
11TH NMR WORKSHOP

5.8 Defeasible Reasoning about Beliefs and Desires

Defeasible Reasoning About Beliefs and Desires

Nicolás D. Rotstein and Alejandro J. Garcı́a

Department of Computer Science and Engineering, Universidad Nacional del Sur,
Email: {ndr,ajg}@cs.uns.edu.ar

Abstract

In this paper we show how a deliberative agent can repre-
sent beliefs and desires and perform defeasible reasoning in
order to support its derived beliefs. Strict and defeasible fil-
tering rules can be used by the agent for selecting among its
desires a proper one that fits in the particular situation it is in-
volved. Thus, defeasible argumentation will be used for rea-
soning about desires. Application examples from a robotic
soccer domain will be given.

Introduction
This article addresses the problem of having a deliberative
intelligent agent built upon an architecture that relies on sets
of Beliefs and Desires (e.g., the BDI architecture (Bratman,
Israel, & Pollack 1991; Rao & Georgeff 1995; Rao 1996)).
The proposed approach allows the agent to perform defea-
sible reasoning in order to support its derived beliefs and
offers a defeasible argumentation framework for selecting
desires.

In our approach, the agent will represent information that
it perceives directly from its environment, and in addition to
these perceived beliefs, the agent may represent other knowl-
edge in the form of strict and defeasible rules. Then, using
a defeasible argumentation formalism it will be able to to
obtain a warrant for its derived beliefs.

We will introduce a reasoning formalism for selecting
those desires that are suitable to be carried out by the agent.
In order to perform this selection, the agent will use its be-
liefs (that represent the current situation) and a defeasible
logic program composed by filtering rules.

Warranting agent’s beliefs and perception
In this approach, agent’s beliefs will correspond to the se-
mantics1 of a defeasible logic program PB = (ΠB,ΔB). In
this kind of programs (Garcı́a & Simari 2004) two different
sets are distinguished: the set ΔB for representing tentative
knowledge in the form of defeasible rules; and the set ΠB

for representing non-tentative, sound knowledge in the form
of strict rules and facts. The information that the agent per-
ceives directly from its environment is represented in ΠB

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1Since the semantics of DeLP is skeptical, there is only one.

with a subset of facts denoted Φ. Thus, in the set ΠB two
disjoint subsets will be distinguished: the subset Φ of per-
ceived beliefs that will be updated dynamically, and a subset
Π formed with strict rules and facts that will represent sta-
tic knowledge. Therefore, ΠB= Φ ∪ Π. As we will explain
below, in order for program PB to behave correctly, some
restrictions over ΠB will be imposed.

In addition to the perceived beliefs, the agent may use
strict and defeasible rules from PB in order to obtain a war-
rant for its derived beliefs (see Definition 1). A brief expla-
nation of how warrants are obtained using the defeasible ar-
gumentation formalism of DeLP, and the definitions of facts,
strict and defeasible rules are included below (the interested
reader is referred to (Garcı́a & Simari 2004) for a detailed
explanation).

Representing knowledge and reasoning with DeLP
In DeLP, knowledge is represented using facts, strict rules
or defeasible rules:

• Facts are ground literals representing atomic information
or the negation of atomic information using the strong
negation “∼” (e.g., hasBall(opponent)).

• Strict Rules are denoted L0← L1, . . . , Ln, where
the head L0 is a ground literal and the body
{Li}i>0 is a set of ground literals. (e.g.,
∼hasBall(myTeam)← hasBall(opponent)).

• Defeasible Rules are denoted L0 –≺L1, . . . , Ln,
where the head L0 is a ground literal and the
body {Li}i>0 is a set of ground literals. (e.g.,
∼pass(mate1) –≺marked(mate1)).

Syntactically, the symbol “–≺ ” is all that distinguishes a
defeasible rule from a strict one. Pragmatically, a defea-
sible rule is used to represent defeasible knowledge, i.e.,
tentative information that may be used if nothing could be
posed against it. A defeasible rule “Head –≺Body” is un-
derstood as expressing that “reasons to believe in the an-
tecedent Body provide reasons to believe in the consequent
Head” (Simari & Loui 1992).

A Defeasible Logic Program P is a set of facts, strict
rules and defeasible rules. When required, P is denoted
(Π,Δ) distinguishing the subset Π of facts and strict rules,
and the subset Δ of defeasible rules. Observe that strict

429 Technical Report IfI-06-04

Argumentation, Dialogue, and Decision Making

and defeasible rules are ground. However, following the
usual convention (Lifschitz 1996), some examples will use
“schematic rules” with variables. Given a “schematic rule”
R, Ground(R) stands for the set of all ground instances of
R. Given a program P with schematic rules, we define (Lif-
schitz 1996): Ground(P) =

⋃
R∈P Ground(R). In order

to distinguish variables, they are denoted with an initial up-
percase letter.

Strong negation is allowed in the head of program rules,
and hence may be used to represent contradictory knowl-
edge. From a program (Π,Δ) contradictory literals could be
derived, however, the set Π (which is used to represent non-
defeasible information) must possess certain internal coher-
ence. Therefore, Π has to be non-contradictory, i.e., no pair
of contradictory literals can be derived from Π. Given a lit-
eral L the complement with respect to strong negation will
be denoted L (i.e., a=∼a and ∼a=a).

DeLP incorporates an argumentation formalism for the
treatment of the contradictory knowledge that can be derived
from (Π,Δ). This formalism allows the identification of the
pieces of knowledge that are in contradiction. A dialectical
process is used for deciding which information prevails. In
particular, the argumentation-based definition of the infer-
ence relation makes it possible to incorporate a treatment of
preferences in an elegant way.

In DeLP a literal L is warranted from (Π,Δ) if there ex-
ists a non-defeated argument A supporting L. In short, an
argument for a literal L, denoted 〈A, L〉, is a minimal set of
defeasible rules A⊆Δ, such that A∪Π is non-contradictory
and there is a derivation for L from A∪Π. In order to estab-
lish if 〈A, L〉 is a non-defeated argument, argument rebut-
tals or counter-arguments that could be defeaters for 〈A, L〉
are considered, i.e., counter-arguments that by some crite-
rion are preferred to 〈A, L〉. Since counter-arguments are
arguments, there may exist defeaters for them, and defeaters
for these defeaters, and so on. Thus, a sequence of argu-
ments called argumentation line is constructed, where each
argument defeats its predecessor in the line (for a detailed
explanation of this dialectical process see (Garcı́a & Simari
2004)).

In DeLP, given a query Q there are four possible an-
swers2: YES, if Q is warranted; no, if the complement of
Q is warranted; undecided, if neither Q nor its complement
is warranted; and unknown, if Q is not in the language of the
program.

Perceived and Warranted Beliefs
As stated above, agent’s beliefs will correspond to the se-
mantics of a defeasible logic program (ΠB,ΔB), and the set
ΠB will represent perceived and static information (ΠB= Φ
∪ Π). Since ΠB has to be non-contradictory, some restric-
tions about perception are imposed:

1. We assume that perception is correct in the sense that it
will not give a pair of contradictory literals. Whenever
this happens both literals will be ignored.

2The implementation (interpreter) of DeLP that satisfies the se-
mantics described in (Garcı́a & Simari 2004) is currently accessible
online at http://lidia.cs.uns.edu.ar/DeLP.

2. We will also require that no perceived literal in Φ can be
derived directly from Π.

Thus, if Π is non-contradictory and these two restrictions
are satisfied, then ΠB will also be non-contradictory. The
next definition introduces the different types of belief that an
agent will obtain from a defeasible logic program (ΠB,ΔB).

Definition 1 (belief types) A perceived belief is a fact in Φ
that represents information that the agent has perceived di-
rectly from its environment. A strict belief is a literal that
is not a perceived belief, and it is derived from ΠB = Π ∪
Φ (i.e., no defeasible rules are used for its derivation). A
defeasible belief is a warranted literal L supported by an
argument 〈A, L〉 that uses at least one defeasible rule (i.e.,
A �= ∅). Finally, a derived belief is a strict or a defeasible
belief. We will denote with Bs the set of strict beliefs, and
with Bd the set of defeasible beliefs. Therefore, in any given
situation the beliefs of an agent will be B = Φ ∪ Bs ∪ Bd.

Observe that the sets Φ, Bs and Bd are disjoint sets. Ob-
serve also that, although perceived beliefs are facts in ΠB,
there can be other facts in ΠB that are not perceived. For in-
stance, facts that represent agent’s features, roles, etc. These
facts that do not represent perceived information are persis-
tent in the sense that they will not change with perception.
For example: myRole(defender), opponent(o1).

In this approach we assume a perception function that pro-
vides the agent with information about its environment. This
function will be invoked by the agent in order to update its
perceived beliefs set Φ. When this happens the new infor-
mation obtained must override the old one following some
criterion. Updating a set of literals is a well-known problem
and many solutions exist in the literature.

Example 1 Consider an agent Ag that has the following
program (ΠB,ΔB). Here, the set ΠB was divided distin-
guishing the subset Φ of perceived facts, and the subset Π
of non-perceived information.

Φ=

{
hasBall(t1)
marked(t1)

}

Π=

⎧⎪⎨
⎪⎩

mate(t1)
opponent(o1)
∼mate(X)← opponent(X)
∼receive(self)← hasBall(self)

⎫⎪⎬
⎪⎭

ΔB=

{
receive(self) –≺hasBall(X),mate(X)
∼receive(self) –≺marked(self)
∼receive(self) –≺hasBall(X),∼mate(X)

}

In this example, Ag has the following perceived beliefs:
hasBall(t1) (the player t1 has the ball), and marked(t1)
(its teammate t1 is marked). Besides its perceived beliefs, it
has two other facts that are strict beliefs: mate(t1) (t1 is a
teammate) and opponent(o1) (o1 is an opponent). The set
Π has also two strict rules representing that “an opponent
is not a teammate” and that “Ag cannot receive the ball
from itself”. Observe that it can also infer the strict belief:
∼mate(o1) (o1 is not a teammate).

The set of defeasible rules ΔB represents that: “if
a teammate has the ball, then Ag may receive a pass

DEPARTMENT OF INFORMATICS 430

11TH NMR WORKSHOP

from it”, “being marked is a good reason for not re-
ceiving a pass”, and “if the one that has the ball is
not a teammate, then there are good reasons for not re-
ceiving the ball from it”. Thus, from (ΠB,ΔB), the ar-
gument {receive(self) –≺hasBall(t1),mate(t1)} has no
defeaters, and therefore, there is a warrant for one defeasi-
ble belief: receive(self) (Ag may receive a pass).

Consider now that, upon perception, the set Φ is up-
dated to Φ= {hasBall(t1), marked(t1), marked(self)}
(i.e., the original situation has changed only in that the
agent is now being marked); then, from this new program,
the argument for receive(self) has a “blocking defeater”,
what means that the DeLP answer for receive(self) and
∼receive(self) will be both UNDECIDED. Figure 1 shows
this situation, where two incomparable arguments block
each other. There, arguments are depicted as triangles con-
taining the defeasible rules that form them. The double ar-
row represents that both arguments attack each other with
equal strength.

Figure 1: Undecided situation due to blocking defeaters.

Consider a new situation where Φ= {hasBall(o1)}.
Here, the DeLP answer for receive(self) is NO, because
there is a warrant for∼receive(self) supported by the non-
defeated argument:

{∼receive(self) –≺hasBall(o1),∼mate(o1)}.
A preference criterion between contradictory arguments

is needed in order to prevent blocking situations. For a
deeper discussion on this matter we refer to (Chesñevar, Ma-
guitman, & Loui 2000; Prakken & Vreeswijk 2002).

The following propositions show that, although PB rep-
resents contradictory information, the sets of beliefs B of an
agent will be non-contradictory.

Proposition 1 The set of beliefs B of an agent is a set of
warranted literals.
Proof: As proved in (Garcı́a & Simari 2004), empty argu-
ments have no defeaters and therefore, if a literal can be de-
rived from ΠB then it is warranted. Thus, perceived beliefs
are warranted literals, because a fact has an empty argu-
ment that supports it. Strict beliefs are also warranted be-
cause they are derived using only strict rules and facts from
ΠB and therefore, supported by an empty argument. Defea-
sible beliefs are warranted by definition.

Proposition 2 The set of beliefs B of an agent is a non-
contradictory set.
Proof: In order to be a contradictory set, it should have two
complementary beliefs (L and ∼L). However, proposition 1

states that B is a set of warranted literals, and from a defea-
sible logic program it is not possible to obtain a warrant for
a literal L and also a warrant for ∼L.

Desires Filtering and Selection
In our approach, agents desires will be represented by a set
of literals D. This set will contain a literal for representing
each desire that the agent might want to achieve, along with
its complement; that is, if L ∈ D, then L ∈ D. As we will
explain in detail below, we will assume that beliefs and de-
sires are represented with separate names, i.e., D ∩ B= ∅,
(see Remark 1).

Example 2 According to our application domain, the set D
of all possible desires for a robotic soccer agent could be:

D=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

shoot ∼shoot
pass(Mate) ∼pass(Mate)
carry ∼carry
mark(Opp) ∼mark(Opp)
goto(Place) ∼goto(Place)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

That is, the set of possible desires of the agent includes: to
shoot on goal, to pass the ball to a teammate, to carry the
ball, to mark an opponent, to go to a specific position in the
field, and each corresponding complement.

The set D represents all the desires that the agent may
want to achieve. However, depending on the situation in
which it is involved, there could be some desires that will be
impossible to be carried out. For example, consider a situa-
tion in which the agent does not have the ball and the ball is
in a place p, then, the desire shoot will not be possible to be
carried out, whereas goto(p) could be a possible option.

Therefore, agents should reason about its desires in order
to select the appropriate ones. Following the spirit of the
BDI model, once appropriate desires are detected, the agent
may select (and commit to) a specific intention (goal), and
then select appropriate actions to fulfill that intention.

In this section, we will introduce a reasoning formalism
for selecting from D those desires that are suitable to be car-
ried out. In order to perform this selection, the agent will use
its beliefs (representing the current situation) and a defeasi-
ble logic program (ΠF ,ΔF) composed by filtering rules as
defined below.

Definition 2 (Filtering rule) Let D be the set of desires of
an agent, a filtering rule is a strict or defeasible rule that has
a literal L ∈ D in its head and a non-empty body.

Observe that a filtering rule can be either strict or defeasi-
ble and, as we will explain below, the effect in the filtering
process will be different. Note also that a filtering rule can-
not be a single literal (i.e., a fact). Below we will explain
how to use filtering rules in order to select desires, but first
we will introduce an example to provide some motivation.

Example 3 Considering the set D introduced in Example 2,
the following filtering rules can be defined for selecting de-
sires:

ΠF =

{ ∼carry← ∼hasBall
∼shoot← ∼hasBall

}

431 Technical Report IfI-06-04

Argumentation, Dialogue, and Decision Making

ΔF =

⎧⎪⎨
⎪⎩

shoot –≺theirGoalieAway
carry –≺noOneAhead
∼shoot –≺farFromGoal
∼carry –≺shoot

⎫⎪⎬
⎪⎭

Consider a particular situation in which the agent does
not have the ball (i.e., ∼hasBall holds as a belief), then
from the agent’s beliefs and the filtering rules (ΠF ,ΔF) of
Example 3 there are warrants for ∼carry and ∼shoot. In
this situation the agent should not consider selecting the de-
sires carry and shoot because there are warranted reasons
against them.

Suppose now another situation in which the agent has
the ball and the opponent goalie is away from its position
but the agent is far from the goal (i.e., {theirGoalieAway,
farFromGoal} ⊂ B). Then, from the agent’s beliefs and
the filtering rules (ΠF ,ΔF) of Example 3, there are argu-
ments for both shoot and ∼shoot. Since these two argu-
ments defeat each other, a blocking situation occurs and the
answer for each one is UNDECIDED. In contrast with the
previous situation, here there are no strong reasons against
selecting the desire shoot, and as we will show below, in
this formalism an undecided desire will be eligible.

In Definition 3 below, we will introduce a mechanism for
filtering the set of desires D in order to obtain a subset of D
containing only those desires achievable in the current situ-
ation. In order to do that, beliefs and filtering rules should
be used in combination. Hence, we need to explain how two
defeasible logic programs can be properly combined.

Combining beliefs with filtering rules
In this formalism, agents will have a defeasible logic pro-
gram (de.l.p.) (ΠB,ΔB) containing rules and facts for deriv-
ing beliefs, and a de.l.p. (ΠF ,ΔF) with filtering rules for se-
lecting desires. Observe that the union of two de.l.p. might
not be a de.l.p., because the union of two sets of consis-
tent strict rules could be contradictory (e.g., ΠF ={(a← b),
(∼a← c)} and ΠB={b, c}). Therefore, in order to guar-
antee that ΠB ∪ ΠF is not contradictory, a merge revi-
sion operator is needed. Therefore, instead of simply hav-
ing (ΠB ∪ ΠF , ΔB ∪ ΔF) we will impose to have (ΠB

◦ ΠF , ΔB ∪ ΔF ∪ ΔX), where “◦” is a merge revision
operator (Fuhrmann 1997). The mechanism of this opera-
tor (Falappa, Kern-Isberner, & Simari 2002) “is to add ΠB

to ΠF and then eliminate from the result all possible incon-
sistency by means of an incision function that makes a cut
over each minimally inconsistent subset of ΠB ∪ ΠF .”

Observe that in particular in our approach the set ΠF will
contain only strict rules representing filtering rules, whereas
the set ΠB will contain beliefs representing the agent per-
ception of the environment. Therefore, the elements of ΠB

can not be ignored or deleted. Hence, the conflicting set X
of ΠB◦ΠF will be defined by eliminating all the conflicting
strict rules from ΠB and ΠF . Thus, if literals L and ∼L can
be derived from ΠB∪ΠF , those strict rules that have L or
∼L in their heads will be in X .

The merge revision operator will remove the inconsis-
tency from ΠB ∪ΠF on behalf of some criterion. This could
be achieved, for example, by deleting all the rules in conflict,
but the part of the knowledge represented by these rules will

be lost. Another option is to convert the status of the (strict)
rules involved in the conflict, turning them into defeasible
rules (Falappa, Kern-Isberner, & Simari 2002). This crite-
rion intends to keep the encoded information that would be,
otherwise, lost.

Therefore, in our case, the union of two de.l.p. like
(ΠB,ΔB) and (ΠF ,ΔF) will be a program (Π,Δ), where Π
= ΠB◦ΠF and Δ = ΔB ∪ ΔF ∪ ΔX . The set Π is obtained
using a merge revision operator ◦ that eliminates X , and the
set ΔX is a set of defeasible rules obtained transforming
each strict rule r ∈ X in a defeasible rule.

Example 4 Here we show how the merge revision operator
works. Consider having the following sets:

ΠF ={(a← b), (∼a← c)}
ΠB={b, c}
Note that in this case ΠF ∪ ΠB is a contradictory set.

Therefore, it cannot be part of a valid de.l.p. As stated above,
we will apply the merge revision operator instead of per-
forming the union of both sets. Hence, we have:

ΠB◦ΠF = {b, c}
ΔX={(a –≺b), (∼a –≺c)}
Thus, after the application of the merge operator, no

knowledge is lost (although it is certainly weakened), be-
cause it is now encoded under the form of defeasible rules.

Selecting desires
The next definition introduces a mechanism for filtering the
set of desires D in order to obtain a subset containing only
those desires achievable in the current situation.

Definition 3 (Current desires) Let K = (ΠB ◦ ΠF , ΔB ∪
ΔF ∪ ΔX) be a defeasible logic program where (ΠB,ΔB)
contains rules and facts for deriving beliefs, and (ΠF ,ΔF)
contains filtering rules. Given a set D of desires, the set Dc

of Current Desires will be defined as:

Dc = {δ ∈ D | there is no warrant for δ from K}
Thus, the set Dc will be a subset of the set D and, at

any given moment, it will contain those desires that have
a chance of being achieved. Observe that a literal L will not
belong to Dc when its complement L is warranted.

Example 5 Let’s consider a subset of the set of desires
from example 2:

D=

{
shoot ∼shoot
carry ∼carry
goto(Place) ∼goto(Place)

}

Taking the filtering rules from example 3:

ΠF =

{ ∼carry← ∼hasBall
∼shoot← ∼hasBall

}

ΔF =

⎧⎪⎨
⎪⎩

shoot –≺theirGoalieAway
carry –≺noOneAhead
∼shoot –≺farFromGoal
∼carry –≺shoot

⎫⎪⎬
⎪⎭

Then, if we consider the following perceived beliefs:

DEPARTMENT OF INFORMATICS 432

11TH NMR WORKSHOP

ΠB=Φ=

{
theirGoalieAway
noOneAhead

}

We will have these current desires:

Dc=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

shoot
carry
∼carry
goto(Place)
∼goto(Place)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Using the filtering rules from (ΠF ,ΔF), the argument of
Figure 2 for shoot can be built. This argument has no de-
featers, therefore, its conclusion shoot is warranted (i.e., the
DeLP answer is YES). Hence, shoot will belong to the
set Dc of current desires. An argument for desire carry
also exists, but it is blocked by a counter-argument hold-
ing ∼carry, as shown in Figure 3; then, both carry and
∼carry DeLP answers are UNDECIDED, and they are in-
cluded into Dc. Finally, considering the desires goto(Place)
and ∼goto(Place), we can see that there are no filtering
rules regarding to them, so their DeLP answers are UN-
KNOWN, and both will belong to Dc.

Figure 2: Undefeated argument for shoot.

Figure 3: Blocking situation for carry and ∼carry.

You may notice that if neither Q nor Q has a warrant built
from (ΠB ◦ ΠF , ΔB ∪ ΔF ∪ ΔX), then both will be in-
cluded into the set Dc. Therefore, the agent will have to
consider these two options (among the rest of the current
desires) in order to choose an intention, although they are in
contradiction.

In this work we will require having B and D as two sepa-
rate sets. If a literal is allowed to belong to both sets, then,
when joining the (ΠB,ΔB) and (ΠF ,ΔF) de.l.p. programs,
an undesirable mix of concepts would arise. Note that this is
not a strong restriction, because the fact that a literal could
be both a belief and a desire brings about well-known repre-
sentational issues.

Remark 1 We will assume that no literal L ∈ D belongs
to B. That is, a desire cannot be perceived or derived as a

belief.

Example 6 Here we will show why it is important to take
Remark 1 into consideration, keeping literals from B and D
apart. Consider the following sets of beliefs and desires:

(ΠB,ΔB) = ({x, y},{a –≺y})
D= {a, ∼a}

And we will consider these filtering rules:

(ΠF ,ΔF) = ({},{∼a –≺x})
Here, ΠB◦ΠF = {x, y}; and ΔB ∪ ΔF ∪ ΔX = {a –≺y,

∼a –≺x}. We have that ‘∼a’ has an argument based on
ΔF , and ‘a’ has an argument built from (ΠB,ΔB). By Def-
inition 3, both literals will belong to Dc. However, if we let
this happen, we will be letting the beliefs rules decide which
desires are going to be in Dc. Although the argumentation
process involved in the selection of the current desires po-
tentially requires some dialectical analysis to be performed
upon the rules defined in (ΠB,ΔB), the elements of Dc should
be determined only by the filtering rules in (ΠF ,ΔF).

A simple way of satisfying the restriction imposed by Re-
mark 1 could be to distinguish literals in D with a partic-
ular predicate like “desire”. For example: desire(shoot),
∼desire(shoot), desire(pass(Mate)), etc. Thus, assum-
ing that no belief is represented with the predicate name
“desire”, then literals representing beliefs will be, by con-
struction, different from the ones representing desires. Al-
though this alternative is supported by this formalism, in the
examples given in this paper we will use the convention of
having different names for desires and beliefs.

The set Dc can be also defined in terms of DeLP answers.
As stated in the last section about DeLP, given a literal Q
there are four possible answers for the query Q: YES, NO,
UNDECIDED, and UNKNOWN. Thus, given Q ∈ D, Q will
be in Dc if, from (ΠB ◦ ΠF , ΔB ∪ ΔF ∪ ΔX), the answer
for Q is YES, UNDECIDED or UNKNOWN.

Next, we introduce several propositions and properties
that show how different characteristics of both D and
(ΠF ,ΔF) determine the contents of Dc.

Proposition 3 Given a literal Q ∈ D, if there is no filtering
rule in (ΠF ,ΔF) with head Q nor its complement Q, then
{ Q, Q } ⊆ Dc.
Proof: If Q ∈ D, then Q �∈ B (remark 1), and since Q is
not in the head of any filtering rule, then it is not possible to
obtain a warrant for Q. Therefore, by Definition 3, Q will
be included into the set Dc of current desires.

Consider the sets ΠF , ΔF , ΠB and D from Example 5;
we have that goto(Place) and ∼goto(Place) belong to
D, but there are no filtering rules in (ΠF ,ΔF) with head
goto(Place) nor ∼goto(Place). Note that both literals are
in Dc, which corresponds with Proposition 3.

Observe that the proof of Proposition 3 can also be ex-
pressed in terms of DeLP answers. Since there are no rules
with head Q nor its complement, and Q �∈ B, then Q is not
in the language of (ΠB ◦ ΠF , ΔB ∪ ΔF ∪ ΔX). Therefore,
from (ΠB ◦ ΠF , ΔB ∪ ΔF ∪ ΔX) the answer for Q will be
UNKNOWN (the same holds for Q). Because these answers

433 Technical Report IfI-06-04

Argumentation, Dialogue, and Decision Making

are different from NO, Q and Q will be included into the set
Dc of current desires.

Proposition 4 Given a literal Q ∈D, if Q is warranted from
K = (ΠB ◦ ΠF , ΔB ∪ ΔF ∪ ΔX), then Q ∈ Dc and Q �∈
Dc.
Proof: Since Q has a warrant built from K, then there is no

warrant for Q, therefore, Q ∈ Dc. To prove that Q �∈ Dc, we
have to show that there is a warrant for the complement of
Q (i.e., Q) which is true by hypothesis.

Considering the case shown in Example 5, see that de-
sire shoot has a warrant built from (ΠB ◦ ΠF , ΔB ∪ ΔF ∪
ΔX), and shoot belongs to Dc, but ∼shoot does not, which
coincides with the assertion of Proposition 4.

The next proposition shows that the set Dc of current de-
sires will not be empty if the set D of desires is not empty.
This does not depend on the set of filtering rules nor the set
of beliefs.

Proposition 5 For any K = (ΠB ◦ ΠF , ΔB ∪ ΔF ∪ ΔX),
D will not be empty if, and only if, Dc is not empty.
Proof:

(⇒) Let L and L be two elements of D, then one of the three
following cases holds:
(a) L is warranted from K, therefore, L ∈ Dc.
(b) L is warranted from K, therefore, L ∈ Dc

(c) Neither L nor L is warranted from K, therefore, both L
and L will belong to Dc.
Hence, in any case, Dc will not be empty.
(⇐) Trivial from Definition 3. That is, if Dc is not empty,
then D cannot be empty.

Given an agent with K = (ΠB ◦ ΠF , ΔB ∪ ΔF ∪ ΔX),
and a set of desires D, the following properties hold:

1. For every literal L ∈ D, it cannot be the case that neither
L nor L do not belong to Dc.
Suppose that L and L are not in Dc, then, the complement
of each (i.e., L and L) must be warranted from K, which
is not allowed in DeLP. Observe that, if both literals are
warranted, then both literals have to belong to Dc, which
contradicts the initial supposition.

2. If there are no filtering rules then Dc= D.
This is a particular case of Proposition 3. If there are no
filtering rules (i.e., ΠF = ∅ and ΔF = ∅) then no element
of D will have its complement warranted, so every ele-
ment of D will be in Dc.

3. If there are no desires warranted from K, then Dc= D.
If no element of D is warranted from K, then no element
of D will have its complement warranted from K (L ∈ D
implies that L ∈ D). Thus, every element of D will be in
Dc.

4. If there is, at least, one element of D that is warranted
from K, then Dc will be a proper subset of D.
If L belongs to D and is warranted from K, then L �∈ Dc.

Application to Robotic Soccer
Robotic soccer has proven to be a system complex enough
to test many of the features of any reasoning system. The

robots are controlled by software agents, each of which has
a set of high-level actions to perform, such as kicking the
ball with a given strength or moving in a given direction. At
every moment, an agent has to choose which action to do
next. That choice can be made using a reasoning system, in
this case, a defeasible argumentation system.

In this Section we will show how a player makes a deci-
sion based on the model proposed in this paper. The scenario
has three players belonging to one team (‘self’, ‘t1’ and ‘t2’
in Figure 4) and three players from the opposite team (‘o1’,
‘o2’ and ‘o3’ in Figure 4). We will analyze the reasoning
performed by the player named ‘self’. Regarding knowl-
edge representation, the belief predicates will be written ac-
cording to the Close World Assumption, and everything that
cannot be proved will be assumed false.

Let’s suppose that we have a soccer-playing agent, with a
desires set including the options shoot, pass and carry, be-
ing in the situation depicted in Figure 4. The agent will per-
ceive the positions of the ball and all the other players, and
will reason about what to do next. The agent will have dif-
ferent rules, like pass(self, t1) –≺marked(self), that will
be a reason for passing the ball to t1.

Figure 4: ‘self’ decides to pass the ball to ‘t1’

In this situation, the agent has the following perceptions:

Φ=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

marked(self),
oppositeF ield(self),
noOneAhead(t1),
hasBall(self),
betterPosition(self, t1)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

The knowledge is represented through a de.l.p., defining
reasons for and against every element belonging to the set
D via strict and defeasible rules. In this example, the sets
ΔF and ΠF are the following:

ΠF = {
(∼shoot(P)← ∼hasBall(P)),
(∼pass(Src,)← ∼hasBall(Src)),

DEPARTMENT OF INFORMATICS 434

11TH NMR WORKSHOP

(∼carry(P)← ∼hasBall(P)) }

ΔF = {
(shoot(P) –≺oppositeF ield(P), noOneAhead(P)),
(shoot(P) –≺oppositeF ield(P), not marked(P)),
(shoot() –≺goalieAway(opposite)),

(∼shoot(P) –≺pass(P,)),
(∼shoot(P) –≺carry(P)),

(pass(Src,) –≺marked(Src)),
(pass(Src, Tgt) –≺betterPosition(Tgt, Src)),

(∼pass(Src, Tgt) –≺playerBetween(Src, Tgt)),
(∼pass(, T gt) –≺marked(Tgt)),
(∼pass(Src,) –≺shoot(Src)),
(∼pass(Src,) –≺carry(Src)),

(carry(P) –≺noOneAhead(P)),

(∼carry(P) –≺shoot(P)),
(∼carry(P) –≺pass(P,)) }

At the particular moment of Figure 4, the player has the
following Beliefs set:

B =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

marked(self),
oppositeF ield(self),
noOneAhead(t1),
hasBall(self),
betterPosition(self, t1),
teammate(t1),
myRole(forward)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

Observe that some of these beliefs are perceived
(e.g., marked(self)), while other are persistent (e.g.,
teammate(t1)).

Once built the internal representation of the world, the
agent performs DeLP queries over the elements of its set D,
gathering their corresponding answers:

• Shooting on goal: If you consider program P , along with
the set B of Beliefs, it is clear that no argument can be
built for the desire shoot(self), because every rule with
head shoot(self) has at least one literal in its body that
does not hold. As you can see in Figure 4, there are no
significant common-sense reasons to shoot on goal.
On the other hand, an argument for ∼shoot(self) can be
constructed from P: the one built upon the argument of
being able to perform a pass to a teammate. That counter-
argument is undefeated: there are no reasons against it.
Figure 4 illustrates this situation, and shows that passing
the ball to player ‘t1’ seems to be the better choice to make
at that moment.
The answer given from the interpreter is NO and the agent
will no longer consider shooting on goal.

• Passing the ball: From program P , one argument can be
stated for pass(self, t1), based on the reason that player
‘self’ is marked. None of the rules that could build an
argument against it holds, so this one is undefeated. As
explained above, from the situation we are considering, it
is reasonable to think that this may be a good choice.
The answer given from the interpreter is YES and the
agent will have a strong reason to pass the ball to ‘t1’.

• Carrying the ball: there are no rules from which an ar-
gument for carrying the ball could be built. Program P
and Figure 4 coincide in this matter: there seems to be no
reason for carrying the ball. On the other hand, the afore-
mentioned argument for passing the ball is an undefeated
reason for not doing it.
The interpreter answers NO and the agent will no longer
consider this desire.

Once gathered all the DeLP answers, the set Dc of current
desires can be built:

Dc= { pass(self, t1) }
This means that, in this situation, the player has a clear
choice: the selected intention must be perform a pass to
‘t1’, because it is the only current desire and it is war-
ranted.

Related work
In a very recent paper (Rahwan & Amgoud 2006), Rahwan
and Amgoud have proposed an argumentation-based ap-
proach for practical reasoning that extends (Amgoud 2003)
and (Amgoud & Cayrol 2002), introducing three different
instantiations of Dung’s abstract argumentation framework
in order to reason about beliefs, desires and plans, respec-
tively. This work is, in our concern, the one that is most re-
lated to our approach and, as we will show next, it have many
points in common with our work. Both approaches use a
defeasible argumentation formalism for reasoning about be-
liefs and desires (in their work, they also reason about plans,
but this is out of the scope of our presentation). Like us,
they separate in the language those rules for reasoning about
belief from those rules for reasoning about desires; and, in
both approaches, it is possible to represent contradictory in-
formation about beliefs and desires. Since both approaches
use a defeasible argumentation formalism, they construct ar-
guments supporting competing desires, and these arguments
are compared and evaluated in order to decide which one
prevails. Their notion of desire rule is very similar to our
notion of filtering rule.

Although both approaches have many things in common,
they also differ in many points. In their case, two differ-
ent argumentation frameworks are needed in order to rea-
son about desires: one framework for beliefs rules and other
framework for desires rules. The last one depends directly
on the first one, and since there are two kinds of arguments,
a policy for comparing mixed arguments is given. In our
case, only one argumentation formalism is used for reason-
ing with both types of rules. In their object language, be-
liefs and desires include a certainty factor for every formula,
and no explicitly mention of perceived information is given.
In our case, uncertainty is represented by defeasible rules
(see (Garcı́a & Simari 2004)) and perceived beliefs are ex-
plicitly treated by the model. Besides, although both ap-
proaches use defeasible argumentation, the argumentative
formalism used in their approach differs from ours. In their
case, the comparison of arguments relies on the certainty

435 Technical Report IfI-06-04

Argumentation, Dialogue, and Decision Making

factor given to each formula, and they do not distinguish be-
tween proper and blocking defeaters.

The use of defeasible argumentation for reasoning in BDI
architectures is not new and it was originally mention in
the seminal paper (Bratman, Israel, & Pollack 1991) and
in other more recent works like (Parsons, Sierra, & Jen-
nings 1998). Other related work includes (Thomason 2000)
and (Broersen et al. 2001), where a formalism for reason-
ing about beliefs and desires is given. However, these last
formalisms differ from our because they do not use argu-
mentation.

Conclusions and future work
In this paper we have shown how a deliberative agent can
represent its perception and beliefs using a defeasible logic
program. The information that the agent perceives directly
from its environment is represented with a subset of per-
ceived beliefs that is updated dynamically, and a subset
Π formed with strict rules and facts represent other static
knowledge of the agent. Defeasible argumentation is used
in order to warrant agents (derived) beliefs.

Strict and defeasible filtering rules have been introduced
to represent knowledge for selecting desires and a defeasible
argumentation can be used for selecting a proper desire that
fits in the particular situation the agent is involved.

With this formalism, agents can reason about its desires
in order to select the appropriate ones. However, follow-
ing the spirit of the BDI model, once appropriate desires are
detected, the agent should select (and commit to) a specific
intention (goal), and then select appropriate actions to fulfill
that intention. We are currently working in extending this
approach to consider the representation of agent’s intentions
and reasoning about them.

References
Amgoud, L., and Cayrol, C. 2002. A reasoning model
based on the production of acceptable arguments. Annals of
Mathematics and Artificial Intelligence 34(1-3):197–215.

Amgoud, L. 2003. A formal framework for handling con-
flicting desires. In Proceedings of the 7th European Con-
ference on Symbolic and Quantitative Approaches to Rea-
soning with Uncertainty, ECSQARU’2003, 552–563.

Bratman, M. E.; Israel, D.; and Pollack, M. 1991. Plans
and resource-bounded practical reasoning. In Cummins,
R., and Pollock, J. L., eds., Philosophy and AI: Essays at
the Interface. Cambridge, Massachusetts: The MIT Press.
1–22.

Broersen, J.; Dastani, M.; Hulstijn, J.; Huang, Z.; and
van der Torre, L. 2001. The boid architecture: conficts
between beliefs, obligations, intentions and desires. In Pro-
ceedings of Fifth International Conference on Autonomous
Agents (Agents2001). Montreal, Canada: ACM Press. 9–
16.

Chesñevar, C. I.; Maguitman, A. G.; and Loui, R. P. 2000.
Logical Models of Argument. ACM Computing Surveys
32(4):337–383.

Falappa, M. A.; Kern-Isberner, G.; and Simari, G. R. 2002.
Belief revision, explanations and defeasible reasoning. Ar-
tificial Intelligence Journal 141:1–28.
Fuhrmann, A. 1997. An Essay on Contraction. Studies
in Logic, Language and Information, CSLI Publications,
Stanford, California.
Garcı́a, A. J., and Simari, G. R. 2004. Defeasible logic
programming: An argumentative approach. Theory and
Practice of Logic Programming 4(1):95–138.
Lifschitz, V. 1996. Foundations of logic programming. In
Brewka, G., ed., Principles of Knowledge Representation.
CSLI. 69–127.
Parsons, S.; Sierra, C.; and Jennings, N. 1998. Agents
that reason and negotiate by arguing. Journal of Logic and
Computation 8(3):261–292.
Prakken, H., and Vreeswijk, G. 2002. Logical systems for
defeasible argumentation. In D.Gabbay., ed., Handbook of
Philosophical Logic, 2nd ed. Kluwer Academic Pub.
Rahwan, I., and Amgoud, L. 2006. An argumentation-
based approach for practical reasoning. In Proceedings
of the 5th International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2006).
Rao, A. S., and Georgeff, M. P. 1995. BDI-agents: from
theory to practice. In Proceedings of the First International
Conference on Multiagent Systems.
Rao, A. S. 1996. AgentSpeak(L): BDI agents speak out in
a logical computable language. In van Hoe, R., ed., Seventh
European Workshop on Modelling Autonomous Agents in a
Multi-Agent World.
Simari, G. R., and Loui, R. P. 1992. A mathematical treat-
ment of defeasible reasoning and its implementation. Arti-
ficial Intelligence 53(2–3):125–157.
Thomason, R. 2000. Desires and defaults: A framework
for planning with inferred goals. In Proceedings of the sev-
enth international Confenrence on Principle of Knowledge
Representation and Reasoning (KR’00), 702–713.

DEPARTMENT OF INFORMATICS 436

	1: Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)

