
5TH INTERNATIONAL SYMPOSIUM ON ROBOTICS AND AUTOMATION 2006 , SAN MIGUEL REGLA HIDALGO, MÉXICO, AUGUST 25-28, 2006. 1

KheDeLP: A Framework to Support Defeasible
Logic Programming for the Khepera Robots

Edgardo Ferretti, Marcelo Errecalde, Alejandro Garcı́a, and Guillermo Simari

Abstract— In this paper we presentKheDeLP, a framework to
support Defeasible Logic Programming (DeLP) for theKhepera
robots. KheDeLP is a layered system where lower level layers
allow interaction with simulated and real Kheperarobots. Upper
layers represent more abstract capabilities of the robots and
provide a set of services which would facilitate our work in
cognitive robotics. These layers hide low-level robot-computer
communication and provides a high-order set of predicates to
develop programs in a declarative manner. The most abstract
layer in this framework provides support for knowledge repre-
sentation and high-level reasoning. At this end, we use DeLP,
a formalism which allows to deal with partial and potentially
contradictory information. This formalism could be a valuable
tool to face the coordination problems we are interesting in,
where the dynamic features of the environment make this kind
of information be the rule, not the exception.

Keywords— Cognitive Robotics, DeLP, Khepera, Webots, Pro-
log.

I. I NTRODUCTION

Research in robotics in the last two decades was signifi-
cantly influenced by the behavior-based approach to Artificial
Intelligence (AI), which essentially postulates that in order
to achieve good performance in a situated agent, like a robot,
the agent’s ability to react properly to the external environment
should be the fundamental aspect to be considered. Nowadays,
most of AI researchers recognize the importance of reactivity
but also it is out of discussion, that this aspect alone is
not enough to create successful situated agents capable of
performing complex tasks. For instance, in cases like self-
governing space-crafts and robots with complex social in-
teraction capabilities, high-level representational thinking is
required. An important aspect that usually arises in these areas
is that it is very important not to make mistakes, as pointed out
by Brian Williams1in [1]: “You have to think very carefully
about all the things that could happen.”

Ronald Arkin2 also shares this vision and considers that
intelligent robots should use a mix of behavioral-based intelli-
gence and representational thought. Arkin defends this position
stating that “There is strong neuro-physiological evidence of

E. Ferretti and M. Errecalde belong to the Computer Science De-
partment, Universidad Nacional de San Luis, Ejército de los An-
des 950, (D5700HHW) San Luis, Argentina.email: {ferretti,
merreca }@unsl.edu.ar

A. Garćıa is a researcher of CONICET and with G. Simari they be-
long to the Department of Computer Science and Engineering, Universidad
Nacional del Sur, Av. Alem 1253, (B8000CPB) Bahı́a Blanca, Argentina.
email: {ajg, grs }@cs.uns.edu.ar

1Brian Williams, lead researchers at MIT’s Artificial Intelligence Model-
based Embedded and Robotic System Group.

2Ronald Arkin, Director of the Georgia Institute of Technology’s Mobile
Robot Laboratory.

the co-existence of these systems in human-level intelligence,
. . . , if we strive to reach artificial intelligence above that of
bugs, it is important to incorporate both.”

In this context, where the importance of higher level rep-
resentation and reasoning in robotics is recognized, several
groups have recently begun to work on what is called “cog-
nitive robotics.” Cognitive robotics intends to capture the
application of logical formalisms and computational models
of high-level cognitive functions, such as planning, to real-
world and simulated robots.

This paper adheres the trends of cognitive robotics and
therefore we propose theKheDeLPframework, that facilitates
the experimentation with real and simulatedKheperarobots,
and provides a set of facilities that may contribute significantly
in the development of the robots’ deliberative component. This
framework can play an important role in our research group
which has as one of its main objectives, the design, implemen-
tation, and application of high-level multi-agent coordination
models.

KheDeLP is a layered framework to support Defeasible
Logic Programming (DeLP) [2] for theKheperarobots. The
lower level layers allow the interaction with a group of
Khepera 2mobile robots [3], with capabilities to pick and
transport objects and perform different kinds of environment
sensing. Moreover, before the direct experimentation with the
robots we also perform robots simulations withWebots[4], a
3D realistic professional simulator. Furthermore, the use of this
simulator allows us to model situations with more than three
robots, the number of robots that we have at the laboratory.

On the other hand, upper layers represent more abstract
capabilities of the robots and provide a set of services which
can benefit profitably our future work in cognitive robotics.

Our aim is to develop deliberative agents to control the
robots coordination, and many of the aspects related to the
robots’ behavior require an expressive representation language
that easily reflect the decision processes made by the agents.
In consequence, these layers hide low-level robot-computer
communication and provides a high-order set of predicates to
develop programs in a declarative manner.

One of the basic functionalities thatKheDeLP provides
is an interface in Prolog which represents all the sensorial
and effectorial capabilities of theKhepera 2robots. Prolog
is a programming language that has already been used to
develop applications in the field of cognitive robotics [5],
[6]. The layer on the top, namedcognitive layer provides
support for knowledge representation and high-level reasoning.
Thus, theKheDeLP framework could be used in the direct
experimentation of stand-alone applications as well as in the

ISBN 970-769-070-4, ISRA 2006 Proceedings 98

5TH INTERNATIONAL SYMPOSIUM ON ROBOTICS AND AUTOMATION 2006 , SAN MIGUEL REGLA HIDALGO, MÉXICO, AUGUST 25-28, 2006. 2

development of the deliberative component of a cognitive
robot architecture.

The paper is organized as follows: Section II presents an
overview of the Khepera 2 robots, the hardware platform
we use at the laboratory. Section III describes theKheDeLP
framework. Finally, section IV and V put forward the future
work and conclusions.

II. K HEPERA2 ROBOT OVERVIEW

TheKhepera 2robot, is a miniature mobile robot that allows
confrontation to the real world of algorithms developed in
simulation for trajectory execution, obstacle avoidance, pre-
processing of sensory information, hypothesis on behaviors
processing, among others. Its small size (60 mm diameter, 30
mm height), light weight (approx. 70 grams), and compact
shape are ideal for micro-world experimentation. TheKhep-
era 2 has eight infrared sensors to sense both ambient light
levels and proximity to nearby objects. It also has two DC
motors that are capable of independent variable speed motion,
allowing the robot to move forward, backward, and complete
a variety of turns at different speeds.

As can be observed in Figure 1, theKhepera 2has several
extension modules that can be plugged into the top of the
robot. These include an arm with a gripper, a linear vision
system, and a matrix vision camera. TheKhepera 2has an
on-board Motorola 68331 (25MHz) processor, 512 KB RAM,
512 KB Flash memory programmable via serial port, and
rechargeable NiMH batteries that allows it up to 60 minutes
of autonomy. Thus, theKhepera 2has sufficient sensors and
actuators to ensure that it can be programmed to complete a
wide variety of tasks.

When connected to a host computer through the serial port,
theSemCor control protocol is used to send control messages
to the robot. As the robot may need to send an answer message
to the host, ASCII messages are used to communicate between
them. Each interaction consist of:

• A command, beginning with one or two ASCII capital
letters and followed, if necessary, by numerical or literal
parameters separated by a comma and terminated by a
carriage return or a line feed, sent by the host computer
to theKhepera 2robot.

• A response, beginning with the same one or two ASCII
letters of the command but in lower case and followed,
if necessary, by numerical or literal parameters separated
by a comma and terminated by a carriage return and a
line feed, sent by theKhepera 2to the host computer.

During the entire communication, the host computer acts as
a master and the robot as a slave. All communications are
initiated by the master.

Code can also be uploaded into theKhepera’smemory for
a stand-alone execution. Programs written in C language or
in M68000 assembly language, can be compiled under many
environments using a cross-compiler and uploaded in RAM or
flashed in non-volatile memory. A complete API is available,
either in C or assembly language, for programs to interface
with the robot hardware.

Fig. 1. Khepera 2robot and its accessories

III. T HE KHEDELP FRAMEWORK

This framework is currently developed as a set ofCiao
Prolog [7] modules running under the Linux operating system.
To our view,Ciao is one of the most complete Prolog systems
that allows the programmer to use sockets, multi-threads,
Java and C embedded code in Prolog programs and vice
versa, among others. In addition, it provides a fully integrated
programming environment with the text editorEmacs, that
allows the programmer to run, debug, compile, and syntax
correction of Prolog programs.

In Figure 2 the four-layerKheDeLPframework is shown.
The two lower layers handle the interactions with real and
simulated robots. These layers have been designed to com-
municate with Webots in the same way they do with the
real Khepera 2 robots. On the contrary, the two layers on
the top are dedicated to provide a set of high-level services
which include: a) an interface inCiao Prolog representing
all the sensorial and effectorial capabilities of theKhepera 2
robots (theSensorial / Effectorial layer) and b) a support
for knowledge representation and high-level reasoning (the
cognitive layer.)

As can be observed in the figure, to manage the serial
port communication with the robot this framework uses the
KRobot classdeveloped by Harlanet al. [8]. TheKRobot class
hides low-level robot-computer communication and allows
developers to focus on robot-environment interaction.

As the Sensorial / Effectorial layer has been programmed in
Prolog, it extends the functionalities provided by theKRobot
class implementing a higher level interface which allows
an easier interaction with the modules that represent the
knowledge about the world, in a declarative manner.

Finally, the cognitive layer provides the high-level cognitive
functions for the software that controls the robot. At this stage
of the framework development, these functions are restricted to
support knowledge representation in DeLP. This support will
be an useful tool to deal with incomplete and contradictory
information that is characteristic of this dynamic domain.

As can be noted in the figure, the cognitive and Senso-
rial / Effectorial layers can directly interact with stand-alone
applications and a software component that we call “agent
module.”

With the phrase “stand-alone applications” we refer to those
programs that allows the user to interact with the simulator
or the real robot in an easy and direct way. This type of
software can play an important role in the early stages of

99

5TH INTERNATIONAL SYMPOSIUM ON ROBOTICS AND AUTOMATION 2006 , SAN MIGUEL REGLA HIDALGO, MÉXICO, AUGUST 25-28, 2006. 3

experimentation where some particular aspects of the control
of the robot need to be developed and tested.

The agent module will contain the specification of the
behavior of the agent that controls the robot and in a future
would be able to be considered as the most abstract layer of
the framework. This layer is not implemented yet, but we can
observe that the two upper layer of the actual framework will
facilitate to a great extent this task, because they provide the
necessary services to implement the traditional cycle “sense-
deliberate-act” for controlling a cognitive robot.

Next, we describe in detail these four layers that compose
our framework.

Fig. 2. TheKheDeLPframework scheme

A. The low-level communication layer

This layer handles all the details related with serial com-
munication among the robots and the high-level predicates of
our framework. This layer is composed by two modules, one
for the real robots and another for interfacing the simulator.

1) The KRobot class:TheKRobot classis the base building
block for the module that communicates with the robots.
This C++ class maintains the information of the robot’ state
and provides a set of methods equivalent to theSemCor
protocol commands. For example, the command to read from
the proximity sensors situated around the robot is “N”, where
to this command theKhepera 2 would respond with the
following string, if it had hit an object by its front part:
n,0,259,1023,1023,278,0,0,0 . The response is re-
turned as a C-style string and must be parsed to determine the
values of each of the proximity sensors.

In contrast, if we want to read the proximity sen-
sors of a Khepera 2 robot associated with an object
r of the type KRobot , we just have to invoke the
methodr.readProxSensors(); and it saves these val-
ues in an internal structure of the object. Then, each
of these sensor values can be accessed by the method
r.getProxSensor(i); with 0 ≤ i ≤ 7.

2) Webots interface: In Webots, the
DifferentialWheels node defines any differentially
wheeled robot. Thus, theKhepera 2robot is an instance of
the DifferentialWheels node with its fields completed
to match its shape and functionalities.

In this way, the module that handles the communication
between the Prolog interpreter and the simulator translates the
predicates available in the Sensorial / Effectorial layer, to their
respective commands of theWebots’controllers API.

B. The interconnection layer

The development of this layer adheres the paradigm of a
TCP/IP connection-oriented protocol, using Berkeley sockets.

In Section II was mentioned that during the entire com-
munication, the host computer acts as a master and the robot
as a slave, and that all the communications were initiated by
the master. In consequence, the robots’ control modules were
programmed with the corresponding code of a server, while
the predicates available in the Sensorial / Effectorial layer are
seen as clients.

When the Sensorial / Effectorial layer’s predicates should
sent a command to a real or simulated robot, they launch a
temporary client (programmed in C) that communicates to the
server (the real or simulated robot) and waits for its answer.
In Figure 3, this communication process is depicted.

As a final remark, one advantage of using TCP/IP sockets to
develop this layer, is that it makes it possible to interact with
a global camera (that covers the robots’ world) and its video
and command communication servers that process the images
it obtains, and generate information packets that are made
available to be used by the agents that control the robots. For
instance, one alternative would be using theDoraemonvideo
server [9], the one used in the E-League competition [10].

C. The Sensorial / Effectorial layer

This layer is composed by 40 predicates that represent the
sensorial / effectorial capabilities of theKhepera 2robot and
its extension turrets. As all theSemCor commands after being
issued receive a result or a confirmation from theKhepera 2
robots, all the predicates have a variable as parameter where
this answer is returned.

The parameters denotedOutB , OutInt and OutL will
return an appropriate boolean, integer or a list value. This
returned value will contain useful information for the caller
of the predicate. In the case ofOutB , it will generally return
‘true’ when the execution of the required action is successful.

For example, in III-A.1 was mentioned that theSemCor
command to read from the proximity sensors of theKhepera 2
robot is “N”, where to this command the robot responds the
letter “n” followed by the eight values separated by commas

100

5TH INTERNATIONAL SYMPOSIUM ON ROBOTICS AND AUTOMATION 2006 , SAN MIGUEL REGLA HIDALGO, MÉXICO, AUGUST 25-28, 2006. 4

Fig. 3. Functioning of the interconnection layer

(e.g., n,0,259,1023,1023,278,0,0,0 .) Besides, it
was noted that the methodr.readProxSensors(); of
an objectr of the typeKRobot , saves these values in an
internal structure of the object and later they can be accessed
by the methodr.getProxSensor(i); with 0 ≤ i ≤ 7. In
our case, the predicateget prox sensors(OutL) would
return all the proximity sensors values in the listOutL .

Due to space constrains, in the Appendix a subset of all
the predicates available in this layer are presented. Finally, it
is important to remark that these predicates are used without
distinction to communicate with a real or simulated robot.

D. Cognitive layer

This layer provides the high-level cognitive functions for the
software that controls the robot, such as reasoning, knowledge
representation, learning, planning, among others. At this stage
of the framework development, these functions are restricted to
support knowledge representation and reasoning in DeLP [2].
The overall idea is that the agent’s knowledge is represented
as a DeLP program3 and this layer provides a predicate
answer(Q,Answer) to query the DeLP interpreter. To
this query, and depending on the agent’s knowledge, the
interpreter would respondYES, if Q is warranted;NO, if the
complement ofQ is warranted;UNDECIDED, if neither Q nor
its complement is warranted; andUNKNOWN, if Q is not in the
language of the program. In the future, the DeLP interpreter

3The implementation (interpreter) of DeLP that satisfies the
semantics described in [2] is currently accessible online at
http://lidia.cs.uns.edu.ar/DeLP .

will constitute the base of the deliberative component of the
agents to be developed.

Defeasible argumentation is a powerful formalism suitable
for reasoning with potentially contradictory information in
dynamic environments [11], [12]. To deal with contradictory
and dynamic information, in DeLP,argumentsfor conflicting
pieces of information are built and then compared in order to
decide which one prevails. The argument that prevails provides
a warrant for the information that it supports.

A brief explanation of how warrants are obtained using
DeLP is included below (the interested reader is referred to [2]
for a detailed explanation.) In DeLP, knowledge is represented
using facts, strict rules or defeasible rules:

• Factsare ground literals representing atomic information
or the negation of atomic information using the strong
negation “∼” (e.g., target(white)).

• Strict Rules are denoted L0← L1, . . . , Ln,
where the head L0 is a ground literal and the
body {Li}i>0 is a set of ground literals (e.g.,
∼target(black)← target(white)).

• Defeasible Rules are denoted L0 –≺L1, . . . , Ln,
where the head L0 is a ground literal and the
body {Li}i>0 is a set of ground literals (e.g.,
∼move forward –≺ obstacle(ahead)).

Syntactically, the symbol “–≺ ” is all that distinguishes a
defeasible rule from a strict one. Pragmatically, a defeasible
rule is used to represent defeasible knowledge,i.e., tentative
information that may be used if nothing could be posed
against it. A defeasible rule “Head –≺Body” is understood
as expressing that “reasons to believe in the antecedentBody
provide reasons to believe in the consequentHead” [13].

A Defeasible Logic Program (de.l.p.) P is a set of facts,
strict rules and defeasible rules. When required,P is denoted
(Π,∆) distinguishing the subsetΠ of facts and strict rules,
and the subset∆ of defeasible rules. Observe that strict and
defeasible rules are ground. However, following the usual
convention [14], some examples will use “schematic rules”
with variables. Given a “schematic rule”R, Ground(R)
stands for the set of all ground instances ofR. Given a
programP with schematic rules, we define:Ground(P) =⋃

R∈P Ground(R). In order to distinguish variables, they are
denoted with an initial uppercase letter.

Strong negationis allowed in the head of program rules,
and hence may be used to represent contradictory knowledge.
From a program(Π,∆) contradictory literals could be derived,
however, the setΠ (which is used to represent non-defeasible
information) must possess certain internal coherence. There-
fore, Π has to be non-contradictory,i.e., no pair of contra-
dictory literals can be derived fromΠ. Given a literalL the
complement with respect to strong negation will be denoted
L (i.e., a=∼a and∼a=a.)

DeLP incorporates an argumentation formalism for the treat-
ment of the contradictory knowledge that can be derived from
(Π,∆). This formalism allows the identification of the pieces
of knowledge that are in contradiction. A dialectical process
is used for deciding which information prevails. In particular,
the argumentation-based definition of the inference relation

101

5TH INTERNATIONAL SYMPOSIUM ON ROBOTICS AND AUTOMATION 2006 , SAN MIGUEL REGLA HIDALGO, MÉXICO, AUGUST 25-28, 2006. 5

makes it possible to incorporate a treatment of preferences in
an elegant way.

In DeLP a literalL is warranted from (Π,∆) if a non-
defeated argumentA supportingL exists. To put it briefly, an
argumentfor a literal L, denoted〈A, L〉, is a minimal set of
defeasible rulesA⊆∆, such thatA ∪ Π is non-contradictory
and there is a derivation forL from A ∪ Π. In order to
establish if 〈A, L〉 is a non-defeated argument,argument
rebuttals or counter-argumentsthat could bedefeatersfor
〈A, L〉 are considered,i.e., counter-arguments that by some
criterion are preferred to〈A, L〉. Since counter-arguments are
arguments, defeaters for them may exist, and defeaters for
these defeaters, and so on. Thus, a sequence of arguments
calledargumentation lineis constructed, where each argument
defeats its predecessor in the line (for a detailed explanation
of this dialectical process see [2].) In DeLP, given a queryQ
there are four possible answers:YES, if Q is warranted;NO,
if the complement ofQ is warranted;UNDECIDED, if neither
Q nor its complement is warranted; andUNKNOWN, if Q is
not in the language of the program.

For example, consider an agent that represents some of its
knowledge with the followingde.l.p.program:

target(white)
∼target(black)
obstacle(X)← ∼target(X)
move forward –≺ target ahead
∼move forward –≺ target ahead, obst ahead
∼move forward –≺ target ahead, at target
target ahead –≺ target(X), camera detects(X)
at target –≺ target(X), prox sensor detects(X)
turn –≺ obst ahead
turn –≺ target(X),∼camera detects(X)
obst ahead –≺ obstacle(X), prox sensor detects(X)

In our example, the target is a white object and everything

that is not white (e.g., black) it is considered as an obstacle.
The agent has defeasible rules that encode its (defeasible)
reasons for moving forward or for turning. Notice that the
literal camera detects represents an object that a linear
vision camera detects, andprox sensor detects represents
an object that the proximity sensors detect. Both literals
should be provided by a lower layer that interacts directly
with the robots. For instance, consider a situation where
both the camera and the proximity sensors detect a white
object. In such a case, bothcamera detects(white) and
prox sensor detects(white) succeed, and the following con-
flicting arguments can be obtained:4

A1 =

{
move forward –≺ target ahead
target ahead –≺ target(w), camera detects(w)

}

A2 =

{
∼move forward –≺ target ahead, at target
target ahead –≺ target(w), camera detects(w)
at target –≺ target(w), prox sensor detects(w)

}

SinceA2 is a proper defeater forA1 (because it ismore
informed [2]) then there is a warrant for∼move forward.

4Due to space restrictions “white” will be abbreviated “w”, and “black”,
“b”.

In this situation, the answer forat target is YES, for
∼move forward is YES, and formove forward is NO.

Since the robots are in a dynamic environment, these
answers could differ if something changes. Consider now
that the situation changes and the robot is not “attarget”
(e.g., the white object was moved by other robot) then only
camera detects(white) holds. In this new situation, the argu-
mentA2 can not be constructed and therefore, the answer for
move forward will be YES, providing reasons for moving
forward.

Finally, consider a new situation in which the target is ahead
but there is an obstacle to avoid,i.e., camera detects(white)
andprox sensor detects(black) holds. In this new situation,
the argumentA1 can be obtained butA2 can not. However,
A3, a new proper defeater forA1, appears:

A3 =

{
∼move forward –≺ target ahead, obst ahead
obst ahead –≺ obstacle(b), prox sensor detects(b)

}
Hence, the answer for∼move forward is YES, and for

move forward is NO. Notice that in this last situation the
following argument can be constructed:

A4 =

{
turn –≺ obst ahead
obst ahead –≺ obstacle(b), prox sensor detects(b)

}
that provides a warrant forturn.

Next, a possible implementation for the predicates
camera detects(X) andprox sensor detects(X), based on
lower layers, follows:

cameradetects(white) :- k213get image(L),
searchsublist(whiteValue, L).

cameradetects(black) :- k213get image(L),
searchsublist(blackValue, L).

prox sensorsdetects(white) :- getprox sensors(L),
searchprox(whiteValue, L).

prox sensorsdetects(black) :- getprox sensors(L),
searchprox(blackValue, L).

In this example, the predicatek213get image(L) would
return in L a list with 64 pixel values. Then, the predicate
searchsublist(whiteValue, L)would searchwhite, this involves
finding a sublist ofconstP pixels with values higher than
whiteValue. In the same way, looking forblack would imply
to find a sublist ofconstP pixels with values lower than
blackValue.

If we now consider the predicateprox sensorsdetects(X),
in this caseget prox sensors(L)would return in L a list
with 8 values corresponding to the proximity sensors and
searchprox(whiteValue, L)would succeed if any of the sen-
sors’ values is higher thanwhiteValue. On the contrary,
searchprox(blackValue, L)would succeed if any of the sen-
sors’ values is lower thanblackValue.

IV. FUTURE DEVELOPMENTS

At the moment, we have already programmed all the pred-
icates of the Sensorial / Effectorial layer for simulated robots,
while for the realKhepera 2robots, none of the predicates

102

5TH INTERNATIONAL SYMPOSIUM ON ROBOTICS AND AUTOMATION 2006 , SAN MIGUEL REGLA HIDALGO, MÉXICO, AUGUST 25-28, 2006. 6

related with the extension turrets have been programmed yet.
To complete this task, we will have to add new classes
to Harlan et al. C++ interface with one class per extension
module, and methods for eachSemCor command of the k213
linear vision extension turret, k6300 matrix vision extension
turret, and the gripper-arm extension turret.

Even though this framework has not been tested under the
Windows operating system, we think that its code should be
easily ported becauseCiao and Webotsversions for Win-
dows exist. However, minimal changes will be needed, for
example, the serial port definition should be changed from
/dev/ttyS0 to COM1.

We plan to extend the low-level layer to allow the commu-
nication among the robots. This is a key feature to develop
coordination models. However, as we are interested in devel-
oping coordination models where point-to-point and broadcast
explicit communication exist, only this kind of facilities will
be provided. In this way, this interface would also be useful to
those researchers that have theKhepera’ radio base module,
because the robots could communicate among them in a
wireless mode.

In the future, other capabilities like learning and high-level
planning will also be incorporated in the cognitive layer.

V. CONCLUSIONS

In this paper we have presentedKheDeLP, a flexible
framework that helps researchers, teachers, and students in
the development of applications for theKheperarobots that
require high-level cognitive capabilities. The framework hides
low-level robot-computer communication and provides a high-
order set of predicates to help us to concentrate on the high-
level problem specification. Besides, it has the advantage of
communicating withWebotsin the same way it does with the
real Khepera 2robots.

KheDeLP is intended to be used in complex robotic sce-
narios which may involve changing goals, and partial and
potentially contradictory information. At this end,KheDeLP
provides support to use DeLP, a formalism amenable to
deal with this kind of situations. In particular, we think that
KheDeLPwill play an important role in our research group
which has as one of its main objectives, the design, implemen-
tation, and application of high-level multi-agent coordination
models.

ACKNOWLEDGMENT

We thank the Universidad Nacional de San Luis and the
Universidad Nacional del Sur for their unstinting support.

This work is partially supported by, Consejo Nacional
de Investigaciones Cientı́ficas y T́ecnicas (CONICET) PIP
5050, and Agencia Nacional de Promoción Cient́ıfica y Tec-
nológica (ANPCyT) (PICT 2002, Nro.13096 and PICT 2002
Nro.12600).

APPENDIX

A SUBSET OF THE PREDICATES OF THE

SENSORIAL / EFFECTORIAL LAYER

Here, some of the predicates belonging to the Sensorial / Ef-
fectorial layer with a brief explanation for each one, are

presented:

A. Robot’s predicates

• move forward(Sw, OutB) : Makes the robot’ mo-
tors to move forward indefinitely at speedSw (0 ≤ Sw≤
1000 mm/sec.) In OutB returns an acknowledgment
indicating the status of the operation required.

• turn right(Dg, OutB) : Makes robot turn rightDg
degrees passed as parameter. InOutB returns an ac-
knowledgment indicating the status of the operation re-
quired.

• get prox sensors(OutL) : Returns all the proxim-
ity sensors’ values inOutL .

B. K213 and K6300 vision extension turrets predicates

• k213 get image(OutL) : Returns inOutL as a list,
the 64 grey-level values corresponding to the pixels of
the image.

• k6300 get line(Line, OutL) : Returns inOutL
as a list, the 160 decimal values of the rowLine
(0 ≤ Line ≤ 119.) An image must be acquired first.

REFERENCES

[1] T. Simon, “Robots that reason, learn and crave improvement,”
http://www.exn.ca/ai/machine.asp, 2001, an interview to Brian Williams.

[2] A. J. Garćıa and G. R. Simari, “Defeasible logic programming: an
argumentative approach,”Theory and Practice of Logic Programming,
vol. 4, no. 2, pp. 95–138, 2004.

[3] K-Team, “Khepera 2,” http://www.k-team.com, a miniature mobile robot
designed as a research and teaching tool.

[4] O. Michel, “Webots: Professional mobile robot simulation,”Journal of
Advanced Robotics Systems, vol. 1, no. 1, pp. 39–42, 2004. [Online].
Available: http://www.ars-journal.com/ars/SubscriberArea/Volume1/39-
42.pdf

[5] A. J. Garćıa, G. I. Simari, and T. Delladio, “Designing an agent system
for controlling a robotic soccer team,” inX Congreso Argentino de
Ciencias de la Computación, 2004.

[6] H. J. Levesque and M. Pagnucco, “Legolog: Inexpensive experiments
in cognitive robotics,” inThe Second International Cognitive Robotics
Workshop, Berlin, Germany, August 2000, pp. 104–109. [Online].
Available: citeseer.ist.psu.edu/levesque00legolog.html

[7] F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López-Garćıa,
and G. Puebla, “The ciao prolog system. reference manual,” School of
Computer Science, Technical University of Madrid (UPM), Tech. Rep.
CLIP3/97.1, August 1997, available from http://www.clip.dia.fi.upm.es/.

[8] R. M. Harlan, D. B. Levine, and S. McClarigan, “The khepera robot and
the krobot class: a platform for introducing robotics in the undergraduate
curriculum,” SIGCSE Bulletin, vol. 33, no. 1, pp. 105–109, 2001.

[9] B. Vosseteig, J. Baltes, and J. Anderson, “Robocup e-league video
server,” http://sourceforge.net/projects/robocup-video.

[10] “Oficial e-league webpage,” http://agents.cs.columbia.edu/eleague/.
[11] C. I. Ches̃nevar, A. G. Maguitman, and R. P. Loui, “Logical Models of

Argument,”ACM Computing Surveys, vol. 32, no. 4, pp. 337–383, Dec.
2000.

[12] H. Prakken and G. Vreeswijk, “Logical systems for defeasible argu-
mentation,” inHandbook of Philosophical Logic, 2nd ed., D.Gabbay,
Ed. Kluwer Academic Pub., 2002.

[13] G. R. Simari and R. P. Loui, “A mathematical treatment of defeasible
reasoning and its implementation,”Artificial Intelligence, vol. 53, no.
2–3, pp. 125–157, 1992.

[14] V. Lifschitz, “Foundations of logic programming,” inPrinciples of
Knowledge Representation, G. Brewka, Ed. CSLI, 1996, pp. 69–127.

103

