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Abstract. We present here a knowledge representation lan-
guage, where defeasible and non-defeasible rules can be ex-
pressed. The language has two different negations: classical
negation, which is represented by the symbol “∼” used for
representing contradictory knowledge; and negation as fail-
ure, represented by the symbol “not” used for representing
incomplete information. Defeasible reasoning is done using a
argumentation formalism. Thus, systems for acting in a dy-
namic domain, that properly handle contradictory and/or in-
complete information can be developed with this language.

An argument is used as a defeasible reason for supporting
conclusions. A conclusion q will be considered justified only
when the argument that supports it becomes a justification.
Building a justification involves the construction of a non-
defeated argument A for q. In order to establish that A is
a non-defeated argument, the system looks for counterargu-
ments that could be defeaters for A. Since defeaters are argu-
ments, there may exist defeaters for the defeaters, and so on,
thus requiring a complete dialectical analysis. The system also
detects, avoids, circular argumentation. The language was im-
plemented using an abstract machine defined and developed
as an extension of the Warren Abstract Machine (wam).

1 The language

Our language is defined in terms of two types of program
clauses:

• extended program clauses 2(epc): l <- q1, . . . , qn.

• defeasible program clauses3(dpc): l -< q1, . . . , qn.

There are two different negations: classical negation, which
is represented by the symbol “∼” used for representing con-
tradictory knowledge; and negation as failure, represented by
the symbol “not” used for representing incomplete informa-
tion. In both kinds of clauses l is a literal (i.e., a predicate
“p” or a negated predicate “∼p”), and each qi (n ≥ 0) is a
literal, or a literal preceded by the symbol not. Thus, clas-
sical negation is allowed in the consequent of a clause, and
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negation as failure over literals is allowed in the antecedent.
If n = 0, an epc becomes “l ← true.” (or simply “l.”) and
is called a fact, whereas a dpc becomes “l —≺ true.”, and is
called a presumption.

We will use the usual Prolog typographic conventions for
an epc, except that we will write “head <- body” rather than
“head :- body”; and “head -< body” for a defeasible clause.
An epc is used to represent sound (i.e., not defeasible) infor-
mation such as: bird(X) <- penguin(X) which expresses that
“all penguins are birds”, whereas a dpc is used to represent
defeasible knowledge such as: fly(X) -< bird(X) which ex-
presses that “presumably, a bird can fly” or “usually, a bird
can fly.”

As mentioned earlier, program clauses can contain two types
of negation. Classical negation (∼) can be used in clauses such
as:

∼guilty(X) <- innocent(X).
∼free(X) -< ∼innocent(X).

to express that “an innocent is not guilty”, and that “usually,
if someone is not innocent, then it is not free.” Negation as
failure (not) may also be used in clauses such as:

innocent(X) -< not guilty(X).
∼cross-railway-tracks -< not ∼train-is-coming.

to express that “assume that someone is innocent whenever
it has not been proven that s/he is guilty” and “generally, do
not cross railroad tracks if it cannot be proven that no train
is coming.” This kind of rules could not be written with only
one type of negation.

Operationally, the difference between the two negations is
as follows: a query “∼q” succeeds when there exists a proof for
“∼q.” On the other hand a query “not q” will succeed when
no proof can be found for “q”. In fact, proving a negated literal
“∼p” is carried out just as if the “∼” symbol were syntacti-
cally part of the predicate name, thereby treating “∼p” as
an atomic predicate name. In this system, a proof is a formal
derivation called an argument, which justifies a query q. Ar-
guments and justifications will be introduced in the following
section.

With two types of negations, the Closed World Assump-
tion (CWA) of a predicate p could be expressed within the
language, writing the clause

∼p(X) <- not p(X).

i.e., “∼p(X) will be derived whenever the proof of p(X) fails.”
Also, new forms of CWA can be written with the obvious
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interpretation:

p(X) <- not ∼p(X).
p(X) <- not p(X).
∼p(X) <- not ∼p(X).

Nevertheless, if a defeasible clause is used, a defeasible no-
tion of CWA could be represented:

∼p(X) -< not p(X).

which expresses that “the failure of the proof of p(X) is a good
reason to assume ∼p(X)”. Thus, the following clauses can be
written:

∼dead(X) -< not dead(X).
dangerous(X) -< not ∼dangerous(X).

Definition 1.1 A defeasible logic program (dlp) is a finite
set of epcs and dpcs.

Let P be a dlp; then, we will distinguish the subset S of
epc in P, and the subset D of dpc in P.

Example 1.1 : Here follows a dlp that will be referred to in
other examples:

fly(X) -< bird(X).
∼fly(X) -< chicken(X).
fly(X) -< chicken(X),scared(X).
chicken(coco) -< true.
penguin(petete) -< true.
∼dangerous(X) -< pet(X).
dangerous(X) -< tiger(X).
bird(X) <- chicken(X).
scared(coco).
bird(X) <- penguin(X).
∼fly(X) <- penguin(X).
pet(kitty).
tiger(kitty).

2

Given a dlp P, a defeasible derivation for a query “ -< q”
is a finite set of epc and dpc obtained by backward chaining
from q as in a Prolog program, using both strict and de-
feasible rules in the order specified by the dlp. The symbol
“∼” is considered as part of the predicate when generating a
defeasible derivation.

Example 1.2 : Using the dlp of example 1.1, there are de-
feasible derivations for each of the following queries:

-< ∼fly(petete)
-< fly(petete)

-< fly(coco)

-< ∼fly(coco)
2

It can be seen from Example 1.2, that the defeasible deriva-
tion notion does not forbid inferring two complementary lit-
erals from a given dlp P. In order to allow only one of two
complementary goals to be accepted as a sensible possibility,
we need a criterion for choosing between the two.

In the next section the notion of argument will be intro-
duced to allow the defeasible argumentation formalism de-
veloped in [20, 19] which will allow us to define an inference
scheme for the language. But first, we need to explicate when
a set of clauses is deemed consistent.

Definition 1.2 (Consistency) A set of program clauses A
is consistent if there is no defeasible derivation for any pair
of complementary literals (with respect to classical negation
“∼”). Conversely, a set of program clauses A is inconsistent
if there are defeasible derivations for a pair of complementary
literals.

Given a dlp P, the set S must be consistent, although the
set D, and hence P itself (i.e., S ∪ D), may be inconsistent.
It is only in this form that a dlp may contain potentially
inconsistent information.

Example 1.3 : Here follows a set of rules that supports in-
consistent conclusions, because fly(petete) and∼fly(petete)
can be derived.

penguin(petete) -< true. bird(X) <- penguin(X).
fly(X) -< bird(X). ∼fly(X) <- penguin(X).

Observe also, that the dlp of example 1.1 is an inconsistent
set of program clauses, although its associated set S is a con-
sistent one. 2

2 Arguments, Rebuttals and Defeaters

In this framework, answers to queries must be supported by
arguments. However, arguments may be defeated by other ar-
guments. A query q will succeed if the supporting argument
for it is not defeated; it then becomes a justification. Before
defining formally the notion of justification, we define argu-
ments, counterarguments and defeaters.

Definition 2.1 (Argument) An argument A for a query h,
also denoted 〈A, h〉, is a subset of ground instances of dpcs
of D, such that: (1) There exists a defeasible derivation for h
from S ∪ A, (2) S ∪ A is consistent, and (3) A is minimal
with respect to set inclusion.

The above definition is adapted from [20] to fit in this
framework. It states that an argument is a consistent defea-
sible derivation for a given query h, using a minimal set of
rules. Note that epcs are not part of the argument.

Example 2.1 : Consider the dlp of example 1.1.
The query -< ∼fly(coco) has the argument:

A1 =

{
∼fly(coco) -< chicken(coco).
chicken(coco) -< true.

}

However, the query -< fly(coco) has two arguments:

A2 =

{
fly(coco) -< bird(coco).
chicken(coco) -< true.

}

A3 =

{
fly(coco) -< chicken(coco),scared(coco).
chicken(coco) -< true.

}
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The query -< ∼fly(petete) has the argument:

A4 =
{

penguin(petete) -< true.
}

Finally, there is no argument for -< fly(petete) because
its defeasible derivation is inconsistent with respect to S (see
example 1.3). 2

Definition 2.2 (Sub-argument) An argument 〈B, q〉 is a
sub-argument of 〈A, h〉 if B⊆ A.

Definition 2.3 (Counterargument or rebuttal) We say
that 〈A1, h1〉 counterargues or rebuts 〈A2, h2〉 at literal h, if
and only if there exists a sub-argument 〈A, h〉 of 〈A2, h2〉 such
that the set S ∪ {h1, h} is inconsistent.

An argument is in fact a proof tree, involving rules from
S and D. Hence, arguments will be depicted as triangles ab-
stracting a tree shape [19]. The upper vertex of the triangle
will be labeled with the argument’s conclusion, and the argu-
ment will be associated with the triangle itself. Sub-arguments
will be represented as smaller triangles inside a big one, which
corresponds to the main argument at issue. Figure 1 shows
the graphical representation of an argument 〈A2, h2〉 with one
sub-argument 〈A, h〉, and a counterargument 〈A1, h1〉.
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Figure 1. Argument 〈A1, h1〉 counterargues 〈A2, h2〉 at h

Example 2.2 : Continuing with Example 2.1, the argument
A1 is a counterargument for both A2 and A3 (at fly(coco)),
and also A2 and A3 are counterarguments for A1 (both at
∼fly(coco)). Note that the argument A4 has no counterar-
guments. 2

As we mentioned before, the justification process for prov-
ing q involves the construction of a non-defeated argument A
for q. In order to verify whether an argument is non-defeated,
its associated counterarguments B1, B2, . . . Bk are examined,
each of them being a potential (defeasible) reason for reject-
ing A. If any Bi is better than (or unrelated to) A, then Bi is
a candidate for defeating A. If the argument A is better than
Bi then Bi is not taken into account.

So we must clarify what makes an argument “better” than
an other one. In this work, as a particular example, we will
define a formal criterion called specificity which allows to dis-
criminate between two conflicting arguments. However, the
notion of defeating argument can be formulated independently
of which particular argument-comparison criterion is used.
Namely, if some Bi is better (i.e., more specific, in our case)

than A, then Bi is called a proper defeater for A; if neither
argument is better than the other, a blocking situation oc-
curs, and we will say that Bi is a blocking defeater for A. This
is an skeptical criterion that could be changed producing a
different formal decision procedure.

Definition 2.4 (Defeating argument)
An argument 〈A1, h1〉 defeats an argument 〈A2, h2〉 at literal
h, if and only if there exists a sub-argument 〈A, h〉 of 〈A2, h2〉
such that 〈A1, h1〉 counterargues 〈A2, h2〉 at h, and either:
(1) 〈A1, h1〉 is strictly more specific than 〈A, h〉 (then 〈A1, h1〉
is a proper defeater of 〈A2, h2〉); or
(2) 〈A1, h1〉 is unrelated by specificity to 〈A, h〉 (then 〈A1, h1〉
is a blocking defeater of 〈A2, h2〉).

The next definition characterizes specificity as defined in [14,
19] (adapted to fit in this framework). Intuitively, this notion
of specificity favors two aspects in an argument: it favors an
argument (1) with more information content and (2) with
shorter derivations. In other words, an argument is deemed
better that another if it is more precise or more concise. This
notion is made formally precise in the next definition. We
use the symbol “|∼ ” to denote a defeasible derivation (i.e.,
P|∼ h means that h has a defeasible derivation from P), and
the symbol “`” to denote a derivation where only epcs are
used. Let SG be the maximal subset of S that does not contain
facts. Let F be the set of literals in P that have a defeasible
derivation.

Definition 2.5 (Specificity)
An argument A1 for h1 is strictly more specific than an

argument A2 for h2 (denoted 〈A1, h1〉 Â 〈A2, h2〉) if and only
if:
(1) For all G ⊆ F : if SG∪G∪ A1|∼ h1 and SG∪G 6` h1,
then SG∪G ∪ A2|∼ h2.
(2) There exists G′ ⊆ F such that SG ∪ G′ ∪ A2 |∼ h2 and
SG ∪G′ 6` h2 and SG ∪G′∪ A1 6|∼ h1.

Example 2.3 : Continuing with Example 2.1, argument A1

is strictly more specific than the argument A2 because A1

does not use the epc bird(X) <- chicken(X) and therefore
is a more direct argument. However, argument A3 is strictly
more specific than A1, because it contains more information.
Then, A1 is a proper defeater for A2, and A3 is a proper
defeater for A1. 2

3 Dialectical Trees and Justifications

Since defeaters are arguments, there may exist defeaters for
defeaters, and so on. This means that it is necessary to pursue
argument supports to ascertain their well-foundedness. This
justification process is called a dialectical analysis. It can be
specified in the context of Logic Programming in the following
way (here \+ stands for Prolog’s negation as failure):

justify(Q) :- find argument(Q,A), \+ defeated(A)

defeated(A) :- find defeater(A,D), \+ defeated(D)

The above description leads in a natural way to the use
of trees to organize our dialectical analysis. In order to ac-
cept an argument A as a justification for q, a tree structure
can be generated. The root of the tree will correspond to the
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argument A and every inner node will represent a defeater
(proper or blocking) of its father. Leaves in this tree will cor-
respond to non-defeated arguments. This structure is called a
dialectical tree.

Definition 3.1 (Dialectical tree) [19]
Let A be an argument for h. A dialectical tree for 〈A, h〉,
denoted T〈A, h〉, is recursively defined as follows:
(1) A single node labeled with an argument 〈A, h〉 with no
defeaters (proper or blocking) is by itself a dialectical tree for
〈A, h〉. This node is also the root of the tree.
(2) Suppose that 〈A, h〉 is an argument with defeaters (proper
or blocking) 〈A1, h1〉, 〈A2, h2〉, . . ., 〈An, hn〉. We construct
the dialectical tree for 〈A, h〉, T〈A, h〉, by labeling the root node
of with 〈A, h〉 and by making this node the parent node of the
roots of the dialectic trees for 〈A1, h1〉, 〈A2, h2〉, . . ., 〈An, hn〉,
i.e., T〈A1, h1〉, T〈A2, h2〉, . . ., T〈An, hn〉.

Nodes in the dialectical tree can be recursively marked as
defeated or undefeated nodes (D-nodes and U-nodes respec-
tively). Let A be an argument for a literal h, and T〈A, h〉 be
its associated dialectical tree.

Definition 3.2 (Marking of a dialectical tree)
(1) Leaves of T〈A, h〉 are U-nodes.

(2) Let 〈B, q〉 be an inner node of T〈A, h〉. Then 〈B, q〉 will
be an U-node iff every child of 〈B, q〉 is a D-node. The node
〈B, q〉 will be a D-node iff it has at least an U-node as a child.

This definition suggests a bottom-up marking procedure,
through which we are able to determine if the root of a dialec-
tical tree turns out to be marked as defeated or undefeated.
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©©©

HHH

〈 B1,∼b 〉 〈 B2,∼b 〉 〈 B3,∼b 〉

¡
¡¡

@
@@

〈 C1,∼e 〉 〈 C2,∼e 〉

©© HH
〈 E1,∼h 〉 〈 E2,∼h 〉 〈 E3,∼h 〉

〈 F1,∼k 〉

Figure 2. Dialectical tree for example 3.1

Example 3.1 : Consider the following dlp:

a -< b. ∼e -< l. c← true.
b -< c. ∼h -< k. f← true.
∼b -< e. ∼b -< i. i← true.
e -< f. k -< l. l← true.
∼b -< c,f. ∼h -< c. n← true.
∼e -< h. ∼h -< l.
h -< i. ∼k -< n,l.

Here the argument A={ a -< b. b -< c. } for a can be built.
Argument A has three defeaters attacking the literal b: B1= {
∼b -< e. e -< f. } B2= { ∼b -< c,f. } and B3= {∼b -< i.
}. B2 is a proper defeater for A, the other two are blocking
defeaters. Argument B1 has also two blocking defeaters at-
tacking the literal e: C1= {∼e -< h. h -< i.} and C2= {
∼e -< l.}. Argument C1 has three blocking defeaters: E1, E2

and E3, and finally E1has one proper defeater F1. The com-
plete dialectical tree is shown in Figure 2. Figure 3 shows the
same dialectical tree after applying the marking procedure of
Definition 3.2. Note that nodes labeled with “#” need not to
be considered in the analysis and pruning of the tree can be
done. 2
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〈 F1,∼k 〉U

Figure 3. Marked dialectical tree for Figure 2 with pruning

Definition 3.3 (Justification) Let A be an argument for a
literal h, and let T〈A, h〉 be its associated dialectical tree. The
argument A will be a justification for a literal h if the root of
T〈A, h〉 is an U-node.

If a query h has a justification, then it is considered ‘justi-
fied’, and the answer to the query will be yes. Nevertheless,
there are several reasons for an argument not to be a justifi-
cation: there may exist a non-defeated proper defeater, or a
non-defeated blocking defeater, or there may be no argument
at all. Therefore, in a dlp there are four possible answers for
a query “ —≺ h”:

• yes, if there is a justification A for h.
• no, if for each possible argument A for h, there exists at

least one proper defeater for A marked as U-node.
• undecided, if for each possible argument A for h, there are

no proper defeaters for A marked U-node, but there exists
at least one blocking defeater for A marked U-node.

• unknown, if there exists no argument for h.

Finally, an example that shows all the concepts defined
above is presented.

Example 3.2 : Given the dlp of Example 1.1, the following
arguments can be built:
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A1=

{
∼fly(coco) -< chicken(coco).
chicken(coco) -< true.

}

for ∼fly(coco);

A2=

{
fly(coco) -< bird(coco).
chicken(coco) -< true.

}

for fly(coco);

A3=

{
fly(coco) -< chicken(coco),scared(coco).
chicken(coco) -< true.

}

for fly(coco);

B1=
{
∼dangerous(kitty) -< pet(kitty).

}
for ∼dangerous(kitty);

B2=
{

dangerous(kitty) -< tiger(kitty).
}

for dangerous(kitty); and

C=
{

penguin(petete) -< true.
}

for ∼fly(petete)

If the query -< fly(coco) is submitted, the system first
builds the argument A2 and looks for a defeater for it. Then,
defeater A1 is found, so the system tries to find a defeater
for A1, and then A3 is found. Since A3 has no defeaters, it
becomes an U-node. Therefore A1 becomes a D-node and A2

becomes an U-node. Thus, A2 is a justification for fly(coco),
and the answer for this query is yes.

The query “∼fly(coco)” is answered no, because the ar-
gument A1 has the proper (non-defeated) defeater A3. The
argument B1 has the blocking defeater B2, since B2 has no
defeaters, then the query “dangerous(kitty)” is undecided.
Note that the query “∼dangerous(kitty)” is also undecided.
Finally the answer for “fly(petete)” is unknown because
there is no argument for this query. 2

4 Negation as Failure

As mentioned earlier, the language has two different nega-
tions: classical negation, which is represented by the sym-
bol “∼” used for representing contradictory knowledge; and
negation as failure, represented by the symbol “not” used for
representing incomplete information. Operationally, the dif-
ference between the two negations is as follows: a query “∼q”
succeeds when there exists a justification for “∼q.” On the
other hand a query “not q” will succeed when no justifica-
tion for ‘q” can be found. In our language, negation satisfies
the coherent principle established in [2]: “If ∼p succeeds then
not p also succeeds.”

Example 4.1 : Consider the following dlp:

p(X) -< not q(X).
q(a).
q(X) -< r(X).
r(b).
r(c).
∼q(X) -< r(X),s(X).
s(c).

Here the query “∼q(c)” succeeds because it has a justifica-
tion, however, there is no justification for “∼q(b)” (actually

there is no argument for this query). The query “not q(d)”
succeeds because there is no justification for q(d). However,
since there is a justification for q(b), then the query “not
q(b)” fails. Note that the query “not q(c)” succeeds, because
although there is an argument for q(c), there is a defeater for
it, so there is no justification for q(c). Thus, the queries p(c)
and p(d) succeed, whereas p(a) and p(b) fail. 2

5 Avoiding circular argumentation

A dlp is a finite set of program clauses, and therefore there
is a finite number of arguments that may be involved in a
dialectical tree. Nevertheless, we need to impose conditions
in order to avoid cycles in this tree. In [19], it is shown that
circular argumentation is a particular case of fallacious argu-
mentation. There, a detailed analysis exposes different kinds
of undesirable situations, and solutions are proposed accord-
ingly. We next briefly present the problems and their solutions
and refer to [19] for details.

In order to analyze fallacious argumentation, it is useful to
see a dialectical tree as a set of argumentation lines. Follow-
ing [19], this notion is formally defined as follows. Let 〈A0, h0〉
be an argument, and let T〈A0, h0〉 be its associated dialectical
tree.

Definition 5.1 (Argumentation line) Every path λ from
the root 〈A0, h0〉 to a leaf 〈An, hn〉 in T〈A0, h0〉, denoted λ
= [〈A0, h0〉, 〈A1, h1〉, 〈A2, h2〉, . . . , 〈An, hn〉], is called an
argumentation line for h0.

In each argumentation line λ = [〈A0, h0〉, 〈A1, h1〉, . . . ,
〈Ai, hi〉,. . . , 〈An, hn〉], the argument 〈A0, h0〉 is supporting
the main query h0, and every argument 〈Ai, hi〉 defeats its
predecessor 〈Ai−1, hi−1〉. Therefore, for k ≥ 0, 〈A2k, h2k〉 is
a supporting argument for h0 and 〈A2k+1, h2k+1〉 is an inter-
fering argument for h0. In other words, every argument in
the line either supports h0’s justification or interferes with it.
Therefore, an argumentation line can be split in two disjoint
sets: λS of supporting arguments, and λI of interfering argu-
ments. Thus, an argumentation line λ can be construed as an
alternate sequence of supporting and interfering arguments as
in any ordered debate. In a dialectical tree, there are as many
argumentation lines as leaves in the tree, and each can end
up in a supporting or an interfering argument.

We next present three types of fallacious argumentation,
and establish necessary and sufficient conditions to avert them.
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Figure 4. Reciprocal defeaters

The first problematic situation is shown in Figure 4. This
happens when a pair of arguments defeat each other. In this
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case, 〈 A1,d 〉 defeats 〈 A2,b 〉, attacking the subargument
〈 B,∼d 〉, but 〈 A2,b 〉 also defeats 〈 A1,d 〉 attacking the sub-
argument 〈 A,∼b 〉. Clearly, this situation is nonsensical as
it leads to an infinite argumentation line. The first condition
expressed in Definition 5.3 prevents this situation.
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Figure 5. Contradictory argumentation line

Figure 5 shows a case where the same argument (A) be-
comes Äboth a supporting and an interfering argument of it-
self. This too is a nonsensical situation as it arises because the
supporting argument C has a subargument Z for the literal r,
which is contradictory with the purpose of arguing in favor of
∼r (argument A). An argument like C ought to be avoided in
a sound argumentation line. Clearly, there should be agree-
ment among supporting arguments (respectively interfering)
in any argumentation line. This underlies the second condi-
tion in Definition 5.3. This is expressed formally based on the
notion of argument concordance as proposed in [19] and re-
called next. Supporting (respectively interfering) arguments
should be mutually concordant so as to make the dialectical
process of argumentation coherent.

Definition 5.2 (Concordance)
Two arguments 〈A1, h1〉 and 〈A2, h2〉 are concordant iff the
set S ∪ A1 ∪ A2 is consistent. More generally, a set of argu-
ments {〈Ai, hi〉}n

i=1 is concordant iff S∪⋃n

i=1
Ai is consistent.
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Figure 6. Circular argumentation

Finally, Figure 6 shows an example of circular argumenta-
tion, where the same argument A is introduced again in the
line as a supporting argument. This is avoided by the third
condition in Definition 5.3, which disallows the more general
problematic situation where a subargument of an earlier ar-
gument is reintroduced further down the argumentation line.

These three situations are averted by requiring that all ar-
gumentation be addressed be acceptable as defined below:

Definition 5.3 (Acceptable argumentation line) [19]
Let λ = [〈A0, h0〉, 〈A1, h1〉, . . . , 〈Ai, hi〉, . . . , 〈An, hn〉] be an

argumentation line, λ is an acceptable argumentation line iff:
(1) For every defeater 〈Ai, hi〉 and every proper subargument
〈B, q〉 of 〈Ai, hi〉, 〈B, q〉 and 〈Ai−1, hi−1〉 are concordant; that
is, S ∪ {q, hi−1} must be consistent.
(2) The sets λS of supporting arguments, and λI of interfering
arguments of λ must each be concordant sets of arguments.
(3) No argument 〈Ak, hk〉 in λ is a subargument of an earlier
argument 〈Ai, hi〉 of λ (i < k).

Hence, with these conditions averting undesirable situa-
tions, an acceptable dialectical tree is a dialectical tree where
every argumentation line is acceptable. Then the notion of
justification can be properly defined as follows [19].

Definition 5.4 (Justification) The argument 〈A, h〉 is a jus-
tification for h iff its associated dialectical tree is acceptable
and the root node of T〈A, h〉 is a U-node.

6 Implementation

In order to develop an efficient defeasible argumentation sys-
tem, an abstract machine called jam (Justification Abstract
Machine) [7] has been designed as an extension of the War-
ren’s abstract machine (wam) [1]. The jam architecture has
an instruction set, a memory structure and a set of registers
for building arguments, counterarguments, and in this form
obtaining justifications for queries. A compiler for defeasible
logic programs was developed. It takes a defeasible logic pro-
gram as its input and produces a sequence of jam instructions
as its output. The jam was built as a virtual machine, and an
interpreter for defeasible logic programs was developed over
this machine.

7 Related Work

Other formalisms for defeasible argumentation have been sep-
arately developed. In [6] P. Dung has proposed a very abstract
and general argument-based framework, where he completely
abstracts from the notions of argument and defeat. In contrast
we have defined an object language for representing knowl-
edge and a concrete notion of argument and defeat, Dung’s
approach assumes the existence of a set of arguments ordered
by a binary relation of defeat. However, he defines various no-
tions of ‘argument extensions’, which are intended to capture
various types of defeasible consequence.

Inspired by legal reasoning, H. Prakken and G. Sartor [17,
18] have developed an argumentation system that like us, uses
the language of extended logic programming. They introduce
a dialectical proof theory for an argumentation framework fit-
ting the abstract format developed by Dung, Kowalski et
al. [6, 4]. However, since they are inspired by legal reasoning,
the protocol for dispute is rather different from our dialectical
approach. A proof of a formula takes the form of a dialogue
tree, where each branch of the tree is a dialogue between a
proponent and an opponent. Proponent and opponent have
different rules for introducing arguments, leading to an asym-
metric dialogue. Later, Prakken [16] generalized the system
to default logic’s language.

R. Kowalski and F. Toni [9] have outlined a formal theory
of argumentation, in which defeasibility is stated in terms of
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non-provability claims. They argue that defeasible reasoning
with rules of the form P if Q can be understood as “exact” rea-
soning with rules of the form P if Q and S cannot be shown,
where S stands for one or more defeasible “non-provability
claims”.

Other related works are those by Vreesvijk [21], Bondarenko [3],
Pollock [13], Loui [10], and Nute [11, 12]. The interested reader
is referred to the following surveys in defeasible argumenta-
tion: Prakken & Vreesvijk [15], and Chesñevar et al. [5].

8 Conclusions

We have presented a knowledge representation language, that
uses an argumentation formalism for defeasible reasoning, De-
feasible rules allow to represent tentative knowledge, but also
strong rules can be used. Since classical negation and negation
as failure are both available in the language, contradictory and
incomplete information can be represented. Several forms of
CWA can be represented directly within the language.

Conclusions are supported by arguments, but when con-
tradictory information is reached during a derivation, the de-
feasible argumentation formalism provides a way for deciding
between competing arguments. If new information arises, then
new arguments could be constructed and previous conclusions
could be withdrawn. Thus, a correct behavior for a dynamic
domain is obtained.

In order to develop efficient defeasible systems, the lan-
guage was implemented using an abstract machine defined
and implemented as an extension of the Warren Abstract Ma-
chine (wam).
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