece, la pena intentarlo}, \text{'.ar'}) = \frac{11}{399} = 0.03
\]

\[
U_p(\text{merece, la pena intentarlo}, \text{'.es'}) = \frac{176}{402} = 0.44
\]

This shows that only 3% of the Web documents found on Argentinian Web sites have merece as a prefix string for la pena intentarlo, in contrast with 44% of Spanish Web sites.

3.3. Analyzing the Scope of Common Usage-Related Errors

Usage indices help also to distinguish to what extent some words and expressions are falling into disuse and are being replaced by new terms. This phenomenon may be best illustrated with examples of recurrent and fairly fossilized patterns

<table>
<thead>
<tr>
<th>String</th>
<th>'.es'</th>
<th>'.ar'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a qué esperas</td>
<td>15400</td>
<td>632</td>
</tr>
<tr>
<td>qué esperas</td>
<td>17400</td>
<td>22000</td>
</tr>
</tbody>
</table>

Figure 2. Hit counts for [a|θ] qué esperas.

<table>
<thead>
<tr>
<th>String</th>
<th>'.es'</th>
<th>'.ar'</th>
</tr>
</thead>
<tbody>
<tr>
<td>vale la pena intentarlo</td>
<td>113</td>
<td>337</td>
</tr>
<tr>
<td>merece la pena intentarlo</td>
<td>176</td>
<td>11</td>
</tr>
<tr>
<td>la pena intentarlo</td>
<td>402</td>
<td>399</td>
</tr>
</tbody>
</table>

Figure 3. Hit counts for [vale|merece|θ] la pena intentarlo in Web domains '.es' and '.ar'.
of language such as set phrases (e.g., safe and sound, spick and span, as characterized in Ref. 28), fixed expressions (having said that, best, as a matter of fact, as characterized in Ref. 27), and proverbs.

Some of these expressions (e.g., as a matter of fact vs. *as a matter of facts) are sometimes misleading for speakers, as the establishment of their meaning cannot be accounted for through prescriptive, hard-and-fast grammatical rules but rather through their usage by both native and nonnative speakers of the language. Likewise, two expressions may be grammatically equivalent, but only one of them is the correct idiom to be used (e.g., he works like a dog vs. *he works as if he were a dog). Speakers may thus construct incorrect sentences by trying to rephrase some existing idiom.

Dictionaries both on paper and online are not always reliable tools when it comes to reflecting usage-related features and certain nuances of meaning deriving from the continuous evolution of languages. As languages evolve over time, new words and expressions are coined while others become obsolete, disappear, or change their usage patterns. Compare, for example, the usage of the English conjunction whilst, now used in fairly formal, poetic, and specialized contexts, and commonly found in British English in front of the word while, used in standard day-to-day English. Although “whilst” is a perfectly valid synonym of “while,” in American usage it would be considered old-fashioned and pretentious. Their frequency of use and their appropriateness may be difficult to assess using a monolingual English dictionary. Usage indices allow us to obtain a dynamic, up-to-date measure for such situations, as shown in the following examples.

Example 13. Consider \(s_1 = \text{while} \) and \(s_2 = \text{whilst} \). Computing \(U_{rel}(s_2, s_1, \text{Web}) \) returns to what extent whilst is used in comparison to while in the whole Web space. We get

\[
U_{rel}(s_2, s_1, \text{Web}) = \frac{6080000}{127000000} = 0.05
\]

Similar results are obtained by computing \(U_{rel}(s_2, s_1, \text{\'uk\') \text{(i.e., restricting the analysis to Web pages from United Kingdom). Notably, whilst seems to have a higher use in Australia, as we have}}

\[
U_{rel}(s_2, s_1, \text{\'au\')} = \frac{420000}{1710000} = 0.25
\]

The correct use of prepositions in English is also a common source of trouble for nonnative speakers of English. Complex verb structures and formulaic language (I am looking forward to hearing from you) constitute ambiguous situations for many speakers. In the example above, the use of to as a preposition causes a gerund form to be used immediately afterward (hearing). However, the situation is ambiguous as to is also used for infinitive verb forms, so *I look forward to

\[\text{For example, Collins Cobuild English Language Dictionary.}\]

International Journal of Intelligent Systems DOI 10.1002/int
hear from you seems also reasonable. In fact, Looking forward to hear from you is ungrammatical, because the construction is Looking forward to [Noun Phrase] and hear from you is not a noun phrase (whereas hearing from you is). Usage indices also provide a useful tool for studying such situations, as shown in the following example.

Example 14. Consider the strings \(s_1 = \text{looking forward to hearing} \) and \(s_2 = \text{looking forward to hear} \). Computing the relative usage \(U_{rel} \) for these two expressions with respect to different Web domains allows us to gain a better perspective on the influence of this mistake. For the United Kingdom, Australia, and Germany we obtain

\[
U_{rel}(s_2, s_1, '.uk') = \frac{372}{7590} = 0.049
\]

\[
U_{rel}(s_2, s_1, '.au') = \frac{142}{2660} = 0.05
\]

\[
U_{rel}(s_2, s_1, '.de') = \frac{442}{1980} = 0.22
\]

These figures show that the phenomenon has a considerably higher impact in German Web pages (22%) in contrast to Web pages in English-speaking countries such as the United Kingdom or Australia (5%).

4. **ArgueTerm: Assessing Language Usage Combining Usage Indices and Defeasible Argumentation**

Although the Web corpus provides useful resources for language usage assessment on the basis of the relative and absolute frequencies in Web documents, coming up with suggestions about language patterns requires a meta-level analysis from the end user, who must perform an additional inference process based on such frequency values. The user’s analysis will be guided by a number of (mostly implicit) preference criteria to build and evaluate alternative hypotheses for coming up with a particular suggestion. As an example, finding a considerable number of hits when searching with Google for a particular string \(s \) in English can be used as a reason to believe that \(s \) is suitable for use in any English text. Such an assumption is defeasible, in the sense that it can be revoked in the light of additional information (e.g., if most hits for \(s \) correspond to Australian Web sites).

Usage indices provide us with a handy tool for formalizing situations like the one mentioned above in more precise terms. Let us consider again the case of

\(^k\)See the remark pointed out by Stuart Robinson (Linguistics Department of the Australian National University) at http://www.linguistlist.org/ask-ling/archive-1997.5/msg00278.html.
the journalist presented in the introduction, who believes that a given expression E is not suitable for a news report intended for a Spanish newspaper, as he suspects that E is a dialectal variation, for example, from Argentina. This last assumption can be supported on the basis of a ratio $R = U_r(E, \{'.ar'\}, \{'.es'\})$, contrasting the number of hits for E found in Argentinean Web sites with respect to those found in Spanish ones. The fact that $R > 1$ provides a tentative reason for concluding that E is a dialectal variation associated with Argentina. However, knowing that E is already in use in other Spanish newspapers may make the journalist change his mind, as he would have a reason that defeats the previous hypothesis. Once again, the above situation can be captured by computing $R' = U_c(E, D_{\text{news}})$, where D_{news} corresponds to the set of Web domains corresponding to representative Spanish mass media. The fact that $R' > \theta$, where θ is a particular threshold value (adopted by the user as reasonable on the basis of his/her experience) provides a new tentative reason to think that E is a common expression in the Spanish mass media, and therefore it can be used.

The preceding analysis shows that usage indices can be used as a numerical basis to come up with hypotheses about language usage patterns. Clearly, such hypotheses may be in conflict, so that the user has to perform some kind of introspective analysis, weighing such hypotheses and determining which ones are to be ultimately accepted. Defeasible argumentation frameworks such as DeLP provide a sound mathematical formalization of such rational procedure in dialectical terms. Arguments correspond to hypotheses, and the defeat relationship among arguments is analogous to weighing conflicting hypotheses. As we have discussed in Section 2.2, in the case of DeLP, there exists a computational procedure to determine whether a given argument is to be ultimately accepted or warranted by means of the corresponding dialectical tree.

Following these ideas, our proposal aims at integrating usage indices and defeasible argumentation in a single computational framework called ArgueTerm. Usage indices will provide a way of characterizing a number of defeasible rules for assessing language usage, allowing us to conclude whether a given term T is suitable (or not) in a particular context. This defeasible knowledge will be encoded as DeLP rules, and will be part of a larger DeLP program, which will be able to provide recommendations by solving distinguished queries. An outline of the architecture of the ArgueTerm approach is shown in Figure 4. Given a text T corresponding to a user document, a front-end parser extracts a list $T' = [s_1, s_2, \ldots, s_k]$ of relevant syntactic elements from T. Every s_i in the list T' is analyzed with respect to a DeLP program P, which encodes criteria for language usage in terms of strict and defeasible rules. Rules in P may include references to built-in predicates U_g, U_c, U_r, and U_p, which stand for usage indices as presented in Definition 5. A distinguished predicate name solve will be

The main ideas underlying the approach described in this section were first suggested in a conference paper (see Ref. 29).

We will assume that the input text can be parsed into strings, singling out those strings associated to nouns or noun phrases. See discussion in Section 6.
used for analyzing the acceptability of every expression s_i with respect to language usage criteria specified in \mathcal{P}. Program \mathcal{P} contains the definition of a predicate called acc, which is used to evaluate the acceptability of its argument expression. Thus, the existence of a warranted argument $\langle A, acc(s_i) \rangle$ built on the basis of \mathcal{P} will allow us to conclude that s_i is an acceptable expression. Similarly, the existence of a warranted argument $\langle A, \neg acc(s_i) \rangle$ indicates that s_i is not acceptable.

An interesting feature in automated systems for language assessment is the possibility of suggesting repairs whenever a particular user expression seems unsuitable. This sort of functionality can be embedded in ARGUETERM by means of a specialized predicate $repair$. Should an expression s_i be assessed as unacceptable, then $repair$ can be used to seek for alternatives. An expression s_{new} is a potential repair for s_i if s_{new} is the result of replacing some words in s_i by synonyms found in a lexical database (e.g., WordNet30). If a warranted argument $\langle A, \neg acc(s_{new}) \rangle$ is built on the basis of \mathcal{P}, then s_{new} is presented to the user as a possible alternative to s_i. This process is outlined in the algorithm shown in Figure 5.

4.1. Language Usage Assessment with ARGUETERM: A Worked Example

Consider the case of an American journalist who writes articles in Spanish about Latin American issues, intended for audiences in Spain and Argentina. As Spanish is not his mother tongue, he usually makes mistakes related to properly assessing the correct language usage. A sample paragraph from such a journalist (and its corresponding English translation) could be as follows:
El corralito fue un fenómeno muy complejo . . . Para el colectivo de los trabajadores autónomos cualquier liviano error tenía consecuencias

Let us assume that the editor of the newspaper will check every article written by our journalist before it is sent to print, guided by a number of criteria that characterize a “well-written document.” In the above text some anomalous situations related to wrong language usage will be detected: corralito is a common term in Argentina, but not so common in Spain (except in the news). First, the noun phrase colectivo de trabajadores autónomos (syndicate of autonomous workers) has a clear meaning in Spain, but is not understood in Argentina (as gremio or agrupación is the Argentinean equivalent for the Spanish word colectivo in this context). Secondly, the noun phrase liviano error (minor, slight mistake)

\footnote{The term “corralito” (little baby crib, playpen, in Peninsular Spanish, according to the Dictionary of the Spanish Academy of Language [DRAE], 21st edition) was coined in Argentina in December 2001 to denote severe restrictions on money drawing from banks due to an economic crisis in the country. The term became popular as mass media from different Spanish-speaking countries (including Spain) reported about the economic situation in Argentina, becoming, hence, an expression used to refer to an “abnormal situation in which customers are not allowed to draw their money from a bank for a long period of time.”}

\footnote{Consulted in Ref. 31.}
should be considered as a phenomenon known as collocation, that is, “semantically arbitrary restrictions which do not follow logically from the propositional meaning of a word” (Ref. 27, p. 22). In this case, liviano and error do not tend to co-occur regularly in peninsular Spanish. The adjective liviano would normally collocate with maleta (suitcase), paquete (parcel), comida (food), masa (mass), obra (work), and película (film), and its meaning is associated with “inconstant, incontinent, of little importance.”

The noun error would normally collocate with leve, ligero rather than liviano, even though the adjectives ligero and liviano are synonymous. Some of the possible criteria the editor could apply to avoid such anomalies could be summarized as follows:

\[C_1 \]: An expression \(S \) written in Spanish is usually acceptable when it is commonly used (i.e., appears in a considerable number of already existing documents).

\[C_2 \]: An expression \(S \) is usually not acceptable if it is not commonly used.

\[C_3 \]: Regionalisms from Argentina are usually not acceptable.

\[C_4 \]: Regionalisms from Spain are usually not acceptable.

\[C_5 \]: An expression \(S \) in Spanish is usually a regionalism if it is frequently used in a Spanish-speaking country but not in others.

\[C_6 \]: Expressions that are frequently used in Argentina but have gained widespread use in the Spanish media are usually not considered as regionalisms.

The ArgueTerm framework would allow our editor to automate the above criteria for language usage assessment in terms of a DeLP program, as shown in Figure 6. Rules 1 to 6 provide a Prolog implementation of the algorithm detailed in Figure 5. Note that in this context Prolog rules are a particular instance of DeLP strict rules. Rules 1 to 4 characterize the behavior of the solve predicate as outlined in Section 4. Given a text string \(s \), the query \(\text{solve}(s) \) always succeeds, either because \(s \) can be warranted as acceptable (rule 1), or because it can be replaced by a repair that is warranted as acceptable (rule 2), or because it can be warranted as not acceptable (rule 3), or because no decision is possible (rule 4). Note that rule 4 follows from the possibility of having Undecided as a possible answer to a DeLP query. Rule 5 defines the repair predicate restricted to simple noun phrases of the form \([\text{Noun}, \text{Adj}]\). Repairs consist of just replacing \(\text{Adj} \) for an alternative synonym obtained from an ad hoc predicate \(\text{syn} \) (Rule 6). For the sake of simplicity, in this example the definition of synonym is restricted to the Spanish adjective liviano (slight). Defeasible rules 7 to 12 capture language usage preferences according to the editor’s criteria \(C_1 \) to \(C_6 \) given above, defined on the basis of predicates that rely on usage indices (rules 13 to 15). Rule 7 establishes that strings whose general frequency in Spanish-speaking countries is above a certain threshold value are defeasibly acceptable. From rule 8 it follows that strings that cannot be proven to be common in Web domains from Spanish-speaking countries are usually not

\(^9\)Consulted in Ref. 32.

\(^{10}\)A lexical database such as WordNet can provide a list of synonyms (synset) for an arbitrary adjective.
acceptable. Rules 9 and 10 establish that geographical variations from Argentina and Spain are usually not acceptable. Rule 11 specifies when a given expression can be defeasibly assumed to be a geographical variation in terms of its frequency, computed using the \textit{locally_freq} predicate. Rule 12 provides an exception for the above rule: A string S that is locally frequent in Argentina but is also frequent in the Spanish media is not considered to be a geographical variation. A string s is considered frequent in the Spanish media if a considerable percentage of all the hits found for s in Spain are found in newspapers. Rule 18 specifies that Spanish-speaking countries to be considered for the analysis are Spain and Argentina.\footnote{For the sake of simplicity, in this example we restrict our analysis to only these two countries (Spain and Argentina), and we only focus on exceptions for geographical variations in Argentina based on sample Spanish news domains.}

\begin{table}[h]
\centering
\begin{tabular}{|l|}
\hline
Control rules for language usage assessment:
\hline
1) \texttt{solve}(S) \leftarrow \texttt{acc}(S), \\
write('Acceptable'),
2) \texttt{solve}(S) \leftarrow \sim \texttt{acc}(S), \texttt{repair}(S, R), \\
\texttt{acc}(R), \\
write('Acc. if rephrased as', R).
3) \texttt{solve}(S) \leftarrow \sim \texttt{acc}(S), \\
write('Not acceptable').
4) \texttt{solve}(...) \leftarrow write('Undecided. No suggestion found').
5) \texttt{repair}(S, R) \leftarrow \texttt{simple_nphrase}(S), $S = [\text{Noun}, \text{Adj}]$, \\
\texttt{syn}(\text{Adj}, \text{N Adj}), \text{R} = [\text{Noun}, \text{N Adj}].
6) \texttt{syn}(\text{Adj}, \text{N Adj}) \leftarrow \texttt{list_syn}(\text{Adj}, L), \texttt{member}(\text{N Adj}, L).
\textbf{Defeasible rules capturing language usage preferences:}
\hline
7) \texttt{acc}(S) \leftarrow \texttt{common_in_spanish}(S).
8) \sim \texttt{acc}(S) \leftarrow \texttt{rare_in_spanish}(S).
9) \sim \texttt{acc}(S) \leftarrow \texttt{common_in_spanish}(S), \\
\texttt{realism}(S, [\text{ar}]).
10) \sim \texttt{acc}(S) \leftarrow \texttt{common_in_spanish}(S), \\
\texttt{realism}(S, [\text{es}]).
11) \texttt{realism}(S, \text{Ctry}) \leftarrow \texttt{locally_freq}(S, Ctry).
12) \sim \texttt{realism}(S, [\text{ar}]) \leftarrow \texttt{locally_freq}(S, Ctry), \\
\texttt{appears_in_news}(S, [\text{es}]).
\textbf{Predicates based on computing Usage Indices:}
\hline
13) \texttt{common_in_spanish}(S) \leftarrow \texttt{spanish_speaking}(Cs), \\
\text{V is Uc}(S, Cs), V > 200.
14) \texttt{rare_in_spanish}(S) \leftarrow \texttt{not_common_in_spanish}(S).
15) \texttt{appears_in_news}(S, C) \leftarrow \texttt{news_domains}(Ds, C), \\
\text{V is Uc}(S, Cs), V > 200.
16) \texttt{locally_freq}(S, [\text{ar}]) \leftarrow \text{V is Uc}(S, Cs), V > 10.
17) \texttt{locally_freq}(S, [\text{es}]) \leftarrow \text{V is Uc}(S, Cs), V > 10.
\textbf{Additional predicates:}
\hline
18) \texttt{news_domains}(['elmundo.es', 'elpais.es', 'es']).
19) \texttt{spanish_speaking}('es', 'ar').
20) \text{\texttt{list_syn}(liviano, [ligero, sutil, ...])}.
21) \text{\texttt{member}(X, [X])}.
22) \text{\texttt{member}(X, [Y, Z]) \leftarrow \texttt{member}(X, Z).}
23) \text{\texttt{simple_nphrase}(S) \leftarrow [computed elsewhere].}
\hline
\end{tabular}
\caption{A DeLP program modeling preference criteria for acceptable language usage patterns in newspaper articles.}
\end{table}
Suppose we apply now the high-level algorithm presented in Figure 5, where the strings extracted from the above text are s_1, s_2, and s_3, with $s_1 = \text{corralito}, s_2 = \text{colectivo de los trabajadores autónomos}$, and $s_3 = \text{liviano error}$. Consider the case for string s_1. The search for a warranted argument for $\text{acc}(s_1)$ returns the argument $\langle A_1, \text{acc}(s_1) \rangle$, with

\[
A_1 = \{ \text{acc}(s_1) \leftarrow \text{common in spanish}(s_1) \}\]

This argument holds because $U_c(s_1, [\text{'es'}, \text{'ar'}, \text{'ax'}]) > 200$. The DeLP inference engine will then search for defeaters associated with the argument $\langle A_1, \text{acc}(s_1) \rangle$. A proper defeater $\langle A_2, \neg \text{acc}(s_1) \rangle$ is found: s_1 is not acceptable as there are reasons to think it is a geographical variation from Argentina. The argument $\langle A_1, \text{acc}(s_1) \rangle$ is as follows:

\[
A_2 = \{ \neg \text{acc}(s_1) \leftarrow \text{common in spanish}(s_1), \text{regionalism}(s_1, \text{'ax'}); \text{regionalism}(s_1, \text{'ax'}) \leftarrow \text{locally freq}(s_1, \text{'ax'}) \}
\]

Note that the argument $\langle A_2, \neg \text{acc}(s_1) \rangle$ is a proper defeater for $\langle A_1, \text{acc}(s_1) \rangle$ as the first argument is based on more specific information than the second. Note also that predicate $\text{locally freq}(s_1, \text{'ax'})$ holds, as $U_c(s_1, [\text{'ax'}, \text{'es'}], [\text{'es'}, \text{'es'}) = 33.1 > 10$. However, a defeater for this argument $\langle A_2, \neg \text{acc}(s_1) \rangle$ can be found in its turn: corralito cannot be deemed as a geographical variation in Argentina, because it is fairly frequent in the Spanish news. Here we have the argument

\[
A_3 = \{ \neg \text{regionalism}(s_1, [\text{'ax'}]), \text{appears in news}(s_1, \text{'es'}) \}
\]

Note that predicate $\text{appears in news}(s_1, \text{span})$ holds, as $U_c(\text{corralito}, D) = 40$, with D representing domains from Spanish newspapers. Note also that the definition of dialectical tree (Definition 4) does not allow the reuse of $\langle A_1, \text{acc}(s_1) \rangle$ to defeat again $\langle A_2, \neg \text{acc}(s_1) \rangle$, as this would imply falling into fallacious, circular argumentation. After the above analysis, no other defeater can be found. The resulting dialectical tree rooted in $\langle A_1, \text{acc}(s_1) \rangle$ as well as its corresponding marking is shown in Figure 7a. The root node is marked as U-node (undefeated), which implies that the argument $\langle A_1, \text{acc}(s_1) \rangle$ is warranted.

International Journal of Intelligent Systems DOI 10.1002/int
Consider now the case for string $s_2 = \text{colectivo de los trabajadores autónomos}$. There is an argument $\langle B_1, acc(s_2) \rangle$, with

$$B_1 = \{ acc(s_2) \leftarrow \text{common_in_spanish}(s_2) \}$$

that holds following the same reasoning as above. However, there is a defeater for $\langle B_1, acc(s_2) \rangle$, namely, $\langle B_2, \neg acc(s_2) \rangle$, with

$$B_2 = \{ \neg acc(s_2) \leftarrow \text{common_in_spanish}(s_2), \text{regionalism}(s_2,[\text{'es'}]); \text{regionalism}(s_2,[\text{'es'}]) \leftarrow \text{locally_freq}(s_2,[\text{'es'}]) \}$$

As above, the predicate $\text{locally_freq}(s_2,[\text{'es'})$ holds here, as it is the case that $U_e(s_2,[\text{'es'}],[\text{'ar'}]) = 41.4$. No other arguments can be computed from here onward. The solve predicate will thus fire the search for a warranted argument for $\neg acc(s_2)$, which is successful (a dialectical tree rooted in $\langle B_2, \neg acc(s_2) \rangle$ with no defeaters). The resulting situation is shown in Figure 7b. Note that no repair is possible here, as repair is only for simple noun phrases.

Finally, let us consider the case for the string $s_3 = \text{liviano error}$. There is no argument and consequently no warranted argument for the conclusion $acc(s_3)$, as the literal $\text{common_in_spanish}(s_3)$ does not hold: s_3 is syntactically correct but is pragmatically wrong as a noun phrase in Spanish. In contrast, there is a warranted argument $\langle C_1, \neg acc(s_3) \rangle$ that provides a reason not to accept s_3, based on rule 8, with

$$C_1 = \{ \neg acc(s_3) \leftarrow \text{rare_in_spanish}(s_3) \}$$

The predicate solve will try to repair s_3, obtaining a new alternative string $s'_3 = \text{ligero error}$, searching then for a warranted argument for $acc(s'_3)$. A warranted argument for $acc(s'_3)$ can be found, namely,

$$D_1 = \{ acc(s'_3) \leftarrow \text{common_in_spanish}(s'_3) \}$$

As a side effect, the message “Accepted if rephrased as ligero error” will be given to the user. This situation is shown in Figure 7c.

5. RELATED WORK AND IMPLEMENTATION ISSUES

Providing assessment in word-processing activities has long been a source of research in the natural language processing community. The term critiquing system is the common denomination for those cooperative tools that observe the user interacting with a word-processing tool and present reasoned opinions about the user-entered text, helping to discover and point out errors that might otherwise remain unnoticed. Most popular word-processing critiquing systems include spelling, grammar, and style checkers. In past years some word-processing critiquing systems evolved toward the analysis of language usage patterns, taking advantage of the rich source of textual material that the Web offers as a linguistic corpus. Several concordancers and writing assistant tools were developed (e.g., WebLEAP, WebCorp, KWICFinder, and Bonito). Such systems...
provide recommendations on language patterns on the basis of frequency values found on the Web corpus, including also advanced facilities for restricting search to particular domains and finding grammatical patterns. In such systems, the ultimate analysis of a language pattern is to be performed by the end user. In our proposal, such analysis is automated on the basis of usage indices (computed from the current Web corpus) and a defeasible argumentation framework. Preference criteria for language usage can be specified by the user in a declarative manner in terms of defeasible and strict rules. To the best of our knowledge, no similar approach has been developed to support the assessment of natural language usage.

Performing defeasible argumentation is a computationally complex task. A particular abstract machine called JAM (Justification Abstract Machine) has been specially developed for an efficient implementation of DeLP. The JAM provides an argument-based extension of the traditional WAM (Warren’s Abstract Machine) for Prolog. On the basis of this abstract machine an online interpreter of DeLP has been developed and is freely available on the web (see Ref. 36). A Java-based Integrated Development Environment (IDE) for Defeasible Logic Programming has also been developed. This Java version of DeLP allows the user to compile DeLP code into JAM opcodes. A visual environment for interacting with DeLP programs is provided. Among other things, this environment allows the user to visualize the dialectical tree associated with the query being solved (see Ref. 38 for details). Several features leading to efficient implementations of DeLP have also been recently studied, in particular those related to comparing conflicting arguments by specificity and extending DeLP to incorporate possibilistic reasoning. Equivalence results with other extensions of logic programming have also been established.

6. CONCLUSIONS AND FUTURE WORK

In this article we have introduced a novel, argumentative approach to using Web search technologies as a tool for studying different language usage phenomena. Two hypotheses have guided our research. On the one hand is the fact that the large number of existing Web pages provides a reliable source of information for detecting language usage patterns present in written text. On the other hand, those Web pages associated with a particular country domain (e.g., ‘.uk’) are assumed to be mostly written by (or intended for) people whose natural language is the one spoken in that country (e.g., British English). Such features can be exploited by means of usage indices, which capture values resulting from performing advanced searches. It must be remarked that most search engines (such as Google) incorporate advanced tools for filtering documents according to features such as the ones used to compute usage indices, as defined in this article.

Note that more generic domains (such as ‘.com’ or ‘.org’) fall outside the scope of the present analysis.
We have presented a bottom-up evaluation of the proposed framework, focusing on the ability of ARGUETERM to assess language usage in controlled scenarios. The results returned by the system are encouraging for different analyzed cases. In particular, several language phenomena corresponding to the examples discussed in Section 3 were successfully formalized and solved using ARGUETERM. All these situations, as well as the case study presented in Section 4 were encoded and solved on the basis of a prototype version of ARGUETERM implemented using the existing Java-based DeLP environment.37 However, it must be remarked that these initial experiments only serve as a “proof of concept” prototype, as thorough evaluations are still being carried out. As part of our future work we plan to design different experiments to directly test the ability of the system to suggest repairs during the word-processing task.

We believe that usage indices may provide valuable information about language usage and help to identify and survey potential language-related problems. This leads us to believe that usage indices may be of assistance in some language-related fields of study such as comparative linguistics, discourse analysis, translation studies, and certain areas of applied linguistics such as ESL and EFL. The computational approach presented in this article can also be applied to the development of advanced online style checkers that could be integrated into a conventional word processor. Thus, for example, if the user types in “this is associated to,” the style checker would deem “associated to” to be a nonacceptable expression and warn the user about a possible syntax error. A nontrivial challenge for such a system is how to determine which subpatterns are to be considered and which possible alternative suggestions can be automatically given. Part of our current work involves studying the possibility of developing such style checkers. Research in this direction is currently underway.

Acknowledgments

This research was partially supported by CYCIT Projects TIC2001-1577-C03-01/03, TIC2003-00950, TIN 2004-07933-C03-03, by Ramón y Cajal Program (MCyT, Spain) and by CONICET (Argentina).

References

