
Computing Generalized Specificity

Frieder Stolzenburg∗ — Alejandro J. García∗∗

Carlos I. Chesñevar∗∗ — Guillermo R. Simari ∗∗

* Hochschule Harz (Univ. of Applied Sciences),
Friedrichstr. 57-59,
38855 Wernigerode, GERMANY

fstolzenburg@hs-harz.de

** Univ. Nacional del Sur,
Av. Alem 1253,
(B8000CPB) Bahía Blanca, ARGENTINA

{ajg,cic,grs}@cs.uns.edu.ar

ABSTRACT.Most formalisms for representing common-sense knowledge allow incomplete and
potentially inconsistent information. When strong negation is also allowed, contradictory con-
clusions can arise. A criterion for deciding between them is needed. The aim of this paper is to
investigate an inherent and autonomous comparison criterion, based on specificity as defined in
[POO 85, SIM 92]. In contrast to other approaches, we consider not only defeasible, but also
strict knowledge. Our criterion is context-sensitive, i. e., preference among defeasible rules is
determined dynamically during the dialectical analysis.
We show how specificity can be defined in terms of two different approaches:activation sets
and derivation trees. This allows us to get a syntactic criterion that can be implemented in
a computationally attractive way. The resulting definitions may be applied in general rule-
based formalisms. We present theorems linking both characterizations. Finally we discuss other
frameworks for defeasible reasoning in which preference handling is considered explicitly.

KEYWORDS:defeasible reasoning, knowledge representation, logic programming, non-monotonic
reasoning.

1. Introduction

1.1. Background

Formalisms for representing common-sense knowledge usually handle incomplete
and potentially inconsistent information. In such formalisms, contradictory conclu-

Journal of Applied Non-Classical Logics.Volume 13 – n◦ 1/2003, pages 87 to 113.

88 Journal of Applied Non-Classical Logics. Volume 13 – n◦ 1/2003

sions can arise, which prompts for a criterion for deciding between them. Several ex-
tensions of logic programming (LP), default reasoning systems, defeasible logics, and
defeasible argumentation formalisms consider priorities over competing rules [ANT 00,
COV 88, DIM 95, GEL 97, KAK 94, WAN 97], in order to decide between contra-
dictory conclusions. However, these priorities must be supplied by the programmer,
establishing explicitly relations between rules.

Another problem, pointed out by Dung and Son in [DUN 96], is that several for-
malisms “enforce” the principle of reasoning with specificity by first determining a
set of priority orders between default rules of a setD, using the information given by
a domain knowledgeK. The problem is that the resulting semantics is rather weak,
in the sense that priorities are defined independently of the setE of evidence. There-
fore, if the setE changes, the previous fixed priorities could not behave as expected.
On the contrary, this evidence-sensitivity can be naturally captured in argumentation-
theoretic approaches as shown in [DUN 96, GAR 98, SIM 92] and also here.

In [DUN 96], a transformation from the proposed underlying language into ex-
tended logic programming [GEL 90a] is given. However, this transformation encodes
the specificity criterion with program rules, forcing re-encoding in the presence of
changes in the program. In our approach specificity will be inferred directly from the
program rules without any intermediate step. Our approach also takes into consider-
ation the background knowledgeB that was assumed empty in [DUN 96]. Dealing
with background knowledge (i. e. adding strict rules) is not a trivial matter, because
then we have to take into account also the conclusions that are implied by this back-
ground knowledge, which has to be considered in the dialectical process when com-
paring arguments (see also Section 3.2).

1.2. Motivation

The aim of this paper is to investigate beyond explicit comparison between rules,
looking forward for a more autonomous comparison criterion, based on specificity
as defined in [POO 85, SIM 92]. In contrast to other approaches, we consider not
only defeasible, but also strict knowledge. In our setting, arguments will be basically
defeasible proofsinvolving both defeasible and strict knowledge, which may support
contradictory conclusions, so that a comparison criterion is needed to decide between
them. Our criterion for comparing arguments, namelyspecificity, is context-sensitive.
This means that preference among defeasible rules is determined dynamically during
the dialectical analysis (see also the examples in Section 4.1).

We show how this criterion can be redefined in terms of two different approaches:
activation setsandderivation trees. This allows us to get a syntactic criterion that can
be implemented in a computationally attractive way. The resulting definitions may be
applied in arbitrary generic rule-based formalisms. As a basis of our presentation we
will use Defeasible Logic Programming(DeLP) [GAR 97, GAR 98], where a com-
parison for arguments based on specificity is given. In DeLP (as in many defeasible

Computing Generalized Specificity 89

logics and defeasible argumentation formalisms), there is a distinction between strict
rules and defeasible rules. Specificity in DeLP takes into consideration both kinds of
rules.

Originally, this research has been motivated by the programming of autonomous
agents for the RoboCup [MUR 01]. Since agents must be able to cope with contra-
dictory knowledge, defeasible reasoning should be employed for agent programming.
Defeasible logic programming is able to extend the logic-based approach for multia-
gent systems as presented in [MUR 01].

This paper is organized as follows. First, in Section 2 we introduce the fundamen-
tals of DeLP. In Section 3, a definition of generalized specificity will be given, and
two computationally attractive ways of comparing arguments by means of specificity
in a logic programming framework will be developed. Finally, in Section 4, we discuss
other frameworks for defeasible reasoning in which preference handling is considered
explicitly, contrasting them with our approach. We will end with concluding remarks
in Section 5.

2. Defeasible Logic Programming

2.1. Defeasible Programs

The DeLP language [GAR 97, GAR 98] is defined in terms of two disjoint sets
of rules: a set ofstrict rules for representing strict (sound) knowledge, and a set of
defeasible rulesfor representing tentative information. Rules will be defined using
literals. A literal L is an atomp or a negated atom∼p, where the symbol∼ represents
strong negation. We define this formally as follows:

DEFINITION 1 (STRICT RULE). — A strict rule is an ordered pair, conveniently
denotedHead ← Body, whose first member,Head, is a literal, and whose second
member,Body, is a finite set of literals. A strict rule with the headL0 and body
{L1, . . . , Ln} can also be written asL0 ← L1, . . . , Ln. As usual, if the body is empty,
then a strict rule becomesL ← true (or simplyL) and it is called afact.

The syntax of strict rules corresponds tobasic rulesin logic programming [LIF 96],
but we call them “strict” in order to emphasize the difference to the “defeasible” ones
(see below). There is no contraposition for rules, i. e.,a ← b is not equivalent to
∼b ← ∼a. Defeasible rules add a new representational capability for expressing a
weaker link between the head and the body in a rule [SIM 92].

DEFINITION 2 (DEFEASIBLE RULE). — A defeasible rule is an ordered pair, con-
veniently denotedHead —< Body, whose first member,Head, is a literal, and whose
second member,Body, is a finite and non-empty set of literals. A defeasible rule
with headL0 and body {L1, . . . , Ln} can also be written asL0 —< L1, . . . , Ln where
n ≥ 1.

90 Journal of Applied Non-Classical Logics. Volume 13 – n◦ 1/2003

A defeasible rule with an empty body (i. e.n = 0 in this case) is called apresump-
tion [GAR 97, GAR 00]. Technically, it is possible to introduce presumptions into a
framework for defeasible argumentation with specificity. However, this might lead to
counterintuitive results when comparing arguments by the definition of specificity we
adopt in this paper (see Definition 10). For instance, two arguments solely based on
presumptions are not comparable wrt. specificity according to Definition 10, although
they should, if the set of presumptions used in one argument are a proper subset of the
set of presumptions used in the other argument. Therefore we will exclude presump-
tions from our object language. For an in-depth analysis of presumptions with respect
to DeLP the reader is referred to [GAR 00].

Syntactically, the symbol “—< ” is all that distinguishes a defeasible rule from a
strict one. Pragmatically, a defeasible rule is used to represent defeasible knowledge,
i. e. tentative information that may be used if nothing could be posed against it.

DEFINITION 3 (DEFEASIBLE LOGIC PROGRAM). — A defeasible logic program
(DLP) is a finite set of strict and defeasible rules where literals may have variable
or constant parameters. We do not consider the case with general functions here. If
P is a DLP, we will distinguish the subsetΠ of strict rules inP, and the subset∆ of
defeasible rules inP. When required, we will denoteP as(Π,∆).

EXAMPLE 4. — The following is aDLP where strict and defeasible rules have been
separated for the convenience of presentation. It models a fragment of the soccer
domain. In the following, predicate and constant symbols (e. g.eager and diego,
respectively) begin with lower-case letters, while variable symbols (e. g.X) begin
with capital letters as in Prolog programs.

∆ Π
kick(X) —< player(X) player(X) ← libero(X)
∼kick(X) —< libero(X) player(X) ← goalie(X)
kick(X) —< libero(X), eager(X) ∼kick(X) ← goalie(X)

eager(diego)
libero(diego)
goalie(oli)

Nute’s defeasible logic [COV 88, NUT 94], recent extensions of defeasible logic [ANT 00,
MAH 98] and some defeasible argumentation formalisms [HOR 94, PRA 97, VRE 97]
also make use of defeasible and strict rules for representing knowledge. However, in
most of these formalisms a priority relation among rules must be explicitly given with
the program in order to handle contradictory information. In DeLP, an argumentation
formalism for deciding between contradictory goals is used.

2.2. Defeasible Derivations

A defeasible derivationfor a literalh from aDLPP is a finite set of strict and defea-
sible rules, obtained like an SLD-derivation, as defined in [LLO 87], but considering

Computing Generalized Specificity 91

the negation symbol “∼” as part of the predicate name and not taking into considera-
tion the type of the rule. Since we do not need the notion of SLD-derivation explicitly
in this context, we refer the reader to [LLO 87] for more details. Nevertheless, an
SLD-derivation can be represented by anand-tree, and this is defined implicitly in our
next definition.

DEFINITION 5 (DEFEASIBLE DERIVATION TREE). — Let a DLP P and a literalh
be given. Adefeasible derivation treeT for h fromP, is a finite, rooted tree (strictly
speaking, anand-tree), where all nodes are labeled with literals, satisfying the follow-
ing conditions:

1) The root node ofT is labeled with (a ground instance of)h.

2) For each nodeN in T that is labeled with the literalL, there is a strict or
defeasible rule with headL0 and body{L1, . . . , Lk} in P, such thatL = L0σ for
some ground variable substitutionσ, and the nodeN has exactlyk children nodes,
which are labeled withL1σ, . . . , Lkσ, respectively.

If a defeasible derivation forh fromP exists via some derivation treeT (as defined
in Definition 5), then we will denote this byP `T h or simplyP ` h. Our notion of
defeasible derivation tree will be used for the reformulation of specificity in Section 3.

EXAMPLE 6. — Consider theDLP of Example 4. The literal∼kick(oli) has a defea-
sible derivation with the instantiated strict rule and the fact in

{ ∼kick(oli) ← goalie(oli)
goalie(oli)

}
,

and the literalkick(oli) has a defeasible derivation with

kick(oli) —< player(oli)
player(oli) ← goalie(oli)
goalie(oli)

 .

Observe that the literal∼kick(diego) has the defeasible derivation:
{ ∼kick(diego) —< libero(diego)

libero(diego)

}
, (1)

whereaskick(diego) has two defeasible derivations:

kick(diego) —< player(diego)
player(diego) ← libero(diego)

libero(diego)

 (2)

and

kick(diego) —< libero(diego), eager(diego)
libero(diego)
eager(diego)

 . (3)

92 Journal of Applied Non-Classical Logics. Volume 13 – n◦ 1/2003

Figure 1 shows the corresponding derivation trees of the last three defeasible
derivations. In the derivation trees, simple lines denote applications of defeasible
rules, while arrows will denote applications of strict rules.

(1) ∼kick(diego) (2) kick(diego) (3) kick(diego)
| | � �

libero(diego) player(diego) libero(diego) eager(diego)
↑

libero(diego)

Figure 1. Derivation trees for Example 6.

Given theDLP of Example 4, in Example 6 we have just shown that it is possible to
have defeasible derivations for two contradictory literals. Thus, aDLP may represent
contradictory information. A defeasible logic programP is contradictory(written
P ` ⊥) iff it is possible to defeasibly derive fromP a pair of complementary literals
wrt. strong negation, i. e.P ` p andP ` ∼p for some atomp. We will assume that
in every DLP P the setΠ is non-contradictory. Otherwise problems as in extended
logic programming will happen, and the corresponding analysis of the consequences
has been done elsewhere [ALF 96, GEL 90a].

2.3. Arguments

The central notion of the DeLP formalism is the notion of anargument[SIM 92].
Informally, an argument is a minimal and non-contradictory set of rules used to derive
a conclusion. In DeLP, answers to queries will be supported by an argument. The
formal definition follows.

DEFINITION 7 (ARGUMENT). — Let h be a literal andP = (Π, ∆) be aDLP. An
argumentA for a literal h, also denoted〈A, h〉, is a subset of (ground) instances of
defeasible rules of∆, such that:

1) there exists a defeasible derivation forh fromΠ ∪ A,

2) Π ∪ A is non-contradictory, and

3)A is minimal wrt. set inclusion (i. e., there is noA′ ⊂ A such thatA′ satisfies
condition 1).

The literal h will also be called theconclusionsupported byA. An argument
〈B, q〉 is a subargumentof 〈A, h〉 iff B ⊆ A. Note that strict rules are not part of
an argument. Observe also that condition 2 of the previous definition prevents the
occurrence of “self-defeating” arguments [POL 91].

Computing Generalized Specificity 93

EXAMPLE 8. — Using theDLP of Example 4, the literal∼kick(diego) has the argu-
ment

A1 =
{ ∼kick(diego) —< libero(diego)

}

and the literalkick(diego) has two arguments:

A2 =
{

kick(diego) —< player(diego)
}

and

A3 =
{

kick(diego) —< libero(diego), eager(diego)
}

The literal∼kick(oli) has a derivation formed only by strict rules, soA = ∅ is an
argument for∼kick(oli). Observe that although the setB = {kick(oli) —< player(oli), goalie(oli)}
is a defeasible derivation forkick(oli) (Example 6), there is no argument for this lit-
eral becauseΠ ∪ B is contradictory.

Given an argumentA for a literalq, other arguments that contradictA (calledre-
buttalsorcounterarguments) could exist. We say that〈A1, h1〉 counterargues〈A2, h2〉
at a literal h iff there exists a subargument〈A, h〉 of 〈A2, h2〉 such that the set
Π ∪ {h1, h} is contradictory. Therefore, a comparison criterion among arguments
is needed. One will be introduced in the next section: generalized specificity. Based
on such criterion, the following notion can be introduced.

DEFINITION 9 (DEFEATER [SIM 94]). — An argument〈A1, h1〉 defeats〈A2, h2〉
at literalh iff there exists a subargument〈A, h〉 of 〈A2, h2〉 such that〈A1, h1〉 coun-
terargues〈A2, h2〉 at h, and one of the following conditions hold:

1) 〈A1, h1〉 is “better” (wrt. given preference criterion) than〈A, h〉; then
〈A1, h1〉 is a properdefeater of〈A2, h2〉; or

2) 〈A1, h1〉 is unrelated by the given preference order to〈A, h〉; then〈A1, h1〉 is
a blockingdefeater of〈A2, h2〉.

It is interesting to note that an argument that does not involve defeasible rules
cannotbe defeated. To understand why, assume thatA2 = ∅ is an argument forh2

defeated byA1 for h1. SinceA2 = ∅, the only existing subarguments ofA2 are also
empty arguments〈∅, q〉 (i. e. Π ` q). ThereforeA1 counterarguesA2 at someq, i. e.
Π ∪ {h1, q} ` ⊥. SinceΠ ` q, it follows thatΠ ∪ {h1} ` ⊥. But this implies that
A1 does not satisfy condition 2 of Definition 7 (contradiction). Note thatA1 must be
non-empty, because otherwiseΠ itself would be contradictory.

In DeLP, a literalq will be considered aswarranted(or ultimately accepted), if the
supporting argument for it is ultimately not defeated. In order to answer the question
whetherA is a non-defeated argument, counterarguments that could bedefeatersfor
A are considered. Since defeaters are arguments, there may exist defeaters for the
defeaters, and so on. In DeLP a complete dialectical analysis is performed construct-
ing a tree of arguments, calleddialectical tree, where every node (except the root)
is a defeater for its father. In the rest of the paper, we will focus on how conflicting

94 Journal of Applied Non-Classical Logics. Volume 13 – n◦ 1/2003

arguments are to be compared, i. e. the relationship between an argument and a de-
feater. The reader interested in details on the whole dialectical process is referred to
[GAR 97, GAR 98, SIM 94].

3. An Inherent Criterion for Comparing Arguments

3.1. Specificity

We will formally define a particular criterion calledgeneralized specificitywhich
allows to discriminate between two conflicting arguments. The next definition charac-
terizes the specificity criterion, defined first in [LOU 87, POO 85] and extended later
to be used in the defeasible argumentation formalism of [SIM 94, SIM 92]. Here, it
is adapted to fit in the DeLP framework. Intuitively, this notion of specificity favors
two aspects in an argument: it prefers an argument with greater information content or
with less use of defeasible information. In other words, an argument will be deemed
better than another if it ismore preciseor more concise.

DEFINITION 10 (GENERALIZED SPECIFICITY). — LetP = (Π, ∆) be aDLP, ΠG

be the set of all strict rules inΠ which are not facts, andF be the set of all literals that
have a defeasible derivation fromP. Then,〈A1, h1〉 is more specific than〈A2, h2〉
(written 〈A1, h1〉 º 〈A2, h2〉) iff for all H ⊆ F it holds:

ΠG ∪H ∪ A1 ` h1 andΠG ∪H 0 h1 implyΠG ∪H ∪ A2 ` h2.

According to [POO 85], we define:〈A1, h1〉 is strictly more specificthan 〈A2, h2〉
(written 〈A1, h1〉 Â 〈A2, h2〉) iff 〈A1, h1〉 º 〈A2, h2〉 and〈A2, h2〉 � 〈A1, h1〉. This
means,

1) for all setsH ⊆ F it holds that, ifΠG ∪H ∪A1 ` h1 andΠG ∪H 0 h1, then
ΠG ∪H ∪ A2 ` h2, and

2) there exists a setH ′ ⊆ F such thatΠG ∪H ′ ∪ A2 ` h2 andΠG ∪H ′ 0 h2,
andΠG ∪H ∪ A1 0 h1.

In the definition above the setΠG does not contain facts, so the conditionΠG ∪
H ∪ A1 ` h1 will hold only with some particular non-empty setH. Remember that
we do not consider presumptions in this context. We say thatH activatesA1. The
expressionΠG ∪ H 0 h1 is called thenon-triviality condition, because it stresses
the need for use of the setA1 for derivingh1. Hence, Definition 10 may be read as:
〈A1, h1〉 is more specific than〈A2, h2〉 iff for each setH that non-trivially activates
A1, the same setH activatesA2.

Continuing with Example 8, argument〈A1,∼kick(diego)〉 is strictly more spe-
cific than〈A2, kick(diego)〉 (see below), because〈A1,∼kick(diego)〉 does not use
the strict ruleplayer(X) ← libero(X) and hence is more direct. Observe that condi-
tion 1 in Definition 10 holds: every setH that activates〈A1,∼kick(diego)〉 also acti-

Computing Generalized Specificity 95

vates〈A2, kick(diego)〉. However, the setH ′ = {player(diego)} activates〈A2, kick(diego)〉,
but does not activate〈A1,∼kick(diego)〉.

A1 =
{ ∼kick(diego) —< libero(diego)

}

A2 =
{

kick(diego) —< player(diego)
}

On the other hand, the argument〈A3, kick(diego)〉 (see below) will be regarded as
strictly more specific than〈A1,∼kick(diego)〉, because〈A3, kick(diego)〉 is based
on more information (libero and eager). Again, the condition holds and the set
H ′′ = {libero(diego)} is enough to activate〈A1,∼kick(diego)〉 but does not ac-
tivate〈A3, kick(diego)〉.

A3 =
{

kick(diego) —< libero(diego), eager(diego)
}

Thus, in summary we have〈A3, kick(diego)〉 Â 〈A1,∼kick(diego)〉 Â 〈A2, kick(diego)〉.
We also have〈A3, kick(diego)〉 Â 〈A2, kick(diego)〉. This means, in principle, we
can compare also arguments with non-contradictory (even identical) conclusions wrt.
(generalized) specificity. Specificity is a comparison criterion that is independent of
the notion of counterargument or defeat. Nevertheless, in the DeLP framework com-
paring arguments is triggered only when contradictory conclusions are arrived (see
Definition 9).

The following example shows why comparing only a pair of rules instead of com-
plete arguments may sometimes be unsatisfactory. Consider the following program:

s(X) ← q(X)
q(a)
p(X) —< q(X)
∼p(X) —< q(X), s(X)

 (r1)

(r2)

The ruler2 = ∼p(X) —< q(X), s(X) is using more information thanr1 = p(X) —< q(X).
Thus, in a system with priorities over rules such as [COV 88, NUT 94], it is expected
to have thatr2 is preferred tor1 (written r2 > r1). Therefore, in such a system the
conclusion∼p(a) will be preferred overp(a). But in this case, it is not true that
∼p(a) is using more information, because the rules(X) ← q(X) establishes a strict
connection betweens(X) andq(X) (everyq(X) is ans(X)). In DeLP, the argument
A = {(∼p(a) —< q(a), s(a))}1 for ∼p(a) is not strictly more specific than the argu-
mentB = {p(a) —< q(a)} for p(a), and vice versa. However, it holds〈A,∼p(a)〉 is
more specific than〈B, p(a)〉, and vice versa.

In some systems [ANT 00, MAH 98] the rulesr1 andr2 can be left unrelated wrt.
superiority, and then achieve the desired result. But note that, if the rules(X) ← q(X)

1. We use parentheses just for improving the readability of the set of rules.

96 Journal of Applied Non-Classical Logics. Volume 13 – n◦ 1/2003

is replaced with the facts(a) (i. e., there is no longer a connection betweens(X) and
q(X)), then using the generalized specificity notion (Definition 10), the argumentA
will be strictly more specific thanB. However, in a system with fixed priorities over
rules this automatic change in the behavior of the system is not possible. The priority
(or superiority) relation has to be changed to produce the expected result.

3.2. Arguments and Pruning

The following example reveals that in Definition 10—and hence also in [POO 85,
SIM 92]—we cannot restrict our attention to derivations which only make use of the
defeasible rules in the given arguments. Therefore, we will introduce the concept
of pruning in Definition 12, in order to establish equivalence between the original
definition of specificity (Definition 10) and the new characterizations of specificity by
activation sets as in Section 3.3 or by path sets as in Section 3.4.

From a computational point of view, pruning complicates the procedure for com-
puting specificity. But the reason for this is that we consider a very general setting in
this paper, because we admit

1) more than one antecedent in rules, i. e. bodies containing more than one (possi-
bly negative) literal, and

2) (posssibly) non-empty sets of background knowledge, i. e. strict rules, not only
facts.

In the literature, often restricted cases are considered only: antecedents are always
singletons in [GEL 90b], no background knowledge is allowed in [DUN 96], and both
restrictions are present in [BEN 97]. Since we consider the general case here, Exam-
ple 11 can be formulated. It shows that for computing specificity we cannot concen-
trate on derivations using the rules of the given argument only. If we do this, then
things will become computationally simpler. Therefore, in the following Section 3.3
we will also introduce an alternative definition of specificity that will fix the problem
shown in the Example 11.

EXAMPLE 11. — Let us consider the following program:

x —< a, b, c
a —< d
b —< e
∼x —< a, b
c
d
e
x ← a, f
f —< e

Computing Generalized Specificity 97

From this program, the arguments〈A, x〉 and〈B,∼x〉 with

A = {(x —< a, b, c), (a —< d), (b —< e)}
and

B = {(∼x —< a, b), (a —< d), (b —< e)}
can be obtained.

By Definition 10, it holds that〈A, x〉 is not more specific than〈B,∼x〉, since the
strict rulex ← a, f together withA andH = {d, f} non-trivially activatex (because
the defeasible rule(a —< d) ∈ A can be used), butΠG together withB andH = {d, f}
do not activate∼x. Figure 2 shows derivation trees for the arguments〈A, x〉, 〈B,∼x〉
and in addition〈C, x〉 (in this order) where:

C = {(a —< d), (f —< e)}
Observe that for the comparison of the arguments〈A, x〉 and〈B,∼x〉 according to
Definition 10, a derivation which uses another argument setC has to be taken into
consideration, making the activation set{d, f} possible. This derivation is shown in
Figure 2 (c). Here (and also in the sequel), dotted lines lead to parts of the derivation
tree which must not be considered when comparing the argumentsA andB. We
obtain these parts of derivation trees bypruning, which we define formally in our next
definition.

(a) x (b) ∼x (c) x
� | � � � ↗ ↖
a b c a b a f

| | | | | ...
d e d e d e

Figure 2. Derivation trees for Example 11.

DEFINITION 12 (PRUNED DERIVATION TREES). — Let 〈A, h〉 be an argument in
a programP = Π ∪ ∆. Let T be a defeasible derivation tree forh in P, i. e.
Π ∪∆ `T h. We define aderivation tree pruned wrt. the argument〈A, h〉, denoted
T 〈A,h〉, as the tree obtained fromT by deleting all nodes inT which occur below
nodes labeled with head literals of defeasible rulesr /∈ A (or instances thereof).

In order to illustrate Definition 12, let us revisit Example 4 and Figure 1 (3) again.
The derivation treeT in Figure 1 (3) makes only use of the ruler = (kick(diego) —< libero(diego), eager(diego)).
Thus,T is already pruned wrt. the argumentA3 = {r}. If we pruneT wrt. A2 =
{kick(diego) —< player(diego)}, which is also an argument forh = kick(diego),
then all nodes below the root have to be deleted, becauser /∈ A2. Hence,T 〈A2,h〉

simply consists of one node which is labeled withh. This pruned tree will not be con-
sidered when comparing arguments, because it does not involve any defeasible rule.
But things are not always that simple (see Example 11).

98 Journal of Applied Non-Classical Logics. Volume 13 – n◦ 1/2003

3.3. Characterization by Activation Sets

Definition 10 suggests to test all subsetsH ⊆ F . Hence, ifF containsn elements,
there are2n sets to be considered. Besides the exponential explosion problem, this
definition might be considering sets of literals that are unrelated to the arguments
being compared. In addition, computing the setF is a problem on its own. In this
section, we introduce a way of avoiding these problems, which will be continued in
the next section.

DEFINITION 13 (ARGUMENT COMPLETION: FIRST VERSION). — LetP = (Π,∆)
be aDLP. A completion of an argumentA for h, denotedA, is the set of defeasible
and strict rules without facts inΠG ∪ A, which are used in a derivation treeT for h
that is pruned wrt.〈A, h〉.

Note that for a particular argument〈A, h〉, there are (possibly) many alternative
completions (see Definitions 18 and 19). In Definition 13, the notion of argument
completion depends on the notion of pruning (Definition 12). But pruning is certainly
an expensive operation, because we cannot restrict our attention to derivations which
only make use of the defeasible rules in the given arguments only. We must take
into consideration also related (pruned) arguments. Therefore, we propose the follow-
ing alternative definition of argument completion that, from a computational point of
view, simplifies and hence improves the first one. This definition is also used in the
implementation of the DLP system (described in [GAR 97]).

DEFINITION 14 (ARGUMENT COMPLETION: ALTERNATIVE VERSION). — Let P
be aDLP, and let〈A, h〉 be an argument inP. Let T be a derivation tree forh that
does not make use of any defeasible ruler /∈ A. Then a completion of〈A, h〉 is the
set of defeasible and strict rules (without facts) inΠG ∪ A which are used inT .

EXAMPLE 15. — Let us consider the following program:

h ← a
a —< b, c
b ← d
b —< e
d
e
c

For this program, we have the argument〈A, h〉withA = {a —< b, c}. One possible
argument completion for〈A, h〉 is {(h ← a), (a —< b, c), (b ← d)} according to both
definitions of completion. But there is also another derivation forh making use of
the rules in{h ← a, a —< b, c, b —< e}. Since the last defeasible rule in this set does
not belong to the original argumentA, another argument completion (according to
Definition 13) after pruning, i. e. deleting this rule, isA = {h ← a, a —< b, c}.

Note that an argument completionA does not contain the facts used in the con-
struction of the defeasible tree. The reason for that will become clear later. The set

Computing Generalized Specificity 99

of ground literals ofA, denotedLit(A), will be the set of all ground literals that oc-
cur in the body or head of every rule inA. Considering Example 15, it follows that
Lit(A) = {a, b, c, d, h}.
DEFINITION 16 (ACTIVATION SET). — LetA be a completed argument, andLit(A)
the corresponding set of literals. A setU ⊆ Lit(A) is an activation setfor A, if
U ∪ A ` h, andU is minimal with respect to set inclusion (i. e.,@U ′ ⊂ U such that
U ′ ∪ A ` h). We will call Act-sets(A) the set of all activation sets forA.

DEFINITION 17 (NON-TRIVIAL ACTIVATION SET). — LetA be a completed argu-
ment, andLit(A) the corresponding set of literals. A setU ⊆ Lit(A) is called a
non-trivial activation setfor A, if U is an activation set forA andU ∪ ΠG 0 h. We
will call NTAct-sets(A) the set of all the non-trivial activation sets forA.

Figure 3 shows an algorithm to compute all non-trivial activation sets for a com-
pleted argumentA for h. In order to avoid trivial activation sets we only check whether
a defeasible rule has been used. Note that the first activation set forA is h itself, and
it is also a trivial one. As can be seen from the algorithm, the set of activation sets
of an argument is easy to compute, just parsing the completed argument once. Speci-
ficity can thus be defined in a form such that we only need to consider the non-trivial
activation sets.

Input: a completed argumentA for h.
Output: NTAct-sets(A)

1) A stackS is initialized with the pair({h}, trivial).
2) NTAct-sets(A) is initialized empty.

3) Repeat untilS is empty:

a) Select the first pair (N ,type) in S and remove it from the stack.

b) If type is non-trivial then addN to NTAct-sets(A).

c) The elementN will be formed by a set of literalsl1, . . . , lk. For each
literal li ∈ N that is a head of a ruler in A, with no empty body, create a new
activation setNi replacingli with the literals in the body ofr. The type ofNi is
trivial only if the type ofN is trivial andr is a strict rule. Otherwise the type ofNi

is non-trivial. Thus, for every literalli in N a new activation set can be created.

d) The new activation setsNi, that were not previously expanded, are
added to the top ofS.

4) Return NTAct-sets(A)

Figure 3. Computing non-trivial activation sets.

DEFINITION 18 (SPECIFICITY REVISITED: PRELIMINARY VERSION). — Let
〈A1, h1〉 and〈A2, h2〉 be two arguments, andA1 andA2 be completed arguments for

100 Journal of Applied Non-Classical Logics. Volume 13 – n◦ 1/2003

A1 andA2 respectively. We say that〈A1, h1〉 is strictly more specific than〈A2, h2〉
iff

1) for all setsU ∈ NTAct-sets(A) it holdsΠG ∪ U ∪ A2 ` h2, and

2) there exists a setU ′ ∈ NTAct-sets(B) such thatΠG ∪ U ′ ∪ A1 0 h1.

In general, there is no uniqueA for a given argumentA for a literal h, since
different rules inΠG can be used to prove the body literals of defeasible rules in
A. Nevertheless, the difference between two argument completionsA1 andA2 for an
argumentA lies only in the used strict rules for the defeasible derivation. Definition 18
is equivalent to Definition 10 only if there is a unique completion for each argument.
However, it can be improved in terms of the sets defined below which consider every
possible completion for an argument. In the following,ArgComp(A) denotes the set
of all argument completions ofA. We define:

Act-sets(A) =
⋃

A∈ArgComp(A)

Act-sets(A)

NTAct-sets(A) =
⋃

A∈ArgComp(A)

NTAct-sets(A)

DEFINITION 19 (SPECIFICITY REVISITED: FINAL VERSION). — Let 〈A1, h1〉 and
〈A2, h2〉 be two arguments. We say that〈A1, h1〉 is strictly more specific than
〈A2, h2〉 (written 〈A1, h1〉 A 〈A2, h2〉 in this case) iff

1) for all setsU ∈ NTAct-sets(A1) it holdsΠG ∪ U ∪ A2 ` h2, and

2) there exists a setU ′ ∈ NTAct-sets(A2) such thatΠG ∪ U ′ ∪ A1 0 h1.

Let us come back to Example 11. According to Definition 19 with the alternative
definition of argument completion (Definition 14), i. e. without taking derivations into
account which use defeasible rulesr /∈ A, we have that〈A, x〉 is strictly more specific
than〈B,∼x〉, since{d, f} is not considered as an activation set for〈A, x〉 (because
f does not occur in the derivation which uses only the defeasible rules fromA). This
means that〈A, x〉 is more specific than〈B,∼x〉. But 〈B,∼x〉 is not more specific
than〈A, x〉, because{a, b} non-trivially activates∼x, but notx.

However, according to Definition 19 with the original version of argument comple-
tion (Definition 13), it turns out that〈A, x〉 is not strictly more specific than〈B,∼x〉.
The problem is that there are two arguments forx, namelyA andC = {(a —< d), (f —< e)},
which makes the activation set{d, f} possible. We come to the same conclusion when
applying Definition 10. In fact, if we adopt Definition 13 for argument completion,
then we have the following equivalence:

THEOREM 20. — Let 〈A1, h1〉 and 〈A2, h2〉 be two arguments in a programP.
Then,〈A1, h1〉 A 〈A2, h2〉 iff 〈A1, h1〉 Â 〈A2, h2〉.
PROOF 21. — In the following, we write〈A1, h1〉 w 〈A2, h2〉 iff (at least) condi-
tion 1 of Definition 19 holds. Obviously, in such a case condition 2 of Definition 19

Computing Generalized Specificity 101

is equivalent to〈A2, h2〉 6w 〈A1, h1〉. Therefore, we have〈A1, h1〉 A 〈A2, h2〉 iff
〈A1, h1〉 w 〈A2, h2〉 and 〈A2, h2〉 6w 〈A1, h1〉. Since the relationship betweenÂ
andº is defined analogously in Definition 10, we only have to show that〈A1, h1〉 w
〈A2, h2〉 iff 〈A1, h1〉 º 〈A2, h2〉, because this implies the conjecture.

Let us first prove the direction from left to right of this statement. Thus, by hy-
pothesis it holds thatΠG ∪ H ∪ A1 ` h1 for some set of possible factsH with
ΠG ∪ H 0 h1 (non-triviality condition). This means there is a derivationT with
ΠG ∪H ∪ A1 `T h1. SinceΠG does not contain any facts, the leaves inT must be
labeled with literals fromH. Because ofH ⊆ F (the set of possible facts), there must
exist a derivationT ′ for h1 fromP, that is identical withT , but completed with addi-
tional subderivations below those leaves inT which are not facts inP and afterwards
pruned wrt.A1.

Let nowA1 be the completed argument wrt. the derivation treeT ′ (according to
Definition 13). Clearly,H ⊆ Lit(A1) andH ∪ A1 ` h1. Let nowU be a minimal
subset ofH such thatU ∪ A1 ` h1. By Definition 17,U is a non-trivial activation
set wrt. A1. Therefore, it holdsU ∈ NTAct-sets(A1). But then, the precondition
〈A1, h1〉 w 〈A2, h2〉 implies ΠG ∪ U ∪ A2 ` h2 by Definition 19. Because of
H ⊇ U , it follows ΠG ∪H ∪A2 ` h2 and thus〈A1, h1〉 º 〈A2, h2〉. This completes
the first part of this proof.

The direction from right to left (〈A1, h1〉 º 〈A2, h2〉 implies〈A1, h1〉 w 〈A2, h2〉)
is more or less straightforward. LetU ∈ NTAct-sets(A1) be a non-trivial activation
set. Then by Definition 17, there is a completed argumentA1, such thatU ⊆ Lit(A1)
andU ∪A1 ` h1. According to Definition 13,A1 stems from a derivation treeT ∗ that
is pruned wrt.A1. This impliesA1 ⊆ ΠG ∪A1. Hence, it holdsΠG ∪ U ∪A1 ` h1.
SinceU is a non-trivial activation set by hypothesis, it followsΠG ∪ U ∪ A2 ` h2

because of the precondition〈A1, h1〉 º 〈A2, h2〉 (see Definition 10). Thus, finally we
have〈A1, h1〉 w 〈A2, h2〉. This completes the second part of the proof.

3.4. Characterization by Path Sets

In the previous section, we expressed specificity by means of activation sets. In
this section, we will go one step further by defining specificity via the comparison of
(sets of) derivations. For this, we will identify each defeasible derivation tree with its
sets of paths in the tree.

Let N be a leaf node in a (possibly pruned) derivation treeT . We define thepath
in T throughN as the set consisting of the literal labelingN , together with all literals
labeling its ancestors (except the root node). LetPaths(T) be the set of all paths in
T through all leaf nodesN .

EXAMPLE 22. — The path sets for the derivation trees in Figure 1, which are already
pruned wrt. the corresponding arguments, are (1){{libero(diego)}},
(2) {{player(diego), libero(diego)}}, and (3){{libero(diego)}, {eager(diego)}},

102 Journal of Applied Non-Classical Logics. Volume 13 – n◦ 1/2003

respectively. Consider example 4 and the treeT in Figure 1 (3) once again. Since
T 〈A2,h〉 simply consists of one node—the root node—which is labeled withh, it holds
Paths(T 〈A2,h〉) = {∅}.

With this notion of paths, we are able to give a (preliminary) syntactic definition of
specificity as follows, by introducing the relation¥. We will see later (in Theorem 25)
that¥ andº are equivalent if the arguments involved in the comparison correspond
to exactly one derivation tree.

DEFINITION 23. — LetT1 andT2 be two derivation trees. We defineT1 ¥ T2 iff for
all t2 ∈ Paths(T2) there exists a patht1 ∈ Paths(T1) such thatt1 ⊆ t2.

As already observed in the previous section, an argument cannot always be identi-
fied with one unique derivation or completed argument, but with a set of those. There-
fore, we will take this into account in our next definition.

DEFINITION 24 (SYNTACTIC CRITERION). — Let 〈A1, h1〉 and 〈A2, h2〉 be two
arguments in a programP. Then〈A1, h1〉 ≥ 〈A2, h2〉 iff for all derivation treesT1

for h1 pruned wrt.A1 there is a treeT2 for h2 pruned wrt.A2 such thatT1 ¥ T2.

Now, we are able to state yet another formulation of specificity by means of the
relation≥ in the subsequent theorem. It gives us a syntactic characterization of speci-
ficity without guessing sets of possible factsH ⊆ F .

THEOREM 25. — Let 〈A1, h1〉 and 〈A2, h2〉 be two arguments in a programP.
Then,〈A1, h1〉 ≥ 〈A2, h2〉 implies〈A1, h1〉 º 〈A2, h2〉. If ΠG is empty, then also
the converse holds:〈A1, h1〉 º 〈A2, h2〉 implies〈A1, h1〉 ≥ 〈A2, h2〉.
PROOF26. — Let us first prove the first part of the statement. Thus, by hypothesis it
holds thatΠG∪H∪A1 ` h1 for some set of possible factsH with ΠG∪H 0 h1 (non-
triviality condition). This means there is a derivationT1 with ΠG ∪H ∪ A1 `T1 h1.
SinceΠG does not contain any facts, the leaves inT1 must be labeled with literals from
H. Because ofH ⊆ F (the set of possible facts), there must exist a derivationT ′1 for
h1 from P, that is identical withT1, but completed with additional subderivations
below those leaves inT1 which are not facts inP in A1, and afterwards pruned wrt.
A1.

Now, by precondition, there is a derivationT ′2 for h2 pruned wrt.A2 such that
T ′1 ¥ T ′2. Since by hypothesis the activation setH for 〈A1, h1〉 is non-trivial, for each
patht ∈ Paths(T ′2), there must be a literalL ∈ H, since otherwise there would be
a patht∗ in Paths(T ′2), such that no element ofH occurs int∗, but this contradicts
T ′1 ¥ T ′2. Now we delete all subderivations below nodes labeled with a literalL ∈ H.
Obviously, the obtained treeT2 is a derivation tree, satisfyingΠG ∪H ∪ A2 `T2 h2.
Hence, it holdsΠG ∪H ∪ A2 ` h2. This completes the first part of the proof.

In order to show the second part, we first notice that since an argumentA must
be minimal (according to condition 3 of Definition 7), for each literalL, there can
be at most one defeasible rule with headL in A. Furthermore, sinceΠG is empty by

Computing Generalized Specificity 103

precondition in this case, it follows, that every argument〈A, h〉 corresponds to exactly
one derivation treeT . This observation will be helpful in the analysis that follows.

LetT1 be the derivation for〈A1, h1〉 (pruned wrt.A1), which exists by hypothesis.
The leafs of this tree clearly are labeled with program facts. LetH denote the set of
facts among them. Obviously,A1 ∪H ` h1. It also holdsΠG ∪H 0 h1, sinceΠG is
empty andh1 /∈ H (because otherwiseh1 must be a fact inP, which implies thatA1

is not minimal). Therefore, we concludeA2∪H ` h2 because of〈A1, h1〉 º 〈A2, h2〉
(by precondition).

Let T2 be the corresponding derivation (pruned wrt.A2), which is unique as stated
above. Let us assumeT1 4 T2. Then there must be a patht2 ∈ Paths(T2) such that
for all pathsti ∈ Paths(T1) it holds ti 6⊆ t2. This means that in each pathti there
must be (at least) one literalL which is not int2. LetH ′ be the set of all these literals.
Clearly, H ′ is a non-trivial activation set for〈A1, h1〉, sinceΠG is empty andH ′

cannot containh1 (becauseh1 /∈ ti for all ti ∈ Paths(T1)).

Thus by precondition, there must be a derivationT ′2 with A2 ∪H ′ `T ′2 h2. Now,
T ′2 can be completed with additional subderivations and pruned wrt.A2 such that all
leaves are facts. However, the obtained tree is different fromT2, because it cannot
contain the patht2. But this contradicts to the fact that derivation trees are uniquely
determined. Hence, it holdsT1 ¥T2, and finally〈A1, h1〉 ≥ 〈A2, h2〉. This completes
the second part of the proof.

EXAMPLE 27. — In order to see the necessity of the restriction in the second part of
Theorem 25, let us consider the following program:

{(x —< a, b), (b —< c), (∼x —< c, d), (d —< a), a, c, (∼x ← b, d)}
For the argumentsA = {(x —< a, b), (b —< c)} andB = {(∼x —< c, d), (d —< a)}, it
holds〈A, x〉 º 〈B,∼x〉, because{a, b} and{a, c} (and their supersets not containing
x) are the only non-trivial activation sets for〈A, x〉, which also activate〈B,∼x〉.
However,〈A, x〉 6≥ 〈B,∼x〉, because there is only one derivationT1 for x (shown in
Figure 4 (a)), and there are two derivationsT2 (shown in Figures 4 (b) and 4 (c)) for
∼x (pruned wrt.B), but for both of them it holdsT1 4 T2. In order to see this, note
that the literalc actually does not belong to the tree in Figure 4 (c), because it has to
be pruned wrt. the argumentB.

3.5. Summary

In this section, we have introduced two different characterizations of specificity,
namely by activation sets (Section 3.3) and path sets (Section 3.4). In contrast to other
approaches, we consider a very general setting here, namely where (i) antecedents of
rules may be arbitrary large sets of positive and negative literals, and (ii) mixed rule
sets are allowed, i. e. with defeasible and also strict rules (as already mentioned in Sec-
tion 3.2). Therefore, our proposal can be seen as an extension of several approaches
in the literature [AMG 96, BEN 97, DUN 96, GEL 90b, HOR 94].

104 Journal of Applied Non-Classical Logics. Volume 13 – n◦ 1/2003

(a) x (b) ∼x (c) ∼x
� � � � ↗ ↖
a b c d b d

| | ... |
c a c a

Figure 4. Derivation trees for Example 27.

As we have seen, the original definition of general specificity (Definition 10) can
be characterized equivalently by activation or path sets, which decreases the computa-
tional complexity for specificity. With activation sets, we do not have to try out all of
the exponentially many possible activation sets (as already stated in Section 3.3). The
same holds for the characterization by path sets, which allows us to restrict our atten-
tion to the derivations of the given literal only. Hence, both characterizations yield us
criteria that can be implemented in a computationally attractive way.

The complexity for computing specificity in the restricted setting where both re-
strictions from Section 3.2 are present (antecedents are singletons; no strict back-
ground knowledge) can easily be determined for our approach. In this case there is
only one derivation for each literal (which can be seen in the proof of Theorem 25,
second part), and each derivation is just a linear sequence of literals. Thus, checking
our syntactic criterion≥ for the comparison of arguments consists of just one subset
test that can be done in polynomial time, i. e. quite efficiently.

Interestingly, the combination of all these linear derivations from above in one
graph resemblesdefeasible inheritance networksas defined in [HOR 94]. There are
many similarities between reasoning in these networks and our approach. Horty
[HOR 94] defines the notiondefeasible inheritabilityof paths in a network. According
to this definition, paths have to be constructible, non-conflicting, and non-preemptive.
These notions loosely correspond to the notions derivable (Definition 5) and strictly
more general (wrt. specificity, Definition 10) in our context. The above-mentioned
properties of networks can also be tested in polynomial time.

Besides these obvious relations and similarities, there is one major conceptual dif-
ference. Horty’s (and others’) approaches base their notion of defeasible inheritance
on proceduresthat can be applied to defeasible inheritance networks. But this might
lead to counterintuitive results. For instance, cyclic networks do not always have an
extension, and for cycles with strict rules, special procedures have to be employed,
e. g. by computing equivalence classes (see [HOR 94, pp. 125-141]). In contrast to
this, our notion of defeasibility is based on thesemanticalnotion of specificity, which
makes use of the well-known concept of SLD-derivation from the field of logic pro-
gramming (see Section 2.2). The characterizations with activation and path sets im-
plement this clean semantic notion.

Computing Generalized Specificity 105

Finally, it must be remarked the comparison of arguments is embedded into a di-
alectical process, where arguments may be defeated, and there may exist defeaters
for the defeaters, and so on. In DeLP a complete dialectical analysis is performed
constructing a tree of arguments. Since this is not the subject of this paper, we refer
the interested reader to [GAR 98, SIM 92] for details on the dialectical process. The
syntactic criterion (≥) for specificity can be used directly by the defeater notion (see
Definition 9). Thus, the new definition for specificity can be embedded naturally in
DeLP in a modular way.

4. Related Work

Next we will relate our work to other approaches to argumentation. In Section 4.1
we will relate our approach to other argumentation formalisms and their comparison
criteria for conflicting arguments or default rules. We will then briefly discuss other
frameworks for defeasible and default reasoning in Sections 4.2 and 4.3.

A more detailed overview and comparison of logical models of arguments is given
in the survey article [CHE 00]. The journal article [CHE 02] relates the defeasible
logic programming framework with specificity and its semantics to classical logic
programming frameworks. It shows that the DeLP semantics is closely related to
the well-founded semantics [GEL 88b] and the stable model semantics [GEL 88a] for
normal logic programs. For more details the interested reader is referred to [CHE 02].

4.1. Argumentation

Dung and Son in [DUN 96] introduce an argumentation-theoretic approach to de-
fault reasoning with specificity. Default reasoning in general, and argumentative rea-
soning in particular, is defined in terms of a setE of evidence (or facts), and a pair
K = (D,B) which represents thedomain knowledgeconsisting of a set of default
rulesD, and a first-order theoryB representing background knowledge (∆ andΠG in
our notation). As stated before, our approach also takes into consideration the back-
ground knowledgeB that was assumed empty in [DUN 96]. It is certainly interesting
to consider a generalized setting, where evidence and background knowledge are not
restricted to facts and strict rules, respectively. But this is beyond the scope of this
paper.

In [DUN 96], the authors claim that most priority-based approaches define the
semantics ofTh wrt. certain partial orders onD, determined only byK. Let POK

be the set of all partial orders defined in this way. For every partial orderα ∈ POK

(where(d, d′) ∈ α means thatd has lower priority thand′), we define<α to be a
partial order between sets of defaults inD, whereS <α S′ means thatS is preferred
to S′. Whatever the definition of<α, it has to satisfy the following property:Let
S be a subset ofD, and letd, d′ be two defaults inD such that(d, d′) ∈ α. Then
S ∪ {d′} <α S ∪ {d}.

106 Journal of Applied Non-Classical Logics. Volume 13 – n◦ 1/2003

The partial order<α can be extended into a partial order between models inB∪E,
by definingM <α M ′ iff DM <α DM ′ , whereDM is the set of all defaults inD
which are satisfiable inM . A defaultp/q is satisfiable inM iff the implicationp → q
is satisfiable inM . A modelM of B ∪ E is a preferred model ofTh iff there exists
a partial orderα in POK such thatM is minimal wrt.<α. [DUN 96] shows that any
preferential semantics based on<α is not satisfactory enough since the set of evidence
E is not considered.

EXAMPLE 28 (TAKEN FROM [DUN 96]). — Consider the default theoryTh =
(E,K), whereB = ∅, D = {d/c, c/b, d/¬a, b/a }, and E = {d}. The desirable
semantics here is represented by the modelM = {d, c, b,¬a}. To have this semantics,
most priority-based approaches assign the defaultb/a a lower priority than the default
d/¬a. Let us considerTh under a new setE = {d,¬c, b}. Sincec does not hold, the
defaultd/¬a cannot be considered more specific than the defaultb/a, so that it should
not be the case that eithera or¬a are concluded.

However, in any priority-based approach using the same priorities between de-
faults wrt. E andE′, we haveM = {¬a, d,¬c, b} <α M ′ = {a, d,¬c, b} since
DM = {c/b, d/¬a} <α D′

M = {c/b, b/a} (due to the fact that(b/a, d/¬a) ∈ α).
Hence priority-based approaches would conclude¬a given(E′,K), which is not the
intuitive result, leading to the idea that defaultb/a should have a lower priority than
d/¬a under evidenceE, but a different priority under evidenceE′.

Example 28 can be recast into the DeLP formalism by rewriting a default rulea/b
as a defeasible clauseb —< a. Let us consider the preferred model associated with a
DeLP program as defined by those literals supported by arguments ultimately unde-
feated. It turns out that the intuitively preferred model is computed correctly, since the
evidenceE is taken into account.

EXAMPLE 29. — Consider the set∆ = { (a —< b), (∼a —< d), (c —< d), (b —< c)} of
defeasible clauses, and letΠ = {d}. In this case, we have arguments forb, c, d, a
and∼a. The argument for∼a is more specific than the argument fora. However, if
Π = {d ,∼c , b}, we will have still undefeated arguments ford,∼c andb, but∼a will
no longer hold (since it is blocked by the argument{a —< b}).

The previous example shows that in our approach, preference among defaults (de-
feasible rules) is determined dynamically during the dialectical analysis. This implies
that our approach is context-sensitive as defined in [DUN 96] (although this is denied
in the same reference). A distinctive feature of specificity is that it can be generalized
to other common-sense reasoning approaches where the notion ofderivation plays
a central role. Thus specificity results as a useful comparison criterion for choosing
between conflicting extensions in proof-theoretic approaches, whereas the dialectical
analysis determines whether a given extension (argument) is ultimately preferred.

In [BEN 97], Benferhat and Garcia investigate a local approach to deal with con-
flicts in the presence of default rules. They suggest that when a conflict appears, the
set of pieces of information that are responsible of this conflict are to be identified,

Computing Generalized Specificity 107

and then (using a new definition of specificity) priorities should be attached to default
rules inside each conflict. They claim that the resulting approach is modular, in the
sense that the step of computing the specificity ordering of the defaults is independent
of the step of solving conflicts. Hence, if another definition of specificity is preferred,
then it is not very hard to adapt it to their approach. Note that this way of handling
specificity differs from ours, in the sense that default rules are labeled with priorities
inside each conflict, whereas our characterization defines preference just in terms of
activation sets and derivation trees, without any particular priority relationship among
defeasible rules. It must be remarked that both our approach and Benferhat and Gar-
cia’s [BEN 97] rely on the notion ofdefeasible inference. In [BEN 97] defeasible
inheritance networks are used and depicted as trees or graphs; in our approach, defea-
sible inference is expressed in terms of arguments and dialectical trees. However, the
underlying logical languages in both approaches differ. Benferhat and Garcia depart
from a propositional logical languageL, which differs from the language for defeasi-
ble logic programs (e. g., in [BEN 97] disjunctions in heads of rules are allowed).

In [AMG 96], Amgoud, Cayrol and Le Berre investigate the problem of defining
preference relations to compare conflicting arguments. They state that two kinds of
preference relations are most commonly encountered:implicit relations, which are
syntactically extracted from the belief base (in line with the specificity criterion pre-
sented in this paper), andexplicit relationswhich are most often induced by a priority
ordering on the belief base itself. Unlike our approach they focus on explicit prefer-
ence relations. They discuss three explicit preference relations induced by a prefer-
ence relation defined on the support of the arguments. The first preference criterion is
defined in the context of possibilistic logic [BEN 93], and assumes a stratified belief
base. The second and the third criteria (based on [ELV 93] and [CAY 93], respec-
tively) assume that a partial pre-ordering≤ is defined on the belief base.

The authors show that the first and the second approaches lead to contradictory re-
sults in some examples, and the third is a refinement of the first. Finally, they propose
to apply their particular implementation of an Assumption-based Truth Maintenance
System (ATMS) to argument-based reasoning taking into account a stratified base of
clauses. It should be noted that the three relations proposed in this paper are based
on explicit priorities between rules. In contrast, our approach focuses on comparing
arguments, which involves asetof defeasible rules (Definition 7) without considering
priorities between two rules.

Other argumentation formalisms—particularly those motivated by legal reasoning,
such as [PRA 97]—consider priorities as well as defeasible reasoning about priorities.
It must be remarked that in these cases criteria for comparing arguments are also
debatable, and in many cases they are subordinated to hierarchical and temporal con-
siderations (see [PRA 97] for an in-depth discussion). In contrast to these approaches,
we concentrate on first finding an acceptable criterion for determining preferred ex-
tensions associated with the presence of defeasible information. Incorporating other
features (such as hierarchical or temporal preference principles) is intended for further
research.

108 Journal of Applied Non-Classical Logics. Volume 13 – n◦ 1/2003

4.2. Prioritized Default Logic and Inheritance Reasoning

Brewka and Eiter [BRE 00] have extended default logic in order to handle priori-
ties, developing aPrioritized Default Logic(PDL). This approach has many properties
which seem relevant for argumentation, such as explicit representation of preferences
and reasoning about preferences. Although this approach is not explicitly argument-
based, prioritized default theories extend default theories adding a strict partial order
on defaults, using this ordering to define preferred extensions.

A prioritized default theory∆ = (D, W,<) extends the default theory(D,W)
with a strict partial order< on default rules. A defaultd will be considered preferred
over defaultd′ wheneverd < d′ holds. ∆ is calledfully prioritized iff < is a well-
ordering. The following proposition can be established: if∆ = (D, W,<) is a fully
prioritized ground theory, andE a classical extension of∆, thenE is a preferred
extension of∆ iff for each defaultd ∈ D such thatpre(d) ∈ E andcons(d) 6∈ E
there exists a set of defaultsKd ⊆ {d′ ∈ GD(D, E) | d′ < d} such thatd is defeated
in Th(W ∪ cons(Kd)). Given a defaultd = a : b1, . . . , bn/c, wherea, b1, . . . , bn, c
are first-order formulas,a is called theprerequisiteof d, eachbi is a justification,
andc is theconsequent. This is denoted aspre(d), jus(d) andcons(d), respectively.
HereGD(D,E) denotes the set of all defaults fromD which are generating inE
(a defaultd is called generating in a set of well-formed formulaeS if pre(d) ∈ S
and¬just(d) ∩ S = ∅. This proposition basically says that in preferred extensions
defaults which are not applied must be defeated by defaults with higher priority.

PDL has a number of properties which seem to be relevant for defeasible argumen-
tation, such as non-monotonicity, explicit representation of preferences and reasoning
about preferences. In [BRE 00], it is proven that PDL satisfies two reasonable princi-
ples for preference handling, which distinguishes PDL from other approaches. How-
ever, since an ordering of defaults is enforced, similar problems to those mentioned
in Section 4.1 are also present. Further, the approach in [BRE 00] considers sets of
default rules only, not also strict rules, as done here. In addition, no procedures for
prioritized default theories are investigated in [BRE 00].

In [GEL 90b], a formalization of inheritance reasoning in autoepistemic logic is
presented. In this context, an autoepistemic theoryTh is given by a set of proposi-
tional formulae augmented by a belief operator. Also strict rules besides defeasible
rules are taken into consideration (as done here). However, in inheritance networks,
rule bodies are restricted to containing at most one literal only—in contrast to the
approach presented here.

The proposed formalization provides a completely axiomatic view on inheritance
reasoning, introducing the notions belief sets and explanations. An explanation of an
autoepistemic system is a setD of sentences such that the theoryTh∪D has a stable
expansion (i. e., there is a setE such thatE is identical with the set of consequences
from Th ∪ D ∪ E). In this approach, explanations are ordered by a pre-order<
(preferability relation).

Computing Generalized Specificity 109

The semantics is explained completely axiomatically in [GEL 90b], by introducing
the notion of rank in an inheritance network, i. e. the length of the longest path which
ends at a certain node. But the authors do not investigate operational procedures for
inheritance networks. Rational principles are incorporated in the semantics: minimal-
ity and reliability of explanations. The semantics is similar to the one presented here,
because minimal and more reliable explanations are preferred in both approaches.

4.3. Logic Programming and Defeasible Logic with Superiority Relation

In [KAK 94] and later in [DIM 95],Logic Programming without Negation as Fail-
ure (LPwNF) was introduced. A LPwNF program consists of a set of basic rules
L0 ← L1, . . . , Lk (whereLi are literals that could be preceded by strong negation)
and a given irreflexive and antisymmetric priority relation among program rules. The
authors claim that default negation can be removed using the following transforma-
tion: the ruler0 = p ← q, not r is transformed into two rules,r1 = p ← q and
r2 = ∼p ← r, with r1 < r2. Hence, whenr is not derivable the ruler2 can-
not be used, and there is a derivation forp. On the other hand whenr is deriv-
able, ruler2 blocksr1. However, the problem with this approach is that whenr is
derivable, a new literal (not present in the original program) is derivable:∼p. Con-
tradiction between derivations is based on complementary literals, and the priority
relation among rules. The proof procedure of LPwNF is very similar to the one of
d-Prolog [COV 88, NUT 94].

Although in [DIM 95] there is no comparison with defeasible logic, in [ANT 00] a
comparison among LPwNF, defeasible logic, and so-called courteous logic programs
is given. The main result of [ANT 00] is that defeasible logic can prove everything that
sceptical LPwNF can. In [GEL 97], Gelfond and Son developed a system to “inves-
tigate the methodology of reasoning with prioritized defaults in the language of logic
programs under the answer set semantics”. Their system allows the representation of
defeasible and strict rules, and the representation of an order among those rules. The
way in which defeasible inferences are obtained is very similar to [ANT 00], although
no comparison of these two systems is given.

In [ANT 00, MAH 98], another approach for defeasible reasoning is presented. In
this context, defeasible logic programs are (almost) identical to programsP as defined
in Definition 3. But there, specificity is a relation between program clauses, modeled
by the so-calledsuperiority relation>, whereas in our framework specificity is an
implicit relation between arguments according to Definition 10. The main difference is
that this approach is not argument-based. Since the relation> must be explicitly given
by the programmer in addition to the programP, we have to consider the pair(P, >)
for this approach. Since the procedure for deriving defeasibly valid literals is quite
different from our approach, it is not clear how to express specificity as defined here
by means of an appropriately chosen superiority relation. However, the construction
of such a relation is a non-trivial issue, and deserves a more detailed analysis.

110 Journal of Applied Non-Classical Logics. Volume 13 – n◦ 1/2003

5. Conclusions

Formalisms for representing common-sense knowledge need to deal with contra-
dictory conclusions, and decide between them with some comparison criterion. To
our opinion, this comparison should be performed within the formalism itself by an-
alyzing the pieces of knowledge which lead to contradictory conclusions. Thus, our
aim was to look forward for an autonomous comparison criterion that may fit in any
rule-based formalism.

As a result we characterized a generalized version of specificity, based on the
comparison criterion defined in [POO 85, SIM 92]. We showed that specificity can
be redefined in terms of two different approaches:activation sets(Theorem 20) and
derivation trees(Theorem 25). A syntactic criterion was obtained, which can be im-
plemented in a computationally attractive way. This has been done in the DLP system
(described in [GAR 97]) which implements the algorithm in Figure 3. These results
may be applied to other rule-based formalisms which currently make use of explicit
priorities.

Further work will concentrate on investigating even deeper the relationships to
other approaches and possible translations from one method of defeasible reasoning
into another one. For instance, it seems to be possible to reformulate defeasible rea-
soning as done here by means of (extended) logic programs (see also [DUN 96]). Last
but not least, the integration of defeasible reasoning into agent programming should
be tackled in greater detail.

Acknowledgements

This research has been supported by the German-Argentinian program on scien-
tific and technological cooperation, funded by theBundesministerium für Bildung und
Forschungin Germany and theSecretaría de Ciencia y Tecnologíain Argentina (see
also [DIX 99]). A preliminary version of this paper appeared as [STO 00]. We thank
some anonymous referees for a number of suggestions that helped to improve this
article.

6. References

[ALF 96] ALFERES J. J., PEREIRA L. M., Eds., Reasoning with Logic Programming,
LNAI 1111, Springer, Berlin, Heidelberg, New York, 1996.

[AMG 96] AMGOUD L., CAYROL C., BERRE D. L., “Comparing Arguments using Prefer-
ence Orderings for Argument-based Reasoning”,Proc. of the 8th International Conference
on Tools with Artificial Intelligence, ICTAI’96, IEEE, 1996, p. 400-403.

[ANT 00] ANTONIOU G., MAHER M. J., BILLINGTON D., “Defeasible Logic versus Logic
Programming without Negation as Failure”,Journal of Logic Programming, vol. 42, 2000,
p. 47-57.

Computing Generalized Specificity 111

[BEN 93] BENFERHAT S., DUBOIS D., PRADE H., “Argumentative Inference in Uncertain
and Inconsistent Knowledge Bases”,Proc. of the 9th Conference on Uncertainty in AI,
1993, p. 411-419.

[BEN 97] BENFERHAT S., GARCIA L., “A Coherence-Based Approach to Default Reason-
ing”, GABBAY D. M., KRUSER., NONNENGART A., OHLBACH H.-J., Eds.,Proceedings
of 1st International Joint Conference on Qualitative and Quantitative Practical Reasoning,
LNAI 1244, Bad Honnef, 1997, Springer, Berlin, Heidelberg, New York, p. 43-57.

[BRE 00] BREWKA G., EITER T., “Prioritizing Default Logic”, HÖLLDOBLER S., Ed., In-
tellectics and Computational Logic: Papers in Honor of Wolfgang Bibel, p. 27-46, Kluwer
Academic Publishers, Dordrecht, Boston, London, 2000.

[CAY 93] CAYROL C., ROYER V., SUAREL C., “Managment of Preferences in Assumption-
Based Reasoning”,BOUCHON-MEUNIER B., VALVERDE L., YAGER R. R., Eds.,Pro-
ceedings of 4th International Conference on Processing and Management of Uncertainty in
Knowledge-Based Systems 1992 – Advanced Methods in Artificial Intelligence, LNCS 682,
Springer, Berlin, Heidelberg, New York, 1993, p. 13-22.

[CHE 00] CHESÑEVAR C. I., MAGUITMAN A., LOUI R., “Logical Models of Argument”,
ACM Computing Surveys, vol. 32, num. 4, 2000, p. 337-383, ACM Press.

[CHE 02] CHESÑEVAR C. I., DIX J., STOLZENBURG F., SIMARI G. R., “Relating Defea-
sible and Normal Logic Programming through Transformation Properties”,Theoretical
Computer Science, , 2002, To appear.

[COV 88] COVINGTON M. A., NUTE D., VELLINO A., Prolog Programming in Depth, Scott,
Foresman and Company, Glenview, IL, London, 1988.

[DIM 95] DIMOPOULOS Y., KAKAS A., “Logic Programming without Negation as Failure”,
Proceedings of 5th. International Symposium on Logic Programming, Cambridge, MA,
1995, MIT Press, p. 369–384.

[DIX 99] DIX J., STOLZENBURG F., SIMARI G. R., FILLOTTRANI P. R., “Automating De-
feasible Reasoning with Logic Programming (DeReLoP)”,JÄHNICHEN S., LOISEAU I.,
Eds.,Proceedings of the 2nd German-Argentinian Workshop on Information Technology,
Königswinter, 1999, p. 39-46.

[DUN 96] DUNG P. M., SON T. C., “An Argumentation-theoretic Approach to Reasoning
with Specificity”, A IELLO L. C., DOYLE J., SHAPIRO S. C., Eds.,Proceedings of 5th
International Conference on Principles of Knowledge Representation and Reasoning, 1996,
p. 506-517.

[ELV 93] ELVANG -GORANSONNM., FOX J., KRAUSE P., “Dialectic Rreasoning with Incon-
sistent Information”,Proc. of the 9th Conference on Uncertainty in AI, 1993, p. 114-121.

[GAB 94] GABBAY D. M., HOGGER C. J., ROBINSON J. A., Eds.,Handbook of Logic in
Artificial Intelligence and Logic Programming. Volume 3: Nonmonotonic Reasoning and
Uncertain Reasoning, Oxford University Press, 1994.

[GAR 97] GARCÍA A. J., “Defeasible Logic Programming: Definition and Implementation”,
Master’s thesis, Dep. de Ciencias de la Computación, Universidad Nacional del Sur, Bahía
Blanca, Argentina, Jul. 1997.

[GAR 98] GARCÍA A. J., SIMARI G. R., CHESÑEVAR C. I., “An Argumentative Framework
for Reasoning with Inconsistent and Incomplete Information”,Workshop on Practical
Reasoning and Rationality, 13th biennial European Conference on Artificial Intelligence
(ECAI-98), Aug. 1998.

112 Journal of Applied Non-Classical Logics. Volume 13 – n◦ 1/2003

[GAR 00] GARCÍA A. J., “Defeasible Logic Programming: Definition, Operational Semantics
and Parallelism”, PhD thesis, Computer Science Department, Universidad Nacional del Sur,
Bahía Blanca, Argentina, Dec. 2000.

[GEL 88a] GELFOND M., L IFSCHITZ V., “The Stable Model Semantics for Logic Program-
ming”, KOWALSKI R., BOWEN K., Eds.,5th Conference on Logic Programming, MIT
Press, 1988, p. 1070-1080.

[GEL 88b] VAN GELDER A., ROSSK. A., SCHLIPF J. S., “Unfounded Sets and well-founded
Semantics for general logic Programs”,Proceedings 7th Symposion on Principles of
Database Systems, 1988, p. 221-230.

[GEL 90a] GELFOND M., L IFSCHITZ V., “Logic Programs with Classical Negation”,WAR-
REN D., SZEREDI P., Eds.,Proceedings of the International Conference on Logic Program-
ming, MIT Press, 1990, p. 579-597.

[GEL 90b] GELFOND M., PRZYMUSINSKA H., “Formalization of Inheritance Reasoning in
Autoepistemic Logic”,Fundamenta Informaticae, vol. XIII, 1990, p. 403-443, IOS Press.

[GEL 97] GELFOND M., SON T. C., “Reasoning with Prioritized Defaults”,Selected Papers
from the Workshop on Logic Programming and Knowledge Representation, LNAI 1471,
Springer, Berlin, Heidelberg, New York, 1997, p. 164–223.

[HOR 94] HORTY J. F., “Some Direct Theories of Nonmonotonic Inheritance”, Gabbay et
al. [GAB 94], p. 111-187.

[KAK 94] KAKAS A. C., MANCARELLA P., DUNG P. M., “The Acceptability Semantics for
Logic Programs”, Proceedings of the 11th International Conference on Logic Program-
ming, Santa Margherita, Italy, 1994, MIT Press, p. 504–519.

[LIF 96] L IFSCHITZ V., “Foundations of Logic Programs”,BREWKA G., Ed.,Principles of
Knowledge Representation, CSLI Publications, 1996.

[LLO 87] LLOYD J. W., Foundations of Logic Programming, Springer, Berlin, Heidelberg,
New York, 1987.

[LOU 87] LOUI R. P., “Defeat Among Arguments: A System of Defeasible Inference”,Com-
putational Intelligence, vol. 3, num. 3, 1987, p. 100-106.

[MAH 98] MAHER M. J., ANTONIOU G., BILLINGTON D., “A Study of Provability in De-
feasible Logic”, SLANEY J., ANTONIOU G., Eds.,Proceedings of 11th Australian Joint
Conference on Artificial Intelligence, LNAI 1502, Springer, Berlin, Heidelberg, New York,
1998, p. 215-226.

[MUR 01] MURRAY J., OBST O., STOLZENBURG F., “Towards a Logical Approach for Soc-
cer Agents Engineering”, STONE P., BALCH T., KRAETZSCHMAR G., Eds.,RoboCup
2000: Robot Soccer World Cup IV, LNAI 2019, p. 199-208, Springer, Berlin, Heidelberg,
New York, 2001.

[NUT 94] NUTE D., “Defeasible Logic”, Gabbay et al. [GAB 94], p. 355-395.

[POL 91] POLLOCK J. L., “Self-Defeating Arguments”,Minds and Machines, vol. 1, num. 4,
1991, Special issue onDefeasible Reasoning.

[POO 85] POOLE D. L., “On the Comparison of Theories: Preferring the Most Specific Ex-
planation”, Proceedings of 9th International Joint Conference on Artificial Intelligence,
IJCAI Inc., San Mateo, CA, Morgan Kaufmann, Los Altos, CA, 1985, p. 144-147.

[PRA 97] PRAKKEN H., SARTOR G., “Argument-based logic programming with defeasible
priorities”, Journal of Applied Non-classical Logics, vol. 7, 1997, p. 25-75.

Computing Generalized Specificity 113

[SIM 92] SIMARI G. R., LOUI R. P., “A Mathematical Treatment of Defeasible Reasoning
and its Implementation”,Artificial Intelligence, vol. 53, 1992, p. 125-157.

[SIM 94] SIMARI G. R., CHESÑEVAR C. I., GARCÍA A. J., “The Role of Dialectics in Defea-
sible Argumentation”,Anales de la XIV Conferencia Internacional de la Sociedad Chilena
para Ciencias de la Computación, Universidad de Concepción, Concepción (Chile), Nov.
1994.

[STO 00] STOLZENBURG F., GARCÍA A. J., CHESÑEVAR C. I., SIMARI G. R., “Introducing
Generalized Specificity in Logic Programming”,FEIERHERD G. E., Ed.,Proceedings of
the 6th Argentine Congress on Computer Science, Ushuaia, Argentina, 2000, JAIIO, Buenos
Aires, p. 359-370.

[VRE 97] VREESWIJK G. A., “Abstract Argumentation Systems”,Artificial Intelligence,
vol. 90, 1997, p. 225-279.

[WAN 97] WANG X., YOU J., YUAN L., “Logic Programming without Default Negation Re-
visited”, Proceedings of IEEE International Conference on Intelligent Processing Systems,
IEEE, 1997, p. 1169–1174.

