
Processing Interaction Protocols in Parallel:

a Logic Programming implementation for Robotic Soccer

Mariano Tucat ∗ Alejandro J. Garćıa †

mt@cs.uns.edu.ar ajg@cs.uns.edu.ar

Consejo Nacional de Investigaciones Cient́ıficas y Técnicas
and

Departamento de Ciencias e Ingenieŕıa de la Computación
Universidad Nacional del Sur

8000 Bah́ıa Blanca, Argentina

ABSTRACT

In this paper we explore different situations in which
collaborative agents have to communicate among
themselves using standard interaction protocols. We
will propose how to process these interactions in par-
allel without interfering with other agent’s activities.
Thus, agents will not have to interrupt or delay an
activity for handling incoming messages, and in some
cases, answers can be created and delivered immedi-
ately.

Our proposal will be oriented to a robotic soccer
domain with autonomous mobile robots. We will ana-
lyze three kinds of situations in which the interaction
between agents plays an important role for coordina-
tion: requirements, queries and proposals. Require-
ments arise when an agent asks another to execute a
specific action. A query is used when an agent wants
to acquire certain information from another agent.
Finally, proposals arise when an agent wants to syn-
chronize with another agent for collaboration.

In a realistic scenario, an agent may interact with
several agents and these interactions usually proceed
simultaneously with the rest of the activities of the
agent. Therefore, our proposal is to process these in-
teractions in parallel with the decision cycle of the
agent reducing the overhead imposed by the interac-
tion. The implementation of this approach will be
done in an extended logic programming framework
developed for implementing multi-agent systems.

Keywords: Interaction Protocols, Parallel Process-

ing, Logic Programming, Multi-Agent Systems

∗Fellowship of Consejo Nacional de Investigaciones
Cient́ıficas y Técnicas (CONICET).

†Partially supported by CONICET (PIP 5050), Uni-
versidad Nacional del Sur (24/ZN09), and Agencia Na-
cional de Promoción Cient́ıfica y Tecnológica (PICT 2002
Nro 13096)

1 INTRODUCTION

In this paper we explore different situations in
which collaborative agents have to communicate
among themselves using standard interaction pro-
tocols. We will propose how to process these
interactions in parallel without interfering with
other agent’s activities. Thus, agents will not
have to interrupt or delay an activity for handling
incoming messages, and in some cases, answers
can be created and delivered immediately.

Our proposal will be oriented to a robotic soc-
cer domain with autonomous mobile robots. We
will analyze three kinds of situations in which
the interaction between agents plays an impor-
tant role for coordination: requirements, queries
and proposals.

Requirements arise when an agent asks another
to execute a specific action. For example, any
agent in the field may ask the one who has pos-
session of the ball to pass it to a specific location.
Another possible situation of a requirement can
be when, based on specific game situations such
as their locations in the field, an agent requires
to shift its role with another one.

A query is used when an agent wants to ac-
quire certain information from another agent. As
an example, an agent may send a message to its
teammates, asking them to inform their location
in the field. The agent may also want to know
the score of the game, and it may query other
non-player agents like the coach or referee.

A proposal arises when an agent wants to syn-
chronize with another agent for collaboration. In
this case, it may propose the execution of the spe-
cific action to its teammate and it should wait for

 JCS&T Vol. 5 No. 4 December 2005

232

the answer. This kind of interaction may be use-
ful, for example, when an agent with possession
of the ball wants to pass it to a teammate and it
wants to coordinate explicitly this action.

In order to implement the interactions men-
tioned above, the agents controlling the robots
must be able to exchange messages with each
other. For this purpose, we will use a set of inter-
action primitives we have developed and reported
in [7] (a brief description is also included in Ap-
pendix B). These interaction primitives were mo-
tivated by the implementation of multi-agent sys-
tems in dynamic and distributed environments,
where intelligent agents communicate and collab-
orate.

In this work, we will show one way of im-
plementing these different types of interaction
in a specific domain of robotic soccer: the E-
League [2] (for more details see Appendix A).
This league is a competition in which two teams
of four mobile robots play soccer and the chal-
lenge is centered on the design of the intelligence
of the robots. Considering that each robot can be
seen as an agent, this domain offers an ideal situ-
ation for the development of a multi-agent system
(MAS).

In a realistic scenario of a multi-agent environ-
ment, an agent may interact with several agents
and these interactions usually proceed simultane-
ously with the rest of the activities of the agent.
Therefore, our proposal is to process these in-
teractions in parallel using the mentioned set of
primitives that extends logic programming pro-
viding communication among agents.

The rest of the paper is organized as follows: in
Section 2 we briefly describe the design of a multi-
agent system that was implemented for control-
ling a robotic soccer team. In Section 3 we show
how to extend this design in order to allow agent
interaction and to process them in parallel with
other agent’s activities. In section 4 conclusions
and future work are discussed. Two appendix are
included at the end of the paper in order to pro-
vide details about topics related to this approach.

2 COORDINATING A SOCCER
TEAM OF MOBILE ROBOTS

Robotic soccer has drawn much attention in the
area of multi-agent system research and devel-
opment. This complex and challenging applica-
tion domain is useful in the evaluation of different
kinds of developments that have been carried out
in the field of mobile robotics. For example, ro-
bots playing soccer need to be able to react to

the current state of the environment and also try
to carry out plans to change the environment to
some predicted future state.

One advantage of this particular application
domain is that the game of soccer can be seen
as a well defined system: the number and type of
players, duration of play, allowed behaviors, and
penalizations (among other aspects of the game)
are governed by a well defined set of rules. Each
team is composed of players that should cooper-
ate and also coordinate in order to reach their
goal of winning the game.

Coordinating agents [3, 4, 9, 11] in a dynamic
environment, such as a mobile robots, is a difficult
task. Every agent must be able to contribute to
the overall purpose of the multi-agent system ef-
ficiently and effectively. The coordination should
allow each agent to consider the objectives of the
MAS, maintaining its own goals in order to ensure
a correct behavior.

As a previous work, we were involved in the de-
veloped of a multi-agent system to control a team
of robots (called Matebots) for the E-League com-
petition in RoboCup 2004 (see [10] and Appendix
A for details). As explained in [6], the implemen-
tation of the MAS was carried out following a lay-
ered design. The proposed design was based on
services that were associated with four main lay-
ers (see Figure 1), each of which covers different
levels of abstraction of the problem to be solved,
providing services to the upper layers. Thus, the
implementation of some services could be mod-
ified without provoking many changes in other
layers using these services.

Cognitive Layer

?
6

Sensorial / Efectorial
Layer

?
6

Logical Communication
Layer

?
6

Low Level
Communication Layer

Figure 1: The architecture proposed in [6].

In this work, we will explain how to extend the
architecture of Figure 1 in order to implement dif-
ferent interaction protocols that agents may use

 JCS&T Vol. 5 No. 4 December 2005

233

for coordination. We will also show how an agent
may handle the asynchronous arrival of messages
from different interaction protocols. In the rest
of this section we will briefly explain some details
of the mentioned architecture and which part of
it will be modified in order to allow the agents
to implement interaction protocols (we refer the
interested reader to [6] for a complete description
of this architecture).

The Low Level Communication Layer (see
Figure 1) provides access to the basic hardware
and software of the league. This includes physical
support, such as infrared transmitters, video cam-
era, communication network, and common soft-
ware.

The Logical Communication Layer offers the
necessary services that allow communication with
the vision and communication servers. In order to
provide communication between agents, we must
extend this layer to include a set of primitives
(for more details see Appendix B) that allow the
exchange of messages. Having this primitives, an
agent may interact with any other agent sending
and receiving messages.

In the Sensorial/Effectorial Layer, the vi-
sual information is processed and translated into
terms that express states of the world. The co-
ordinates and speeds of the robots and ball can
be interpreted to express particular situations.
Query and action predicates related to particu-
lar game situations are defined here.

The Cognitive Layer is responsible for the
design of the agents that implement the team.
Like in any other agent system, the agents per-
ceive the environment and reason about the ac-
tions to take. In Figure 2 there is an outline
of the implementation of the perception/action
loop of each agent. At the beginning of every cy-
cle, the agent will call the predicate perceive/1
which returns a list (PercList) containing all the
information the agent can obtain from its envi-
ronment. This predicate is implemented in the
Sensorial/Efectorial Layer. Then, the agent
will execute the predicate revise/2, which is
responsible for updating its beliefs and return-
ing them as a list (RevBeliefs). With these
revised beliefs, the agent will call the predi-
cate decide/2, that takes the decision of what
action to execute next. These two predicates
(revise/2 and decide/2) are implemented in
the Cognitive Layer. Finally, the agent will
call the predicate do/1 (implemented in the
Sensorial/Efectorial Layer) which is respon-
sible for executing the chosen action.

agent :-
perceive(PercList),
revise(PercList,RevBeliefs),
decide(RevBeliefs, Action),
do(Action),
agent.

Figure 2: The agent perception/action loop.

The perception/action loop in Figure 2 is what
we will modify in order to allow the agents to
process the different interaction protocols in par-
allel with their activities.

3 PROCESSING INTERACTION
PROTOCOLS IN PARALLEL

As stated above, we will explore different situa-
tions in which the interaction between agents is
needed for coordination, in particular those that
can be seen as requirements, queries, and pro-
posals. In order to implement these interactions
the agents will use the primitives provided by the
Logical Communication Layer with the modifica-
tions described in the previous section. Thus, an
agent may initiate any of the interaction protocol
(e.g., request, propose, query) sending the corre-
sponding message to the correct agent and then,
it will follow the protocol consequently.

An agent has to be able to receive at any time
a message from any other agent, with the pur-
pose of starting a conversation. Therefore, agents
should have the capability of handling interac-
tion protocols as soon as possible. Its impor-
tant to note that messages are received in an
asynchronous way, concurrently with the percep-
tion/action loop in which the agent decide it ac-
tions, and the Logical Communication Layer au-
tomatically queues these messages.

There are several alternatives for handling
these interaction protocols. One alternative is
to process all the received messages from other
agents inside the agent’s perception/action loop
(Figure 2). This can be done by adding a list of
received messages to the decision predicate. With
this information, the agent can handle every re-
ceived messages in its decision loop and it can act
in consequence.

Although this alternative is simple, it has some
disadvantages. The agent perception/action loop
must process every received message, and this
overhead impose to this cycle delays the agent
response to the environment. Also note that this

 JCS&T Vol. 5 No. 4 December 2005

234

message may probably be received while the per-
ception/action loop is processing another message
or deciding what action the robot should execute.
Thus, this messages will not be processed im-
mediately, and this means that the reply (when
needed) will also be delayed.

A better alternative can be obtained if the inter-
action between agents is separated in two types:

(a) When the interaction requires the execution
of an action by the agent receiving the mes-
sage.

(b) When the interaction does not require the
execution of an action, such as information
queries or some specific information updates.

Observe that, in type (a) the agent should
handle this kind of interaction inside its percep-
tion/action loop, with a particular priority in its
reasoning. While in type (b), these interactions
could be considered concurrently with the deci-
sion cycle of the agent.

In order to do this, every agent may have a
main thread executing the perception/action loop
and another thread processing the incoming mes-
sages. In this message processing thread, those
messages of type (b) will be answered immedi-
ately whereas the messages of type (a) will be
queued in order to be processed during the deci-
sion cycle.

This approach will be implemented using the
primitive bind all/2 (see appendix B). This
primitive allows the association of a particular
predicate to the arrival of messages. Therefore,
when a message is received, the associated pred-
icate is executed immediately, processing the in-
teraction concurrently with the decision cycle of
the agent. Thus, those messages of type (b) that
do not require the execution of an action will be
answered immediately. The rest will be queued
in order to be considered in the agent percep-
tion/action loop, and priorities among them and
possible actions of the agent can be applied.

Figure 3 shows an outline of the implemen-
tation of this proposal. There, the predicate
bind all/2 is executed just once, and it asso-
ciates the arrival of messages to the execution
of the predicate processMessages/2 which will
be in charge of processing the received messages.
Observe that this predicate is incomplete. Be-
low we will explain three types of interaction
(queries, requirements and proposals) and we will
show how to complete this predicate. Also note

:- bind_all(processMessages,_).

% all incoming messages will be processed

% by processMessages/2

processMessages(_,Msg):-

% answers immediately whenever possible

processMessages(_,Msg):-

% otherwise, queues the received Message

agent :-

perceive(PercList),

revise(PercList,RevBeliefs),

retrieveMsgs(MsgList),

decide(RevBeliefs, MsgList, Action),

do(Action),

agent.

Figure 3: Outline of our proposal.

that the perception/action loop has been modi-
fied and now has an invocation to the predicate
retrieveMsgs/1 that obtains and removes from
the queue all the messages that have been re-
ceived concurrently. These messages, that will
all be of type (a), will be considered by the pred-
icate decide/3 as new possible options for exe-
cution. In order to decide which action to exe-
cute next, the agent can define priorities among
requirements of other agents and actions that it
can do by proper initiative.

In the rest of this section we will show in detail
how to implement this better alternative follow-
ing the standard interaction protocols proposed
by FIPA [5]. In order to exchange messages, we
will use the FIPA Agent Communication Lan-
guage (ACL) adapted to logic programming syn-
tax. Thus, in this approach, a FIPA message will
be a list of terms representing the communica-
tive act and its parameters (see Figure 4). Also
note that the agents will use a common ontology,
called “robotic soccer”.

[communicative_act(_), sender(_),

receiver(_), protocol(_),

ontology(_), content(_)]

Figure 4: Proposed FIPA message syntax

Next, we will explore three situations in which
the interaction between agents is needed for co-
ordination: queries, requirements and proposals.
We will also explain how to complete the predi-

 JCS&T Vol. 5 No. 4 December 2005

235

cate processMessages/2 of Figure 3 for handling
three standard interaction protocols.

3.1 Querying for information

Here we will show how an agent may ask another
one for some specific information. Since this in-
teraction is of type (b), that is, it does not require
the execution of an action by the agent that re-
ceives the message, then, it should not interrupt
its perception/action loop. The FIPA interaction
protocol that will be use in this case is the FIPA
Query Protocol.

An agent may need, in its decision cycle, the
information of the location of another robot in
the field. Therefore, it may initiate the FIPA
Query Protocol with the agent controlling that
robot, and then, it should wait for the answer.
An example of a possible message to initiate this
protocol may be:

[communicative_act(query), sender(Me),

receiver(teammate1), protocol(fipa_query),

ontology(robotic_soccer),

content(location(teammate1,X,Y)]

Is important to note that the participating
agent may not answer immediately, or even, it
may not answer at all. Thus, the agent initiat-
ing the protocol should consider this alternative
in order not to remain blocked waiting for a long
time. For this, the agent may use the primitive
receive/4 included in the Logical Communica-
tion Layer that allows it to wait for a message for
an specified amount of time.

This type of interaction does not require an ex-
ecution of an action by the receiver, and the agent
may answer it concurrently to its processing ac-
tivities in its perception/action loop

In Figure 3 we have shown an outline
of the implementation of this proposal, and
when a message is received, the predicate
processMessages/2 is executed automatically.
Now, in Figure 5, we show how to complete the
implementation of processMessages/2 in order
to process in parallel an interaction of type (b)
like this FIPA query protocol.

Observe that for each protocol of type (b) that
the agent has to handle, (i. e., there is no asso-
ciated action required by the robot), a rule like
the one in Figure 5 has to be added to the agent
code.

We will explore next, two situations where the
interaction is of type (a), that is, it requires the

processMessages(_,Msg):-

member(Msg,protocol(fipa_query)),

member(Msg,communicative_act(query)),

member(Msg,content(location(teammate1,X,Y))),

member(Msg,sender(Sender)),

my_pos(X,Y),

my_name(Me),

send(Sender,[sender(Me), receiver(Sender),

communicative_act(inform),

protocol(fipa_query),

ontology(robotic_soccer),

content(location(Me,X,Y))]).

Figure 5: An example showing how to handle in-
coming messages of a particular query.

execution of a specific action by the agent that
receives the requirement or the proposal. In this
case, the protocol should be handled in the per-
ception/action cycle of this agent.

3.2 Requiring the execution of an action

We will consider here a situation in which an
agent detects a possible pass to it when another
teammate has the ball. Thus, it may send a mes-
sage asking him to pass the ball and then, it
should wait for the answer. The FIPA interac-
tion protocol more suitable for this case is the
FIPA Request Protocol. An example of a possible
message initiating this kind of interaction may be:

[communicative_act(request),sender(Me),

receiver(teammate1),protocol(fipa_request),

ontology(robotic_soccer),

content(pass_ball(Me,X,Y))]

As in the previous type of interaction, the re-
ceiver may not answer immediately and the ini-
tiator should be aware of this situation.

As stated above, our proposal for handling
this type of interaction is to queue the mes-
sages in order to be considered in the next cy-
cle of the agent action loop. The predicate that
processes the messages, shown in Figure 3, may
have one or more rules for each specific inter-
action protocol managed, specially those that
do not require the execution of an action by
the robot. Thus, in order to queue the mes-
sages that do not belong to one of these inter-
action protocols, we need only to add this rule:
processMessages(,Msg):-queue(Msg).

The way this predicate queues the messages is
a design choice. One alternative is to add the
messages to a list, while another one is to assert

 JCS&T Vol. 5 No. 4 December 2005

236

the messages as facts in the knowledge base of the
agent. This choice affects the way in which the
agent obtains the messages in the decision cycle
(see retrieveMsgs/1 in Figure 3).

3.3 Proposing collaboration

Finally, we will show a situation in which an agent
wants to synchronize with another agent for col-
laboration. In this case, the agent may propose
to its party the execution of a specific action. As
in the previous situation, this interaction may re-
quire the execution of an action by the partic-
ipant, and thus, it should be processed in the
decision loop. This kind of interaction will be
modeled by the FIPA Propose Protocol.

As an example, the agent with possession of
the ball may offer to pass it to a teammate. This
agent may decide the execution of this action in
its percepction/action loop, and thus, it should
send its teammate a message proposing the syn-
chronization of the action. An example of a mes-
sage initiating this kind of interaction may be:

[communicative_act(propose),sender(Me),

receiver(teammate1),protocol(fipa_propose),

ontology(robotic_soccer),

content(pass_ball(teammate1,X,Y))]

The agent receiving this proposal has to process
the offer in it decision cycle. Therefore the
processing should be done in the same way as
in the requirement explained above.

4 CONCLUSION

In this paper, we have analyzed different forms of
processing in parallel agent interaction protocols
for a robotic soccer domain. We have explored
three different situations in which the interaction
between agents plays an important role: queries,
requirements, and proposals. As a design choice,
our implementation tries to minimize the commu-
nication between the agents.

Our approach proposes the processing of these
interactions in parallel using a set of primitives
that extends logic programming providing com-
munication among agents. This alternative re-
duces the overhead imposed by the processing of
the protocols and also allows the agent to answer
immediately.

APPENDIX A: E-LEAGUE

The E-League [2] is an initiative in which two
teams of four mobile robots play soccer. The
league provides common basic services to all of
the participants, such as vision and communica-
tion. Each team is composed of four robots. One
of the robots can act as goalkeeper, but this is
not strictly necessary. There are restrictions over
the size of the robots, their shape, and the com-
ponents used in their construction.

The main goal is to concentrate on the devel-
opment and study of Artificial Intelligence tech-
niques such as planning, multi-agent develop-
ment, communication, and learning. The league’s
most important feature is its simple and modu-
lar structure. There are only three basic com-
ponents that must be available to obtain a func-
tional team:

• A vision module that works as the robot’s
perception component,

• A communication module that allows actions
to be communicated to the robots, and

• A control module that is implemented as a
MAS that control the robots.

Each team may have one or more auxiliary
computers in which the agents are executed.
These agents communicate with the vision com-
ponent in order to obtain information about what
happens on the field, and send messages to the ro-
bots by means of a communication module (see
Figure 6). Even though the league does not de-
fine a standard platform for the construction of
the robots, it does impose restrictions over the
processing and memory capacity. This allows the
use of low cost robotic kits, many of which fall un-
der these restrictions. The system we developed
was implemented using Lego Mindstorms kits [1],
which are within the rules of the league.

APPENDIX B: INTERACTION
PRIMITIVES

We include here some details of the set of prim-
itives we have developed and reported in [7].
These interaction primitives were motivated by
the implementation of multi-agent systems for
dynamic and distributed environments, where
intelligent agents communicate and collaborate.
These primitives provide a transparent way for
programming agent interaction; this can be done,
for example, by using the agents’ logical names

 JCS&T Vol. 5 No. 4 December 2005

237

Figure 6: E-League setup (taken from [6])

without considering low level elements like the ac-
tual location of an agent, IP addresses or machine
names.

The primitives allow the implementation of
standard Agent Communication Languages like
FIPA ACL [5] and KQML [8], and provide tools
for developing standard Agent Interaction Proto-
cols. The resulting framework has the following
features:

1. The implemented primitives allow the cre-
ation of several independent multi-agent sys-
tems inside a LAN. Once an agent runs the
initialization predicate (connect/4) it ob-
tains a list of the agents present in the sys-
tem.

2. An agent can communicate with the
other participants using the primitives
send/receive just knowing their names, re-
gardless of which machine they are actually
executing.

3. There are primitives (bind and bind all)
for associating the arrival of a message with
the automatic execution of a Prolog pred-
icate, thus allowing event-based program-
ming. Different associations can be made for
different agents.

References

[1] Lego Mindstorms robots and RCX con-
trollers. http://www.legomindstorms.com.

[2] Official E-League webpage.
http://agents.cs.columbia.edu/eleague/.

[3] N. Carriero and D. Gelernter. Coordination
Languages and Their Significance. Commu-
nications of the ACM, 35(2):97–107, Febru-
ary 1992.

[4] T. Finin and Y. Labrou. Agent Com-
munication Languages. In Proceedings of
ASA/MA’99, First International Sympo-
sium on Agent Systems and Applications,
and Third International Symposium on Mo-
bile Agents, 1999.

[5] FIPA. Foundation for intelligent physical
agents. http://www.fipa.org.

[6] Alejandro J. Garćıa, Gerardo I. Simari,
and Telma Delladio. Designing an agent
system for controlling a robotic soccer team.
In Proceedings of X Argentine Congress
of Computer Science, page 227, 2004.
http://cs.uns.edu.ar/∼ajg/papers/index.htm.

[7] Alejandro J. Garćıa, Mariano Tucat, and
Guillermo R. Simari. Interaction Primitives
for Implementing Multi-agent Systems. In
VII Argentine Symposium on Artificial In-
telligence, Rosario, Argentina, August 2005.

[8] KQML. Knowledge Query and Manip-
ulation Language. Oficial Web Page:
http://www.cs.umbc.edu/kse/kqml.

[9] Y. Labrou. Standardizing agent commu-
nication. In Proceedings of the Advanced
Course on Artificial Intelligence (ACAI’01).
Springer-Verlag, 2001.

[10] RoboCup. Lisbon, Portugal. 2004.
http://www.robocup2004.pt.

[11] M. Wooldridge. Semantic issues in the ver-
ification of agent communication languages.
In Journal of Autonomous Agents and Multi
Agent Systems, 2000.

 JCS&T Vol. 5 No. 4 December 2005

238

