An Argumentative Reasoning Service for
Deliberative Agents

Alejandro J. Garcia Nicolds D. Rotstein Mariano Tucat Guillermo R. Simari

Consejo Nacional de Investigaciones Cientificas y Técnicas (CONICET)
Department of Computer Science and Engineering
Universidad Nacional del Sur, Bahia Blanca, Argentina.

{ajg, ndr, mt, grs}@cs.uns.edu.ar

Abstract. In this paper we propose a model that allows agents to de-
liberate using defeasible argumentation, to share knowledge with other
agents, and to represent individual knowledge privately. We describe the
design and implementation of a Defeasible Logic Programming Server
that handles queries from several remote client agents. Queries will be
answered using public knowledge stored in the Server and individual
knowledge that client agents can send as part of a query, providing a
particular context for it. The Server will answer these contextual queries
using a defeasible argumentative analysis. Different types of contextual
queries are presented and analyzed.

1 Introduction

Deliberative agents that take part of a Multi-agent System (MAS) usually rea-
son by using two sources of knowledge: public knowledge they share with other
agents, and individual or private knowledge that arise in part from their own
perception of the environment. In this paper we propose a model that allows
agents to deliberate using defeasible argumentation, to share knowledge with
other agents, and to represent individual knowledge privately. We focus on the
design and implementation of a client-server approach based on Defeasible Logic
Programming that provides a knowledge representation formalism and a Defea-
sible Argumentation reasoning service. Thus, agents can reason with the men-
tioned formalism, using both private and shared knowledge, by means of this
external service.

In our approach, a Defeasible Logic Programming Server (DeLP-server) will
answer queries received from client agents that can be distributed in remote
hosts. Public knowledge can be stored in the DeLLP-server represented as a De-
feasible Logic Program. To answer queries, the DeLLP-server will use this public
knowledge together with individual knowledge that clients might send, creating
a particular contexrt for the query. These contextual queries will be answered

Partially supported by Universidad Nacional del Sur, CONICET (PIP 5050), and
Agencia Nacional de Promocién Cientifica y Tecnolégica.

using a defeasible argumentative analysis. Several DeLLP-servers can be used si-
multaneously, each of them providing a different shared knowledge base. Thus,
several agents can consult the same DelLP-server, and the same agent can con-
sult several DeLLP-servers. Our approach do not impose any restriction over the
type, architecture, or implementation language of the client agents.

In our model, both public knowledge stored in the server and contextual
knowledge sent by the agents are used for answering queries, however, no per-
manent changes are made to the stored program. The temporal scope of the
contextual information sent in a query is limited and it will disappear with the
finalization of the process performed by the DeLP-server to answer that query.
Since agents are not restricted to consult a unique server, they may perform the
same contextual query to different servers, and they may share different knowl-
edge with other agents through different servers. Thus, several configurations of
agents and servers can be established (statically or dynamically). For example,
special-purpose DelLP-servers can be used, each of them representing particular
shared knowledge of a specific domain. Thus, like in other approaches, shared
knowledge will not be restricted to be in a unique repository and therefore, it
can be structured in many ways.

2 DeLP Basis

In our approach, both the individual knowledge of an agent and the public knowl-
edge loaded in a DeLLP-Server are represented using a defeasible logic program.
A brief description of Defeasible Logic Programming (DeLP) is included in this
section —for a detailed presentation see [1]. DeLP is a formalism that combines
logic programming and defeasible argumentation [2,3]. In DeL.P, knowledge is
represented using facts, strict rules or defeasible rules. Facts are ground literals
representing atomic information or the negation of atomic information using the
strong negation “~”. Strict Rules are denoted Lo« Lq,...,L, and represent
firm information, whereas Defeasible Rules are denoted Lo— Lq,...,L, and
represent defeasible knowledge, i.e., tentative information. In both cases, the
head Ly is a literal and the body {L;};>0 is a set of literals. In this paper we will
consider a restricted form of program that do not have strict rules.

Definition 1. A restricted defeasible logic program (DeLP-program for short)
P is a set of facts and defeasible rules. When required, P is denoted (II,A)
distinguishing the subset II of facts and the subset A of defeasible rules.

Strong megation is allowed in the head of program rules, and hence may be
used to represent contradictory knowledge. From a program (IT,A) contradictory
literals could be derived, however, the set IT (which is used to represent non-
defeasible information) must possess certain internal coherence. Therefore, IT
has to be non-contradictory, i.e., no pair of contradictory literals can be derived
from I1. Given a literal L the complement with respect to strong negation will be
denoted L (i.e., a=~a and ~a=a). Adding facts to a DeLP-program can produce
a contradictory set I, producing a non-valid program. However, defeasible rules
can be added without any restriction.

Observation 1 Let (I1,A) be a DeLP-program, Ay a set of defeasible rules and
11, a set of facts. The pair (II,(AUA;)) is a valid DeL P-program, but (II U114,
A) may not because IT U II1 can be a contradictory set. Nevertheless, if IT U IT,
is a non-contradictory set then (IT U 11, AU A) is a valid DeLP-program.

Definition 2 (DeLP-query). A DeLP-query is a ground literal that DeLP will
try to warrant. A query with at least one variable will be called schematic query
and will represent the set of DeL P-queries that unify with the schematic one.

To deal with contradictory and dynamic information, in DeLLP, arguments for
conflicting pieces of information are built and then compared to decide which
one prevails. The prevailing argument provides a warrant for the information
that it supports. In DeLP a query L is warranted from a program (I1,A) if a
non-defeated argument A supporting L exists. An argument A for a literal L [1],
denoted (A, L), is a minimal set of defeasible rules ACA, such that A U IT is
non-contradictory and there is a derivation for L from A U II.

Ezample 1. Consider the DeLP-program Py = (II1, 4;), where IT; = {q,s,t}
and Ay = {(r—=q)(~r—q,s)(r—=s)(~r—=t)(~a—=<q)(a—=s)}. From P; the
following arguments can be built:

(Ri,~r) = ({~r—=th,~r) (Ra,r) = ({r—=q},7) (Rs,r) =({r—=s},7)
(Ra,~r) = ({~r—=q, 8}, ~r) (A1, ~va) = ({~va—= g}, ~a) (Ag,a) = ({a—= s}, a)

To establish if (A, L) is a non-defeated argument, defeaters for (A, L) are con-
sidered, i.e., counter-arguments that by some criterion are preferred to (A, L).
It is important to note that in DelLP the argument comparison criterion is mod-
ular and thus, the most appropriate criterion for the domain that is being rep-
resented can be selected. In the examples in this paper we will use generalized
specificity [4], a criterion that favors two aspects of an argument: it prefers (1) a
more precise argument (i.e., with greater information content) or (2) a more
concise argument, (i.e., with less use of rules). Using this criterion in Example 1,
(R4, ~r) is preferred to (Ra,r) (more precise).

A defeater D for an argument A can be proper (D is preferred to A) or block-
ing (same strength). A defeater can attack the conclusion of another argument or
an inner point of it. Since defeaters are arguments, there may exist defeaters for
them, and defeaters for these defeaters, and so on. Thus, a sequence of arguments
called argumentation line [1] can arise. Clearly, for a particular argument there
might be more than one defeater. Therefore, many argumentation lines could
arise from one argument, leading to a tree structure called dialectical tree [1].
In a dialectical tree (see Fig. 1), every node (except the root) is a defeater of
its parent, and leaves are non-defeated arguments. A dialectical tree provides
a structure for considering all the possible acceptable argumentation lines that
can be generated. In a dialectical tree every node can be marked as defeated or
undefeated: leaves are marked as undefeated nodes, and inner nodes are marked
defeated when there is at least a child marked undefeated, or are marked unde-
feated when all its children are marked defeated. Figure 1 shows three different
marked dialectical trees, where white triangles represent undefeated nodes, black
triangles defeated ones, and arrows the defeat relation.

Ri A A1 A Az A
A

A Ax A Ay
!
A

Fig. 1. Dialectical trees of Ex. 1
Definition 3 (Warranting a DeLP-query). A DeLP-query Q is warranted
from a DeLP-program P if there exists an argument A supporting Q such that
A is the root of a dialectical tree and the root is marked as undefeated.

Definition 4 (Answer for a DeLP-query). The answer for a query Q from a
DeLP-program P is either: YES, if Q) is warranted from P; NO, if the complement
of @ is warranted from P; UNDECIDED, if neither () nor its complement are
warranted from P; or UNKNOWN, if Q) is not in the language of the program P.

Consider again Ex. 1. From P; the answer for ~r is YES whereas for r is NO
(Fig. 1 shows the dialectical tree that provides a warrant for ~r). The answer
for a is UNDECIDED and the answer for ~a is also UNDECIDED (observe that 4,
and Ay block each other). Finally, the answer for z is UNKNOWN.

3 Contextual Queries

As stated above, several DelLP-Servers can be used in a MAS, and each of them
provides a defeasible argumentation reasoning service for other agents. Public
knowledge (represented as a DeLP-program) can be stored in each DeLP-Server,
and will be used for answering DeLP-queries. For example, if the query ~r is
sent to a DeLP-Server where the program (11, A1) of Ex. 1 is stored, then the
answer YES will be returned.

Besides public knowledge, agents may have their own private knowledge.
Therefore, the proposed model not only allows agents to perform queries to the
program stored in a DelLP-Server, but also permits the inclusion in the query of
private pieces of information related to the agent’s particular context. This type
of query will be called contextual query and will be introduced next.

Definition 5 (Contextual query). Given a DeLP-program P=(II,A), a con-
teztual query for P is a pair [®,Q] where Q is a DeLP-query, and ¢ is a non-
contradictory set of literals such that I U @ is a non-contradictory set.

Definition 6 (Warrant for a contextual query). A contextual query [@,Q)
is warranted from the DeLP-program (II,A) if Q is warranted from (IIU®,A).

Note that Def. 5 requires IT U@ to be non-contradictory due to the problem
addressed in Obs. 1. The effect of performing a contextual query [®,Q] to a
DeLP-program (II,A) (Def. 6) will be to add all the literals in @ to (II,A4)
building (temporarily) a new program (ITU @, A), which will be used for returning
the appropriate answer. Note that although some new information not present in
(IT1,A) may be considered for warranting a contextual query [@,Q)], this process
will not affect the content of the stored program (IT,A) for future queries.

Observation 2 A DeLP-query is a particular case of a contextual query [®,Q]
where = (). Given [0,Q] and a program (II,A), it is easy to show that [0,Q] is
warranted from (IT,A), iff Q is warranted from (II1,A).

Since contextual queries are performed following a client/server model, the
sender of a query (client) may not know the content of the program in a Server.
Therefore, it may not be possible for a client to know in advance whether 17 U@
is non-contradictory. Hence, we will extend the notion of answer (Def. 4) to
return INVALID and the subset of @ that produces the contradictory set.

Definition 7 (Answer for a contextual query). An answer for a contextual
query [®,Q] from a DeLP-program (II1,A) is a pair (Ans,S), where Ans € {YES,
NO, UNDECIDED, UNKNOWN, INVALID} and S is a set of literals. If ITU® is
contradictory, then Ans = INVALID and S={L € [IU® | L € I U®} . Otherwise,
the answer will be (YES,{}) if Q is warranted from (II U®P,A); (No{}) if Q is

warranted from (ITUP,A); (UNDECIDED,{}) if neither Q nor Q) are warranted
from (ITUP,A); and (UNKNOWN,{}), if Q is not in the language of (ITUP,A).

Ezample 2. Consider the DeLP-program Py = (11, Ay), where:

II, = {r} and Ay = {(m—<c¢),(~m—<r),(c—=s),(~c—=s,p)}.

Here, the letters m, 7, ¢, s and p are the abbreviations of use_metro, rush_hour,
closed_roads, snow and snowplow respectively. From P,, the answer for the
DeLP-query c is UNDECIDED, whereas the answer for the contextual query [{s}, ¢]
is (YES,{}) (s activates an argument for c). Note that the answer for [{s,p},]
is (NO,{}) because now p activates a proper defeater. Observe that from Po, the
answer for ~m is YES, however, the answer for the contextual query [{s}, ~m)]
is (UNDECIDED,{}) and the answer for [{s,p}, ~m] is (YES,{}). Finally, the an-
swer for [{~m,p,~r},r] is (INVALID,{r}). Since these contextual queries do not
actually make a change on program Ps, after performing them, the DeLP-query
~m will still remain warranted from P5 and ¢ will not be warranted from Ps.

Proposition 1. Given a DeLP-program (II,A) and a contextual query [9,Q), if
Q € IT U then the answer for [®,Q] is (YES,{}). If Q € I U® then the answer
for [@,Q] is (NO,{}). Proof: By the proposition 5.1 given in [1], if Q@ € IT U@ then
Q is warranted from (IT U®,A). Hence, by Definition 7, the answer for [®,Q)] is
(YEs,{}). By the same cited proposition, if Q € IT U® then Q is warranted from
(ITU®,A) and hence, the answer for [$,Q)] is (NO,{}).

3.1 Generalized Contextual Queries

In a contextual query [®@,Q)], imposing that ITU® must be a non-contradictory
set may be in some cases too restrictive. Although the agent will be informed in
case of an invalid query (Definition 7), the agent should have to reformulate the
query in order to obtain an answer. Therefore, it would be useful to have a more
general type of query that, without imposing the mentioned restriction, resolves
the problem of a contradictory set before the query is processed.

In this section we propose three generalized types of contextual queries, each
one with a different policy for handling the mentioned problem. In the first one
(called non-prioritized contextual query), given a query [®,Q] and a program
(IT,A), if [TUP is contradictory, then the DeLP-Server will assign less priority
to the knowledge of the agent (@) than to the one in the Server (IT). Hence,
those literals from @ that are problematic will be ignored when answering that
query. In contrast, in the third one (called prioritized contextual query), when
ITU® is contradictory, more priority will be assigned to the literals in & than
those in II. Therefore, the literals in II that produce the contradiction will
be temporarily ignored for answering that query. The second generalized type
(called restrictive contextual query) has the effect of temporarily ignore literals
from II while processing the query. In this case, no policy is needed since no
literals are added to IT and a contradiction can never occur. The symbols “x”,
“47 “—7 will be used to distinguish each type of query.

Definition 8 (Non-prioritized contextual query).
Given a DeLP-program P, a non-prioritized contextual query for P is denoted
[@*,Q), where Q is a DeLP-query and ®* is a non-contradictory set of literals.

Definition 9 (Warrant for a non-prioritized contextual query).
A query [9*,Q] is warranted from (II,A) if Q is warranted from ((II @ ¢*),A).
Let C(IT) ={L if L € II}, then (Il ® &*)= (*\ C(II)) U II.

In contrast with Def. 5, in a non-prioritized contextual query [$*,Q] the
set ITUP* can be contradictory. However, the set ®* is required to be non-
contradictory as a minimal coherence principle. This type of query is useful
for agents that need to assign a preference to the information stored in the
Server. The operator ® resembles a non-prioritized merge operator that assigns
a preference to the elements of IT when merging IT and @. Thus, the effect of
performing a non-prioritized contextual query [$*,Q)] to a program (IT,A) will
be to temporarily consider in (I7,A) only those literals from &* that are not
problematic. Thus, if ITU®* is contradictory, those literals from @* that produce
contradictions will be ignored by the server. The subset of ignored literals will
be returned with the answer to inform that they have not been used for the
dialectical analysis. If [@*,Q)] returns (-,{}), all the literals of ¢ were considered.

Definition 10 (Answer for a non-prioritized contextual query).

The answer for [P*,Q] from (II,A) is a pair (Ans,S), where Ans € {YES, NO,
UNDECIDED, UNKNOWN, INVALID} is computed as shown in Def. 7, and the set
S C &* will contain those literals that have been ignored by the DeLP-Server
while processing Q, (i.e., L € S if L € &* and L € II). If ®* is contradictory,
then Ans = INVALID and S={L € &* | L € &*} .

Ezample 3. Consider the DeLP-program P3 = (I3, As3), where IT3 = {r,p,~f}
and Az = {(~m—=r),(m—<¢,r),(t—=r~c)}. The letters m, r, ¢, p, f and t are
the abbreviations of use_metro, rush_hour, closed_roads, park_closed, fog and
use_taxi respectively. From P35 the answer for the query ~m is YES whereas for

the non-prioritized contextual query [{c}*, ~m] the answer is (NO,{}). Observe
that the query [{~r}*, ~m] returns the answer (YES,{~r}), since r € IT is pre-
ferred. The DeLP-query ¢ has the answer NO, whereas [{~c, r, ~p, f}*,t] returns
the answer (YES,{~p, f}). Note that [{~c, ~t}* ¢] returns the answer (NO,{})
because {~c, ~t} U IT3 is non-contradictory and hence, the literal ~t is included
for answering the query. Although there exists a defeasible derivation for ¢ with
~c and (t— ~c), if ~t is present as a fact, in DeLLP there is no argument for ¢.

Proposition 2. Given a DeLP-program (II,A) and a non-prioritized contextual

query [@*,Q) it holds that:

1. if Q € II then the answer for [*,Q] will always be (YES,S).

2. if Q € & and Q & II then the answer for [®*,Q] will always be (YES,S).

3. if Q € II then the answer for [®*,Q] will always be (NO,S).

4. if Q € @ and Q ¢ IT will always be for [®*,Q] will be always (NO,S).
(Proof is omitted due to space restrictions)

Observation 3 A contextual query [P,Q)] is a particular case of a non-prioritized
conteztual query [P*,Q] where (ITUP*) is a non-contradictory set.

The next type of contextual query will allow an agent to temporarily ignore
some literals from the program stored in a Del.P-Server with the purpose of
warranting (). Since no literals will be added to the program in the server, then
no restriction over the literals included in the query is needed.

Definition 11 (Restrictive contextual query).
Given a DeL P-program P=(II,A), a restrictive contextual query for P is denoted
[@7,Q] where Q is a DeLP-query and ®~ is an arbitrary set of literals.

Definition 12 (Warrant for a restrictive contextual query). The query
[@7,Q) is warranted from (II,A) if Q is warranted from ((II \) ,A).

Definition 13 (Answer for a restrictive contextual query).

The answer [@~,Q] from (II,A) is a pair (Ans,S), where Ans € {YES, NO,
UNDECIDED, UNKNOWN } is computed as shown in Def. 7, and S =&~ N II, i.e.,
S will contain those literals that have been effectively ignored by the DeL P-Server.

Ezample 4. Consider P3 from Ex. 3. The answer for the restrictive contextual
query [{r}~, ~m] will be (UNDECIDED,{r}). Observe that a query [®~,Q] might
include in @~ literals that are not in I7. This superfluous literals will have not ef-
fect to the query, and the agent will know them because they will not be returned
in the answer. For instance, the answer for [{r,z}~, ~m] is (UNDECIDED,{r}) .

Observation 4 Given a restrictive contextual query [®~,Q] to a DeLP-program
(IT1,A), in the particular case that (IIND~) is empty, then the restrictive contex-
tual query behaves like a contextual query.

As stated above, the type of contextual query we propose next will assign a
preference to the information sent by the agent. Thus, if the Server has a program
(I1,A) and the query includes a set @ such that (ITU®) is a contradictory set,
then, some literals from IT will be ignored for answering the query.

Definition 14 (Prioritized contextual query).
Given a DeLP-program P, a prioritized contextual query for P is denoted [®T,Q]
where Q is a DeLP-query and @1 is a non-contradictory set of literals.

Definition 15 (Warrant for a prioritized contextual query).
The query [0F,Q] is warranted from (IT1,A) if Q is warranted from ((IT&PT),A).
Let C(@%) ={L if L€ &}, then (I ® &+)= (Il \ C(@")) U 7.

The operator @ resembles a prioritized merge operator. It removes (tem-
porarily) from IT the complement of the literals that belongs to @™ and then
(temporarily) adds #*. Both operations (the subtraction and then the addition)
are made in the same “transaction”. As remarked above, all of these changes to
the set I are local to the warrant process of the contextual query, and they will
not affect other queries nor make permanent changes to II.

Definition 16 (Answer for a prioritized contextual query).

The answer for [®T.,Q] from (IT1,A) is a pair (Ans,S). The first element Ans €
{YES, NO, UNDECIDED, UNKNOWN, INVALID} is computed as shown in Def. 7,
and the set S C II will contain those literals that have been ignored by the
DeLP-Server while processing Q (i.e., L € S if L € I and L € %). If &F is
contradictory, then Ans= INVALID and S={L € &+ | L € & } .

Ezample 5. Consider again P3 of Ex. 3. From (I3, A3) the answer for the query
[{c}t, ~m] is (NO,{}). In contrast with the Ex. 3, the answer for [{~r,c}T, ~m)]
is (UNDECIDED,{r}), because ~m is warranted from ({p, ~f,~r}, As) since ~r
is preferred over r € II. The answer for [{~c,7,~p, f}T,¢] is (YES,{p, ~f}).

Proposition 3. Given a DeLP-program (II,A) and a prioritized contextual
query [®T,Q] it holds that:

1. if Q € & then the answer for [®1,Q] will always be (YES,S).

2. ifQ € Il and Q € &+ then the answer for [®F,Q] will always be (YES,S).
3. if Q € & then the answer for [+ ,Q] will always be (NO,S).

4. ifQ € II and Q & & then the answer for [T ,Q] will always be (NO,S).

The proof is analogous to Proposition 2 and is not included due to space reasons.

Observation 5 The effect of considering a negated literal ~L to answer a query
differs from the effect of removing its complement L (see Fx. 6).

Ezample 6. Consider IIg = {x} and Ag = {(a—=z), (b—=~=x)}. From (II¢, Ag)
the answer for the DeLLP-query a is YES, and the answer for b is UNDECIDED.
Observe that the answer for [{x}~,a] is (UNDECIDED,{}) —since there are no ar-
guments for nor against a— and the answer for [{x}~,b] is also (UNDECIDED,{}).
Nevertheless, the answer for [{~x}T,a] is (UNDECIDED,{x}), and the answer
for [{~x}T,b] is (YES,{x}). Observe finally that the answer for [{~x}*a] is
(YEs,{~x}), and the answer for [{~x}*,b] is (UNDECIDED,{~x}).

Observation 6 A contextual query [,Q] is a particular case of a prioritized
contextual query [DT,Q] where (IIUPT) is a non-contradictory set.

3.2 Extended and combined contextual queries

Extending contextual queries to consider not only facts but also defeasible rules
is straightforward, because (as stated in Observation 1) if (II,A) is a DeLP-
program then (IT,(A U A;)) is also a DeLP-program for any set of defeasible
rules A;. The next example shows why this kind of queries are useful.

Ezample 7. Let II; = {f,h} and A7 = {(a—=g), (~d—=<h,g)}, from (IT7, A7)
the answer for the DeLP-query a is UNDECIDED, and the answer for ~d is UN-
DECIDED. Consider an agent that has the DeLP-program ({g}, {d—< a}) as part
of its private knowledge. From (IT7, A7) the answer for [{g},a] will be (YES,{}).
Then, since the agent has the defeasible rule (d—a) it could assume that if a
is warranted then d will be warranted. However, from (IT7 U{g}, A7 U{d—a})
the answer for d is NO, because there is a proper defeater that attacks d.

Definition 17 (Extended contextual query). Given a DeLP-program (I1,A),
an extended contextual query for (I1,A) is a pair [P,Q] where Q is a DeL P-query
and P=(®,A;) is a DeLP-program such that IIUP is a non-contradictory set.

Definition 18 (Warrant for an extended contextual query). The query
[(@,A1),Q] is warranted from (II,A) if Q is warranted from (ITUP, AUA;).

The definition of answer for [(?,4;),Q] will be the same as Def. 7 where A
is replaced by AUA;. Thus, a contextual query [@,Q)] is a particular case of an
extended contextual query [(,{}),Q], where the set of defeasible rules is empty.

Extending non-prioritized, restrictive and prioritized contextual queries to
include defeasible rules is straightforward. The corresponding definitions will
not be included because they are analogous to the previous ones.

Although several types of contextual queries have been defined, there are
some modifications to the program in the server that cannot be performed (see
Ex. 8). Therefore, we propose a new type of query that is a generalization of the
previous ones: the combined contextual query. This type of query will allow an
application of successive changes to a DeLP-program.

Ezample 8. Consider the DeLP-program (IIs, Ag), where IIs = {a,b} and
Ag = {(z—=1y), (y—=~b), (~y—a), (~2—= ~a)} Here, the answer for [{~b} 2]
is (UNDECIDED,{b}) because the argument {(z—y), (y—<~b) } has {~y—a}
as a defeater. Suppose that an agent wants to add ~b but to simultaneously re-
move a in order to “deactivate” the mentioned defeater. If it uses first [{~b}T 2]
and then [{a}™,z], the literal ~b will not be part of the program when the sec-
ond query is processed. Inverting the order of the queries does not solve the
problem because a will be present for the second query. On the other hand, if it
submits [{~b, ~a}T,z], the query will remove a but the literal ~a will be added
(see Obs. 5). Therefore, the answer for [{~b, ~a}*,z] will be (UNDECIDED,{b, a})
because the argument {~z— ~a} defeats {(z—=y), (y—<~b)}.

Definition 19 (Combined contextual query).
Given a DeLP-program P=(II,A), a combined contextual query for P is a pair
[(Seq, A1),Q] where Q is a DeLP-query, Ay is a set of defeasible rules and Seq

is a sequence of non-contradictory sets of literals, marked with x, + or —.

Thus, a combined contextual query allows to apply several types of changes
to a program. This resolves issues like the one mentioned in Ex. 8. For example,
[({a}™, {~b}T],{}), 2] will modify (IIs, Ag) by removing a, and then adding ~b
and removing b, before computing the DeLP-query z over the modified program.

The effect of performing a combined contextual query [(Seq, A1),Q] to a
DeL.P-program (II,A) will be to consider the changes defined in the sequence
Seq, apply them in the given order, and then compute the answer for the DelL.P-
query @ from the modified program. The program will be modified according to
Definitions 9, 12 and 14.

Example 9. Consider the program in Example 8, if we perform the combined
query [([{a,~b}~,{x}*,{~b}"],{a—<z}),z2], then a and ~b will be removed
from ITg (~b ¢ ITg, so its exclusion has no effect); next, = is added to ITs (since
~x ¢ IIg); finally, ~b is added to ITg and, collaterally, b is dropped from ITs.
Therefore, the program over which query z will be performed is (ITg, Ag), where
Iy = {z,~b} and Ag = {(z—=y), (y—=~b), (~y—=a),(~z—=r~a), (a—=2z)}.
Here, there is one argument for z: {(z —<y), (y— ~b)}, which is defeated by an
argument for ~y: {(~y—a), (a—=x)}. Hence, the answer for

[({a, ~b} =, {z}*, {~b}T],{a—<z}), 2] is (UNDECIDED,{a, b}).

4 Usage and Implementation

Several DeLP-Servers can be used simultaneously, each of them providing a
different shared knowledge base. Hence, agents may perform the same contex-
tual query to different servers, and they may share different knowledge with
other agents through different servers. Thus, several configurations of agents
and servers can be established (statically or dynamically). One possible configu-
ration is to have a single DeLLP-Server with all the public knowledge of the system
loaded in it. This has the advantage of having the shared knowledge concentrated
in one point, but it has the disadvantages of any centralized configuration. In a
MAS with many client agents, several copies of the same DeLP-Server (provid-
ing the same knowledge) can be created, and each agent could select a different
server for sending its queries. Having several copies of the same DeLP-Server
is also useful in the case of time-consuming queries, because one agent may
distribute or parallelize its own queries.

Since public knowledge will not be restricted to be in a unique repository, then
it can be structured in many ways. For example, several servers with different
shared knowledge can be created. Thus, special-purpose DeLP-Servers can be
implemented, each of them representing knowledge of a specific domain. The
MAS may then have several groups of agents with specific tasks, and each group
can share specific knowledge through each special-purpose DeLLP-Server.

Observe that, by using extended contextual queries, an agent may send a
complete DeLP-program (IT,A) to a server in order to obtain answers for its
queries. Thus, in a MAS it will be possible to have some DeLP-Servers with
no public knowledge stored, which will receive pairs [(IT,4), @] and will return

the answer for @ from (I1,A). This particular kind of servers will act only as
reasoning services without using public knowledge. As mentioned above, having
more than one copy of this particular server without pre-loaded knowledge will
be useful for one agent to distribute or parallelize several queries.

It is important to note that, in our model, the public program stored in a
DeLP-server is loaded upon server creation and it remains unaffected thereafter.
That is, a client agent cannot make permanent changes to it. Our design choice
differs from other approaches that use a public shared space for storing knowl-
edge (as a blackboard or a tuple space) where every agent has permission to
change it. If client agents in our model were allowed to make permanent changes
to the public knowledge stored in a DeLLP-server, then the model would collapse
to a shared memory repository, and several issues would have to be addressed.
For example, a permission model would have to be defined because one agent
can change information that is needed by other agents, a policy for updating
information that changes dynamically could be needed, etc.

The DeL.P-Server was implemented as a stand-alone program that runs in
a host and interacts with client agents using the TCP protocol. It supports
the connection of several agents, which can be either in the same host, or in
different ones. Furthermore, an agent may connect to several DeLLP-Servers, and
send queries to all of them. The DeLP-Server is implemented in SWI-PROLOG [5]
and client agents can be written in any language that supports TCP connections.

5 Conclusions and Related Work

In this paper we propose a model that allows agents to deliberate using de-
feasible argumentation, to share knowledge with other agents, and to represent
individual knowledge in a private manner. We have considered the design and
implementation of a Defeasible Logic Programming Server that handles queries
from several client agents distributed in remote hosts. Queries are answered us-
ing public knowledge stored in the Server and individual knowledge that client
agents can send as part of a query, providing a particular context for it. Different
types of contextual queries were presented and analyzed.

Our approach was in part inspired by Jinni/Bin-Prolog [6], where several
servers can be created, and knowledge can be shared through them. Neverthe-
less, both approaches have several differences. Their knowledge representation
language and their reasoning formalism is PROLOG, whereas we use DeLP. In
contrast with us, they share knowledge through blackboards where agents can
make permanent changes. Finally, we provide several types of contextual queries,
whereas they use PROLOG queries and Linda operations.

In [7] a description of a light-weight Java-based argumentation engine is given
that can be used to implement a non-monotonic reasoning component over the
Internet or agent-based applications. In contrast with us, they provide an appli-
cation programming interface (APT) that exposes key methods to allow an agent
or Internet application developer to access and manipulate the knowledge base to
construct rules, specify and execute queries and analyze results. Therefore, their

engine allows the agent or Internet application developer to change the program
or knowledge base. This capability, in a scenario where several agents try to
access to the same knowledge base requires that several issues have to be consid-
ered (e.g., synchronization and access/update permissions). Another difference
with our approach is that their engine is implemented in Java and presented as
a self-contained component that can be integrated into applications. In contrast,
a DeLLP-Server is an independent stand-alone program that runs in a host and
interact with agents using the TCP protocol. In [7], it is not clear what are the
possible answers that an agent will obtain from the argumentation engine.

In [8], a query answering system employing a backward-chaining approach
is introduced. This query answering system, Deimos, is a suite of tools that
supports Defeasible Logic [9, 10]. Although related, Defeasible Logic differs from
Defeasible Logic Programming (see [1] for a comparison of both approaches).
Similar to us, the system is prepared to receive and compute queries using rules
representing defeasible knowledge. In contrast with us, the query answering sys-
tem is accessible through a command line interface and a CGI interface. Thus, it
must be used by a human being, whereas, in our approach, a software agent or
any kind of application is allowed to interact with the Server, including a human
being through a proper program interface. Another difference with our approach
is that in Deimos there is no notion of argument. In order to decide between two
contradictory conclusions, Deimos compares only one pair of rules, whereas in
DeLP the two arguments that support those conclusions are compared. Com-
paring only a pair of rules may be problematic as we show in [1].

References

1. Garcia, A.J., Simari, G.R.: Defeasible logic programming: An argumentative ap-
proach. Theory and Practice of Logic Programming 4(1) (2004) 95-138

2. Chesnevar, C.I., Maguitman, A.G., Loui, R.P.: Logical Models of Argument. ACM
Computing Surveys 32(4) (2000) 337-383

3. Prakken, H., Vreeswijk, G.: Logical systems for defeasible argumentation. In:
Handbook of Philosophical Logic, 2nd ed. Kluwer Academic Pub. (2000)

4. Stolzenburg, F., Garcia, A.J., Chesfievar, C.I., Simari, G.R.: Computing general-
ized specificity. Journal of Aplied Non-Classical Logics 13(1) (2003) 87113

5. (SWI-Prolog) http://www.swi—prolog.org.

6. Tarau, P.: (Jinni 2002: A High Performance Java and .NET based Prolog for Object
and Agent Oriented Internet Programming.) http://www.cs.unt.edu/~tarau/.

7. Bryant, D., Krause, P.J., Vreeswijk, G.: Argue tuProlog: A Lightweight Argu-
mentation Engine for Agent Applications. In: Proc. of 1st Int. Conference on
Computational Models of Argument (COMMAOG6), IOS Press (2006) 27-32

8. Maher, M., Rock, A., Antoniou, G., Billington, D., Miller, T.: Efficient defeasible
reasoning systems. Int. Journal on Artificial Intell. Tools 10(4) (2001) 483-501

9. Nute, D.: Defeasible logic. In: Handbook of Logic in Artificial Intelligence and
Logic Programming. Vol 3. Oxford University Press (1994) 355-395

10. Governatori, G., Maher, M., Antoniou, G., Billington, D.: Argumentation seman-
tics for defeasible logic. Journal of Logic and Computation 14 (2004) 675-702

