Strong and Default Negation
in Defeasible Logic Programming

Alejandro J. Garcia Guillermo R. Simari
{ccgarcia, grs}@criba.edu.ar!

1 Introduction

Defeasible Logic Programming [8] (DLP) is an extension of Logic Programming capturing
common-sense reasoning features, that are difficult to express in traditional Logic Program-
ming. The presented language can manage defeasible reasoning, allowing the representation
of defeasible and non-defeasible knowledge.

A defeasible logic program is defined in terms of two disjoint sets of rules: a set of strong
rules for representing strict (sound) knowledge, and a set of defeasible rules for representing
tentative information. In DLP, a query ¢ will succeed when there is an argument A for ¢
that is a justification for ¢q. Building a justification involves looking for counterarguments
that could be defeaters for A. Since defeaters are arguments, there may exist defeaters for
the defeaters, and so on, thus requiring a dialectical analysis.

DLP considers two different negations: strong negation, which is represented by the sym-
bol “~” which is used for representing contradictory knowledge; and, default negation, rep-
resented by the symbol “not” used for representing incomplete information. In this work,
we will show why two types of negations are needed, the differences between them, some
properties, and how they could be combined to take advantage of the full expressiveness of
the language.

2 Defeasible Logic Programs

In our language, a literal “L” is an atom “A” or a negated atom “~A” [13]. Literals will be
allowed in the head and the body of a rule, and default negation just in the body, therefore
we will follow the notions of basic rule and extended rule introduced by Lifschitz in [12].

Definition 2.1 (Strong Rule) A Strong Rule is an ordered pair, conveniently denoted
Head — Body, whose first component Head is a literal, and whose second component Body
is a finite set of literals possibly preceded by the symbol of default negation “not”. A strong
rule with the head Lo and body {Li,...,Ly,} can also be written as: Ly < Li,...,Ly. As
usual, if the body is empty, then a strong rule becomes “L «— true” (or simply “L”) and it
is called a fact.

Strong rules correspond to rules used in Extended Logic Programming [9]. Defeasible
rules, to be defined below, will add a new representational capability for expressing a weaker
link between the head and the body in a rule. A defeasible rule “Head —< Body” is understood
as expressing that “reasons to believe in the antecedent Body provide reasons to believe in the
consequent Head” [30]. Defeasible rules are also extended here, allowing the use of default
negation in the body of the rule with the obvious meaning.

Definition 2.2 (Defeasible Rule) A Defeasible Rule is an ordered pair conveniently de-
noted Head —< Body, whose first component Head is a literal, and whose second component
Body is a finite set of literals possibly preceded by the symbol of default negation “not”. A

'Department of Computer Science, Universidad Nacional del Sur, Bahia Blanca, Argentina.

defeasible rule with head Lo and body {L1,..., Ly} can also be written as: Lo —< Ly, ..., Ly.
If the body is empty, we write * L —< true” and we call it a presumption.

”

Syntactically, the symbol “—<” is all that distinguishes a defeasible rule from a strong
rule. Pragmatically, a defeasible rule is used to represent defeasible knowledge, i.e., tentative
information that may be used if nothing could be posed against it. Thus, whereas a strong
rule is used to represent non-defeasible information such as “bird(X) «— penguin(X)”, which
expresses that “all penguins are birds.”, a defeasible rule is used to represent defeasible
knowledge such as “flies(X) < bird(X)” which expresses that “birds are presumed to fly”
or ‘“usually, a bird can fly.”

Besides the syntactic difference, each type of negation is used for a different purpose. We
refer the interested reader to [2], where a detailed analysis of negation in Logic Programming
and Non-Monotonic Reasoning is addressed. Strong negation is necessary for representing
situations such as:

~carnivorous(X) «— bull(X) (“bulls are not carnivorous”)
~guilty(X) < innocent(X) (“an innocent is not guilty”)
~dangerous(X) —< ~carnivorous(X)
(“usually,if an animal is not carnivorous then it is not dangerous.”)

However, there are other situations in which default negation behaves in a better way.
For instance, to express that “if someone cannot be proven guilty, then s/he is innocent”, and
“usually, search for someone whenever s/he is missing and it has not been proven that s/he
is dead”:

innocent(X) «— not guilty(X)
search_for(X) —< missing(X),not dead(X)

Lets observe that both types of negation are needed, for expressing the rule?: “in general, do
not cross railway tracks if it cannot be proven that no train is coming’

~cross_railway _tracks —< not ~train_is_coming.

As we will show below, the semantics of default negation will be different from the approach
in conventional logic programming.

A Defeasible Logic Program (DLP) is a finite set of strong and defeasible rules. If P is a
DLP, we will distinguish the subset S of strong rules and the subset D of defeasible rules in
P. When required we will denote P as (S,D). A defeasible query (or simply, a query) is a
defeasible rule with empty consequent denoted “ < Q1,...,Q,”, where each Q; (1 <i <n)
is a literal. An example of a DLP follows.

Example 2.1

~drink_water(X) —< lost_at_sea(X)
drink_water(X) —< lost_at_sea(X), collect_rain(X)
lost_at_sea(popeye) —< true

collect_rain(popeye) —< true

dead(X) —< ~drink_water(X)

search_for(X) —< lost_at_sea(X),not dead(X)

Od
Given a DLP P and a defeasible query @, an SLD-Defeasible Refutation of P U {Q}
is a finite sequence C4,Cs,...,C), of variants of strong or defeasible rules of P, provided

2This rule was adapted from an example given by John McCarthy as reported in [9]

there exists a sequence Q=Qq, Q1,...,Q, of defeasible queries and a sequence 61,0s,...,0,
of mgu’s such each ;41 is derived from @Q); and Cjy1 using 6,41, and @, is the empty rule. If
there exist a SLD-defeasible refutation for @), then the finite set of rules used in the refutation
constitutes the defeasible derivation for Q.

Two literals are contradictory if they are complementary with respect to strong nega-
tion. Thus, “drink_water(popeye)” and “~drinks_water(popeye)” are contradictory literals.
Observe for example that from the DLP of Example 2.1 it is possible to have defeasible
derivations for these contradictory literals. Therefore, in order to allow only one of two
contradictory goals to be accepted as a sensible possibility, we need a criterion for choosing
between them. This will be developed in the next section, but first, we will introduce the
idea of a contradictory set of clauses.

Definition 2.3 (Contradictory DLP) A defeasible logic program P is contradictory if and
only if, it is possible to defeasibly derive from P a pair of complementary literals.

The use of strong negation in program rules, enriches language expressiveness, and also
allows to represent contradictory knowledge. However, if P = (S,D) is a DLP, the set S
of strong rules is used to represent non-defeasible information, so it must express certain
internal coherence. Therefore, from now on, we will assume that in every DLP P the set S
is non-contradictory. If a contradictory set S is used in a DLP then the same problems of
Extended Logic Programming [9] will appear and the corresponding analysis has been done
elsewhere.

Although the set § must be non-contradictory, the set D, and hence P itself (i.e., S U D),
may be contradictory. It is only in this form that a DLP may contain contradictory informa-
tion. Observe that the DLP of example 2.1 is a contradictory program, but its set S is not.
In the next section we will describe a justification procedure capable of deciding acceptance
between contradictory goals.

3 Justification Procedure

In DLP, answers to queries must be supported by an argument. Given a DLP P, an argument
A for a query ¢, also denoted (A, q), is a subset of ground instances of defeasible rules of
P, such that: (1) There exists a defeasible derivation for ¢ from S U A, (2) S U A is non-
contradictory, and (3) A is minimal with respect to set inclusion (i.e., there is no A" C A
such that A’ satisfies the first condition).

When considering a query ¢, an argument 4 for ¢ will be built, but arguments that con-
tradict A (called rebuttals or counter-arguments) could exist. We say that (A, h1) counter-
argues (Aa, ha) at literal h, if and only if there exists a sub-argument (A, h) of (A, ha) such
that the set S U {hy, h} is contradictory.

Informally, a query ¢ will succeed if the supporting argument for it is not defeated; that
argument then becomes a justification. In order to establish if A is a non-defeated argument,
counter-arguments that could be defeaters for A are considered, i.e., counter-arguments that
for some criterion?, are preferred to A. Formally, an argument (A, hq) defeats (As, ho) at
literal h, if and only if there exists a sub-argument (A, h) of (As, ho) such that (A, hq)

3We have formally defined a particular criterion called specificity (see [25, 30]) which allows discrimination
between two conflicting arguments. Intuitively, this notion of specificity favors two aspects in an argument:
it prefers an argument (1) with greater information content and/or (2) with less use of defeasible rules. In
other words, an argument is deemed better than another if it is more precise and/or more concise. Although
one is required, the notion of defeating argument can be formulated independently of the particular argument-
preference criterion being used. The only restriction on that criterion is the requirement of being a partial
order.

counter-argues (As, ho) at h, and either: (1) (Aj, h1) is “better” than (A, h) (then (Aj, h1)
is a proper defeater of (A, ha)); or (2) (A, hy) is unrelated by the preference order to (A, h)
(then (A, h1) is a blocking defeater of (As, ha)).

This definition of defeater comprises the Type I (counter-argument point in the conclu-
sion) and Type II (an inner counter-argument point) defeaters as introduced in Pollock’s
seminal work [20, 19, 21, 22, 23, 24]. Since defeaters are arguments, there may exist defeaters
for the defeaters, and so on. That prompts for a complete dialectical analysis. The formal
definitions [29] follow:

Definition 3.1 (Dialectical tree) Let A be an argument for h. A dialectical tree for
(A, h), denoted T 4 1y, is recursively defined as follows:

1. A single node labeled with an argument (A, h) with no defeaters (proper or blocking) is
by itself the dialectical tree for (A, h). This node is also the root of the tree.

2. Let (A1, h1), (Aa, ha), ..., (An, hy) be all the defeaters (proper or blocking) for (A, h).
We construct the dialectical tree for (A, h), T 4 1y, by labeling the root node with (A, h)
and by making this node the parent node of the roots of the dialectical trees for (Ai, h1),
(A2, ha), ..., (An,hn), €y Toaynys Tiasingys - Tan nny-

Definition 3.2 (Marking of a dialectical tree) Let (A, h) be an argument and T, 4,y its
dialectical tree, then:

1. All the leaves in T 4,y are marked as U-nodes.

2. Let (B,q) be an inner node of T 4 . Then (B,q) will be a U-node iff every child of
(B, q) is a D-node. The node (B, q) will be marked as a D-node iff it has at least a child
marked as a U-node.

Certain conditions are required in order to avoid the occurrence of cycles in the dialectical
tree. It has been shown elswhere* that circular argumentation is a particular case of fallacious
argumentation. An acceptable dialectical tree is a dialectical tree where those undesirable
situations are averted. Thus, the notion of justification can be properly defined as follows.

Definition 3.3 (Justification) Let A be an argument for a literal h, and let T 4 », be its
associated acceptable dialectical tree. The argument A for a literal h will be a justification iff
the root of T, 4. 1y is a U-node.

4 Negation in DLP

As discussed ealier, a defeasible derivation for a negated literal “~p” is carried out just as
if the “~” symbol were part, syntactically, of the predicate name, thereby treating “~p”
as an atomic predicate name. Although there can be defeasible derivations for a pair of
complementary literals, the inference procedure of DLP justifies only one of them. Thus, a
query “~q” succeeds when there exists a justification for
justification for it.

The traditional approach considers that a goal “not p” succeeds when the derivation of
“p” fails; and fails when the derivation of “p” succeeds. However, as shown above, in DLP
the inference procedure is justification. Therefore, default negation in DLP will be defined
in terms of justification rather than defeasible derivation. Thus, the semantics for default
negation will be the following:

~q.”, and fails when there is no

“Due to space restrictions we refer the interested reader to [29] where a detailed analysis of ill-formed
reasoning dialogues are analyzed and definitions are introduced in order to avoid them.

e “not q” will succeed when there is no justification for “¢”, and
e “not ¢” will fail when there is a justification for “q”.

The following example shows how negated literals behave in a DLP.

Example 4.1 For the DLP of Example 2.1 there exists an argument A for “~drink_water(popeye)”
and an argument B for “drink_water(popeye)”:

_J ~drink_water(popeye) —< lost_at_sea(popeye)
| lost_at_sea(popeye) —< true

drink_water(popeye) —< lost_at_sea(popeye), collect rain(popeye)
B = (lost_at_sea(popeye) —< true
collect rain(popeye) —< true

Since B is “better than” (i.e., more specific than) A, results that B is a justification. Therefore,
the query “drink_water(popeye)” succeeds. On the other hand, A is not a justification and
the query “~drink_water(popeye)” fails. Using the same DLP, the query “dead(popeye)”
fails, because the argument

dead(popeye) —< ~drink_water(popeye)
C = ¢ ~drink_water(popeye) —< lost_at_sea(popeye)
lost_at_sea(popeye) —< true

is not a justification. The argument B is a proper defeater for C in the counter-argument point
“~vdrink_water(popeye)”. Since the query “dead(popeye)” fails, the query “not dead(popeye)”
succeeds and therefore argument £ is a justification for “search_for(popeye)”.

) search_for(popeye) —< lost_at_sea(popeye), not dead(popeye)
| lost_at_sea(popeye) —< true

O
Lets suppose that we regard Example 2.1 above as an Extended Logic Program, excluding
for a moment its last rule:

Example 4.2
~drink_water(X) < lost_at_sea(X)
drink_water(X) « lost_at_sea(X), collect_rain(X)
lost_at_sea(popeye)
collect_rain(popeye)
dead(X) «— ~drink_water(X)

O

Now, this program is an Extended Logic Program without “not”. For those programs
Gelfond and Lifchitz[9] established:

Let P be an extended logic program without variables that doesn’t contain
'not’, and let Lit be the set of ground literals in the language of P. The answer
set of P is the smallest subset A of Lit such that

1. for any rule Ly «— Lq,...,L,, from Pif Ly,...,L,, € Athen Lo € A

2. if A contains a pair of complementary literals, then A = Lit.

Thus, the answer set for Example 4.2 calculated according to the definition above will be
Lit. Clearly, from this program the pair of complementary literals (~drink_water(popeye)
and ~drink_water(popeye)) could be derived.

Now, we will reintroduce the excluded rule, as an Extended Logic Program rule. Observe
that the rule in question contains default negation,

Example 4.3

~drink_water(X) « lost_at_sea(X)
drink_water(X) « lost_at_sea(X), collect_rain(X)
lost_at_sea(popeye)

collect_rain(popeye)

dead(X) «— ~drink-water(X)

search_for(X) « lost_at_sea(X),not dead(X)

a
For those programs Gelfond and Lifchitz [9] define:

Let P be an extended logic program without variables. For any set A C Lit,
let P4 be the extended logic program obtained from P by deleting:

1. each rule that has a formula “not L” in its body with L € A, and

2. all formulas of the form “not L” in the bodies of the remaining rules.”

Clearly P4 doesn’t contain not, so that its answer set is already defined. If
this answer set coincides with A, then we say that A is an answer set for P.

For our example®, when represented as an Extended Logic Program, the answer set of P4
will be Lit again. In the DLP framework that situation does not occur.
Thus, the main differences of DLP with other extensions of logic programming are:

e our approach provides a way of choosing between contradictory literals, and

e “not p” succeeds when the justification of “p” fails and not just when a derivation of
“p” fails.

The following results show that in DL P negation satisfies the Coherence Principle formu-
lated in [1]:

Proposition 4.1 If a query “~p” succeeds then the query “not p” also succeeds.
Proofif “~p” succeeds then there is a justification for “~p”, therefore, there could be no
justification for “p”, and hence “not p” also succeeds.

It is easy to see that the converse proposition does not hold. If there is no justification for
a literal “p” it could also be the case that there is no justification for “~p”. In Example 2.1
the query “not dead(popeye)” succeeds whereas the query “~dead(popeye)” fails .

The definition of argument states that an argument must be free of contradictions. How-
ever, it says nothing regarding default negation. Example 4.4 shows that it is possible to

[199e))

construct an argument where “p” and “not p” are defeasible derived.

Example 4.4 Consider the following DLP:

®Clearly, variables could be consistently replaced throughout by the only individual constant popeye without
altering the situation.

a—<b,c p-—<e

b—<p ~p-—<d
c—<notp d
e

From this DLP the literal “a” has the argument

A= {(a —< b, C)a (b < p)> (p —< e)> (C —<not p)}

[19ee}

Note that in this argument the sub-queries “p” and “not p” have been both defeasibly derived.
This is possible because there is a defeasible derivation for “p”, but there is no justification
for p because it has the blocking defeater “{~p <d }’. O

Proposition 4.2 establishes an important “coherence” property, showing that an argument
like the one of Example 4.4 could never be a justification.

Proposition 4.2 If the sub-queries ‘1”7 and “ not l” are used in the construction of an
argument A, then A cannot be a justification.
Proof: if “not I” has been derived then there is no justification for “I”. Hence, every argument
for “I” has a non-defeated defeater B (at least one must exist). Therefore, B is a non-defeated
defeater for A, so A cannot be a justification.

In order to analyze some differences between the two types of negations in DLP consider
the following DLPs .

P1 | P2
p < notq P ~q
~q —<true

Using program Ps queries “p” and “~q” succeed, whereas, using P; only query “p” succeeds.

When the presumption “q —< true” is added to both programs (obtaining Py’ and Py’), then
from Po’ there is no possible justification, since one presumption acts as a blocking defeater
of the other. However, from Py’ there is a justification for “¢”.

731/ ‘ 7)2/

p < notgq P = ~q

q —<true ~q —<true
q —<true

Finally, if the fact “~p” is added to P; the set of strong rules becomes contradictory. However,
the fact “~p” can be added to P9, and in this case only “~p” and “~q” have a justification
(see the program below).

731// ‘ 732//

p < notgq P — ~q

~p ~q —< true
~p

The previous analysis shows that these two types of negation cannot be defined in terms
of each other.

5 Related Work

An early attempt to introduce defeasible reasoning programming with specificity was Nute’s
d-Prolog [16, 17]. The inference engine of d-Prolog is based on the theoretical developments
reported in [18, 15] and recently described in [6].

The language of d-Prolog provides facilities to define absolute rules, like “every bat is a
mammal”, defeasible rules such as “birds fly”, and defeater rules like “sick birds do not fly”.
The purpose of defeater rules is to account for the exceptions to defeasible rules. For instance,
given the defeasible rule “birds fly”, the defeater rule “sick birds do not fly” will stop us from
concluding that “Tweety flies”, in the presence of the fact “Tweety is a sick bird”.

Unlike Nute’s d-Prolog, our system does not need to be supplied with defeater rules.
The system will find the counterarguments and defeaters among the arguments it is able
to construct, and using specificity constraints will take decisions about their relevance. The
system will find those specificity constraints by comparing the way arguments are constructed.
In other words, for the same example above, we will have the same absolute rule (fact)
“Tweety is a sick bird” and two defeasible rules: “birds fly” and “sick birds do not fly”.
When consulted about the status of the fact “Tweety flies” knowing that “Tweety is a sick
bird”, our system will decide that believing “Tweety flies” is not justified. The reason is that
the argument “Tweety is a sick bird” and “sick birds do not fly” is more specific than the
argument “Tweety is a sick bird” and “birds fly”.

This characteristic of our language is very important because it maintains the declarative
nature of the knowledge represented in it; i.e. the interaction among the pieces of knowledge
is not expressed in the language in any way but as a result of the totality of the knowledge.
For that reason, the burden of the defeasible inference falls upon the language processor, i.e.
our system, which figures out the interactions, instead on the knowledge encoder, i.e. the
programmer. The programmer does not have to evoke the behavior of the representation in
order to add procedural control to the defeasible rules, in case he wants to modify it.

We claim that adding special kinds of defeasible rules amounts to a retreat from the goal
of having a declarative language. It is true that reaching that goal is a difficult task, but the
implementation of experimental systems, such as our system, should strive to maintain that
ideal rather than start by giving it up. This constraint in the design of a language translates
the burden of computing to the process of searching the solution space because there is no
procedural guidance. That search space in turn can be quite large for non trivial situations.
Much of the effort expended in the implementation was put to this task of doing an efficient
search.

Other formalisms for defeasible argumentation have been separately developed. In [7]
P. Dung has proposed a very abstract and general argument-based framework, where he
completely abstracts from the notions of argument and defeat. Inspired by legal reasoning,
H. Prakken and G. Sartor [27, 28] have developed an argumentation system that, like ours,
uses the language of extended logic programming. They introduce a dialectical proof theory
for an argumentation framework fitting the abstract format developed by Dung, Kowalski et
al. [7, 4]. R. Kowalski and F. Toni [11] have outlined a formal theory of argumentation, in
which defeasibility is stated in terms of non-provability claims. They argue that defeasible
reasoning with rules of the form P if) can be understood as “exact” reasoning with rules
of the form P if Q and S cannot be shown, where S stands for one or more defeasible “non-
provability claims”. Other related works are by Vreeswijk [31], Bondarenko [3], and Loui [14].
The interested reader is referred to the following surveys in defeasible argumentation: Prakken
& Vreesvijk [26], and Chesnevar, Maguitman & Loui [5].

In the area of Logic Programming, Gelfond and Lifschitz in Logic Programming with
Classical Negation [9] introduced extended logic programs where classical negation as well

as negation as failure (default negation) can be used. However, there is no criterion for
deciding between contradictory goals. Katsumi Inoue in Fxtended Logic Programming with
Default Assumptions [10] expands Gelfond and Lifschitz’s work in order to avoid the problems
with contradictory programs. His approach resembles a defeasible argumentation system,
but differs in that it has no preference criterion defined for deciding between contradictory
explanations.

6 Conclusion

Defeasible Logic Programming captures common-sense reasoning features, that are difficult
to express in traditional Logic Programming, and other extensions. Since strong and default
negation are both available in the language, contradictory and incomplete information can
be represented.

The defeasible argumentation formalism provides a criterion for deciding whether a negated
literal is accepted: a query “~¢q” succeeds when there exists a justification for “~¢g”, and fails
when there is no justification for it. On the other hand, default negation has different seman-
tics: “not ¢” will succeed when there is no justification for “¢”, and “not ¢” will fail when
there is a justification for “¢”. We have shown that two kinds of negation are needed and
that they can be combined for improving the expressiveness of the language.

References

[1] José J. Alferes and Luis M. Pereira. Contradiction: when avoidance equals removal (part
i and ii). In Proc. of Extensions of Logic Programming, 4th International Workshop
ELP’93. St. Andrews U.K., March 1993.

[2] José J. Alferes, Luis M. Pereira, and Teodor Przymusinski. Strong and explicit negation
in non-monotonic reasoning and logic programming. In Logics in Artificial Intelligence
(JELIA’96), pages 143-163. Springer, 1996.

[3] A. Bondarenko, P.M. Dung, R.A. Kowalski, and F. Toni. An abstract, argumentation-
theoretic approach to default reasoning. Artificial Intelligence, 93:63—101, 1997.

[4] A. Bondarenko, F. Toni, and R.A. Kowalski. An assumption-based framework for non-
monotonic reasoning. Proc. 2nd. International Workshop on Logic Programming and
Non-monotonic Reasoning, pages 171-189, 1993.

[5] C.I. Chesnevar, A. Maguitman, and R.P.Loui. Logical models of arguments. submitted
to ACM Computing Surveys, 1998.

[6] Michael A. Covington, Donald Nute, and Andre Vellino. Prolog Programming in Depth.
Prentice-Hall, 1997.

[7] Phan M. Dung. On the acceptability of arguments and its fundamental role in non-
monotonic reasoning and logic programming and n-person games. Artificial Intelligence,
77:321-357, 1995.

[8] Alejandro J. Garcia and Guillermo R. Simari. Defeasible logic programming. Technical
report, Computer Science Department, Universidad Nacional del Sur, October 1998.
Technical Report GITA-1998-20.

[9]

[10]

[16]

[17]

[18]

[19]

[20]

[21]

22]

23]

[24]

[25]

[26]

M. Gelfond and V. Lifschitz. Logic programs with classical negation. In D. Warren and
P. Szeredi, editors, Proc. ICLP, pages 579-597. MIT Press, 1990.

K. Inoue. Extended logic programming with default assumptions. In Proc of 8th. ICLP,
1991.

Robert A. Kowalski and Francesca Toni. Abstract argumentation. Artificial Intelligence
and Law, 4(3-4):275-296, 1996.

Vladimir Lifschitz. Foundations of logic programs. In Gerhard Brewka, editor, Principles
of Knowledge Representation. CSLI Publications, 1996.

John W. Lloyd. Foundations of Logic Programmming. Springer-Verlag, 1987.

Ronald P. Loui, Jeff Norman, Joe Altepeter, Dan Pinkard, Dan Craven, Jessica Lindsay,
and Mark Foltz. Progress on room 5: A testbed for public interactive semi-formal legal
argumentation. In Proc. of the 6th. International Conference on Artifcial Intelligence
and Law, July 1997.

D. Nute. Defeasible logic. In C.J. Hogger D.M. Gabbay and J.A.Robinson, editors,
Handbook of Logic in Artificial Intelligence and Logic Programming, Vol 3, Nonmono-
tonic Reasoning and Uncertain Reasoning, pages 355—-395. Oxford University Press, 1994.

Donald Nute. Ldr: a logic for defeasible reasoning. research report 01-0013. Technical
report, Advanced Computational Methods Center (ACMC). University of Georgia., 1986.

Donald Nute. Defeasible reasoning: a philosophical analysis in PROLOG. In James H.
Fetzer, editor, Aspects of Artificial Intelligence, pages 251-288. Kluwer Academic Pub-
lishers, 1988.

Donald Nute. Basic defeasible logic. In Luis Farinas del Cerro, editor, Intensional Logics
for Programming. Claredon Press, Oxford, 1992.

John Pollock. A theory of defeasible reasoning. In Inc. John Wiley & Sons, editor,
International Journal of Intelligent Systems, volume 6, pages 33-54, 1991.

John L. Pollock. Defeasible Reasoning. Cognitive Science, 11:481-518, 1987.

John L. Pollock. Self-defeating arguments. Minds and Machines (Special issue: defeasible
reasoning), 1(4), November 1991.

John L. Pollock. New foundations for practical reasoning. Minds and Machines, 2:113—
144, 1992.

John L. Pollock. Cognitive Carpentry: A Blueprint for How to Build a Person. Mas-
sachusetts Institute of Technology, 1995.

John L. Pollock. Oscar - A general purpose defeasible reasoner. Journal of Applied
Non-Classical Logics, 6:89-113, 1996.

David L. Poole. On the Comparison of Theories: Preferring the Most Specific Explana-
tion. In Proceedings of the Ninth International Joint Conference on Artificial Intelligence,
pages 144-147. IJCAI, 1985.

H. Prakken and G. Vreeswijk. Logical systems for defeasible argumentation (to appear).
In Gabbay, editor, Handbook of Philosophical Logic, second edition. 1998.

[27]

[30]

[31]

Henry Prakken and Giovanni Sartor. A system for defeasible argumentation, with defea-
sible priorities. In Proc. of the International Conference on Formal Aspects of Practical
Reasoning, Bonn, Germany. Springer Verlag, 1996.

Henry Prakken and Giovanni Sartor. Argument-based logic programming with defeasible
priorities. Journal of Applied Non-classical Logics, 7(25-75), 1997.

Guillermo R. Simari, Carlos I. Chesnevar, and Alejandro J. Garcia. The role of di-
alectics in defeasible argumentation. In Anales de la XIV Conferencia Internacional
de la Sociedad Chilena para Ciencias de la Computacion. Universidad de Concepcidn,
Concepcién (Chile), November 1994.

Guillermo R. Simari and Ronald P. Loui. A Mathematical Treatment of Defeasible
Reasoning and its Implementation. Artificial Intelligence, 53:125-157, 1992.

Gerard A.W. Vreeswijk. Abstract argumentation systems. Artificial Intelligence, 90:225—
279, 1997.

