
A Knowledge Representation Language
for Defeasible Argumentation1 2

Guillermo R. Simari Alejandro J. Garćıa3

Grupo de Investigación en Inteligencia Artificial (GIIA)

Departamento de Ciencias de la Computación

Universidad Nacional del Sur

Av.Alem 1253 – (8000) Bah́ıa Blanca, ARGENTINA

fax: (54) (91) 553933 Phone: (54) (91) 20776 (ext. 208)

e-mail: grs@criba.edu.ar ccgarcia@criba.edu.ar

Abstract

The goal of this work is to define a system for defeasible argumentation, as an

extension of logic programming. Here, we define Defeasible Logic Programs (dlp),

and a notion of defeasible inference from a dlp. The characteristics of a dlp allow

to represent different flavors of the closed world assumption (CWA) just as program

clauses, thus a CWA clause could be presented for some predicates and not for others.

We will define an argument as a subset of a dlp, and therefore we can use some concepts

of an argumentative system [12] in order to define the inference engine of the system.

The semantics of a dlp is characterized by sets of positive, negative, undecided and

unknown answers. Finally, we will define the behavior of an interpreter based upon

this semantics.

1Published in proceedings of the XXI Latin American Conference of Informatic, Brasil, 1995.
2This work was partially supported by the Secretaŕıa de Ciencia y Técnica, Universidad Nacional del Sur.
3Fellow of Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET), República Argentina



A Knowledge Representation Language
for Defeasible Argumentation

1. Introduction

Common sense reasoners tend to think in a defeasible way. Although logic programming has

been widely used for declarative programming, it has limitations for defeasible reasoning.

There have been advanced some extensions of logic programming that tried to capture some

kind of defeasible reasoning (see [3, 5, 4]), but unfortunately, a considerable number of

common situations cannot be represented in these extensions. On the other hand, defeasible

argumentation has been developed with the aim of giving a formal framework to defeasible

reasoning. Research on many aspects of argumentative systems has recently produced some

interesting results (see [13, 12, 7, 14, 10]).

The goal of this work is to define a system for defeasible argumentation as an extension

of logic programming. We will introduce defeasible logic programs (dlp), and a notion of

defeasible inference from a dlp. The language is going to be defined in terms of program

clauses, which will be separated in two disjoint subsets: one that represents strict (sound)

knowledge, and other that contains defeasible (tentative) information.

In our language a literal “l” is an atom “a” or a negated atom “¬a”, as defined by Lloyd

in [6]. In this work the symbol “¬” will represent the classical negation (i.e., ¬¬a = a),

and the symbol “not” will represent the negation as failure. The symbol “∼” will be used

to denote the complement of a literal with respect to classical negation (i.e., ∼l = ¬l , and

∼¬l = l).

Definition 1.1 : Extended program clause (epc)

An extended program clause is a program clause as defined by Lloyd in [6] but it can contain

both classical negation and negation as failure. It is a clause of the form l ← p1, . . . , pn ,

where l is a literal, and each pi (n ≥ 0) is a literal or a literal preceded by the symbol not of

negation as failure. If n=0 we denote l ← true, and we say that l is a fact. 2

Definition 1.2 : Defeasible program clause (dpc)

A defeasible program clause is a clause of the form l −−≺ p1, . . . , pn , where l is a literal, and

each pi (n ≥ 1) is a literal or a literal preceded by the symbol not of negation as failure.

We use the symbol “ −−≺ ” to distinguish a dpc from an epc, because a dpc will be used to



represent defeasible knowledge, i.e., tentative information that we can use if nothing is said

to the contrary. A clause “l −−≺ A”, must be read as: “reasons for believing in A are good

reasons for believing in l”. 2

All variables in program clauses are assumed to be universally quantified. We will use

an epc to represent sound (or not defeasible) information as “bird(X) ← penguin(X)”, and

a dpc to represent defeasible knowledge as “fly(X) −−≺ bird(X)”. Program clauses must be

interpreted as inference rules and not as conditionals, and they have not a truth value by

themselves.

As a typographic convention, we will use lower case letters to denote literals (l), upper

case ones for sets of literals (L), calligraphic upper case ones for sets of program clauses (L),

and the usual PROLOG conventions for program clauses. Sometimes we will write “c ← A”

to represent a program clause where A is the antecedent conjunction .

Program clauses could contain two types of negation: on one hand, the classical negation

“¬” can be used, that will allow us to write clauses as “¬carnivorous(X) ← cow(X)” (cows

are not carnivorous), or “¬dangerous(X) −−≺ ¬carnivorous (X)” to express that things that

are not carnivorous normally are not dangerous (defeasible in many ways). On the other

hand, we have the negation as failure represented by “not”. This is very useful for represent-

ing clauses as “careful(X) −−≺ not dangerous(X)” (be careful with things you do not know if

they are dangerous), or “¬cross-railway-tracks −−≺ not ¬train-is-coming” (do not cross the

railway tracks if you do not know if the train is coming). This sort of rules could not be

written if we only use one type of negation.

Since program clauses could contain both classical negation and negation as failure,

the closed world assumption (CWA) could be applied to a particular predicate in a par-

ticular clause. Therefore the CWA could be used for one predicate p just by writ-

ing “¬p(X) ← not p(X)” in the dlp. The advantage here is that we can use CWA

for some predicates, and not for others. For example, it could be useful to have the

rule “¬dead(X) ← not dead(X)” (i.e., if you cannot prove that X is dead, assume that

it is not dead). Furthermore, epc allow others kinds of CWA: “p(X) ← not ¬p(X)”,

“p(X) ← not p(X)” , and “¬p(X) ← not ¬p(X)”. On the other hand, if we use a defeasible

clause instead of an epc, another type of CWA could be represented: “¬p(X) −−≺ not p(X)”,

i.e., the failure of the proof of p(X) is a good reason to assume ¬p(X). This subject is treated

in more detail in section 5.



2. Defeasible Logic Programs

Definition 2.1 : Defeasible logic program (dlp)

A defeasible logic program is a finite set of epc and dpc. Let P be a dlp, then we distinguish

the subset S of epc in P , and the subset D of dpc in P for convenience. 2

Definition 2.2 : Consistency

A set of program clauses P is consistent if we cannot defeasibly entail (see definition 2.4)

a pair of complementary literals (with respect to classical negation). On the contrary, a set

of program clauses P is inconsistent if a pair of complementary literals can be defeasibly

entailed from P . 2

Given a dlp P , the set S must be consistent, although the subset D, and P itself (i.e.,

S ∪ D) may be inconsistent. Thus, a dlp can contain potentially-inconsistent information.

In example 2.1, S is consistent, but P is not.

Example 2.1 :
bull(pepe) ← true

¬carnivorous(X) ← bull(X)

has-horns(X) −−≺ bull(X)

¬dangerous(X) −−≺ ¬carnivorous(X)

dangerous(X) −−≺ ¬carnivorous(X), has-horns(X)

Here we can defeasibly infer (see definition 2.4) bull(pepe), ¬ carnivorous(pepe), has-

horns(pepe), ¬ dangerous(pepe), and dangerous(pepe). 2

Definition 2.3 : Goal

A goal is a literal m. 2

Definition 2.4 : Defeasible proof for a goal m

Given a dlp P , a defeasible proof for a goal m from P , is a finite set of ground epc and

dpc recursively defined as follows:

1. If there exists a fact “c ← true” in P , such that m unifies with c (with mgu σ), then

the set {cσ ← true } is a defeasible proof for m.

2. If there exists an epc “c ← L” in P , such that c unifies with m (with mgu σ), and

there exists a defeasible proof Fi for each of the elements of Lσ, then, {cσ ← Lσ} ∪
(
⋃

i Fi) is a defeasible proof for m. In order to avoid cycles in the proof, the clause

“c ← L” cannot appear in any of the sets Fi.



3. If there exists a dpc “c −−≺ L” in P , such that c unifies with m (with mgu σ), and

there exists a defeasible proof Fi for each of the elements of Lσ, then, {cσ −−≺ Lσ} ∪
(
⋃

i Fi) is a defeasible proof for m. In order to avoid cycles in the proof, the clause

“c −−≺ L” cannot appear in any of the sets Fi.

4. If m is a subgoal that has the negation as failure operator not (i.e., m = not l), and

it does not exist a defeasible proof for the literal l, then the empty set is a defeasible

proof for m.

5. If all the previous cases fail, then there does not exist a defeasible proof for m.

If there exists a defeasible proof for m from P , then we say that P defeasibly entails m. 2

Proposition 2.1 : Given a dlp P, the process of finding a defeasible proof for a goal m

finishes in a finite amount of time.

Proof: The number of clauses of P is finite, and each of them has a finite number of

antecedents, and the process itself establishes conditions not to enter in infinite cycles, so it

will be only a finite number of recursively calls in the previous definition. 2

3. Knowledge Representation

In this section, we present some examples in order to show the language expressiveness for

knowledge representation.

Example 3.1 :
bull(pepe) ← true

carnivorous(tito) ← true

dog(chicho) ← true

¬carnivorous(X) ← bull(X)

¬dangerous(X) −−≺ ¬carnivorous(X)

dangerous(X) −−≺ not ¬dangerous(X)

In this example, as we know that “pepe” is not “carnivorous”, we can defeasibly entail

“¬dangerous(pepe)”. But, as we do not know whether “chicho” or “tito” are dangerous

or not, using the (prudence) rule “dangerous(X) −−≺ not ¬dangerous(X)” we can defeasibly

entail “dangerous(tito)” and “dangerous(chicho)”. 2

Example 3.2 :



away(sailor1) ← true

away(sailor2) ← true

back(sailor2) ← true

¬back(X) ← not back(X)

lost(X) −−≺ away(X), ¬back(X)

look-for(X) −−≺ lost(X), not dead(X)

¬look-for(X) −−≺ weather(very-bad)

weather(very-bad) ← true

From this dlp we can defeasibly entail “lost(sailor1)”, but we cannot infer “lost(sailor2)”

because we know he is back. 2

The defeasible proof notion does not forbid inferring two complementary literals from a

given dlp P . In the example 3.2, we can defeasible entail “look-for(sailor1)” and “¬look-

for(sailor1)”. In order to allow only one of two complementary goals to be accepted as a

new belief, we need an entailment criterium for choosing one of them.

Thus, we will define an argument as a dlp subset, and after that we will use the concepts

of justification and defeater introduced in [12] in order to define an inference machine for

this language. This will be developed in the next section.

4. dlp and Defeasible Argumentation

An Argumentative System [13, 8, 12, 14] is a formalization of the process of defeasible

reasoning. An argument A for a hypothesis h is a tentative piece of reasoning that an agent

would be inclined to accept as an explanation for h. An important aspect of argumentative

systems concerns the question of how the hypothesis supported by an argument becomes

accepted as part of the knowledge of the agent. We follow here the framework presented

in [13] and [12] which accepts an argument A as a defeasible reason for a conclusion h if A

is a justification for h.

The justification process involves the construction of an acceptable argument for h from

the knowledge base of the system. To decide the acceptability of this argument, possible

defeaters (see definition 7.3) are generated, which will be also tested for acceptability. Those

defeaters that become accepted will be then compared with the original argument using a

preference relation (e.g., specificity), which defines a partial ordering among arguments. The



original argument will be considered a justification (see definition 7.6) if it is “better” than

every acceptable defeater. See appendix for further details.

In this work we will define an argument as a subset of a dlp, and after that we will use

the concepts of justification and defeater in order to define the behavior of an interpreter for

this language.

Definition 4.1 : Argument

Let P be a dlp, S the subset of epc in P , and D the subset of dpc in P . An argument A

for a literal h, is a subset of ground dpc of D, such that:

1. There exists a defeasible proof for h from S ∪ A.

2. A is consistent with S (according to definition 2.2).

3. A is the minimal set (wrt set inclusion) that satisfies the two previous conditions.

If A is an argument for h, we also say that 〈A, h〉 is an argument structure. 2

In example 2.1, the argument A={ dangerous(X) −−≺ ¬carnivorous(X), has-horns(X);

has-horns(X) −−≺ bull(X) } is a justification for “dangerous(bull)”. Although we have an

argument B= {¬dangerous(X) −−≺ ¬carnivorous(X) } for “¬dangerous(pepe)”, B is not

a justification because A defeats B. In example 3.2 we have arguments for both “look-

for(sailor1)” and “¬look-for(salior1)”, but neither of them have a justification (they are

both blocking defeaters of each other).

Given a dlp, and using an argumentative system, we can identify a finite set of literals

that have a justification. The elements of this set are the kind of believes a common sense

reasoner answer positively in a consult.

Definition 4.2 : Positive-answer set of a dlp

Let P be a dlp. The positive-answer set of P is a finite set L of literals, such that for each

h ∈ L, there exists an argument A that is a justification for h. 2

Therefore, the positive-answer set of example 2.1 will

be { bull(pepe), ¬carnivorous(pepe), has-horns(pepe), dangerous(pepe) }. On the other

hand, in the same example, we cannot entail “¬dangerous(pepe)” because there exists a

better argument for “dangerous(pepe)” ,i.e., a proper defeater (see definition 7.3). In this

case the answer for the query “¬dangerous(pepe)” might be negative. The negative-answer

set of a dlp is characterized by the following definition.



Definition 4.3 : Negative-answer set of a dlp

Let P be a dlp. The negative-answer set of P is a finite set L of literals, such that for each

h ∈ L, it holds one of the following conditions:

a) for each argument A for h, there exists at least a proper defeater of A.

b) it does not exist an argument for h, but there exists an argument that is a justification

for ∼h.

2

Applying the condition (a) of the previous definition the literal “¬dangerous(pepe)”

belongs to the negative-answer set of example 2.1. On the other hand, in example 4.1,

“dangerous(ico)” belongs to the negative-answer set of this dlp because of the application

of condition (b).

Example 4.1 :
horse(ico) ← true

¬carnivorous(X) ← horse(X)

¬dangerous(X) −−≺ ¬carnivorous(X)

2

There are also queries that can be neither positive nor negative. For example the query

“look-for(sailor1)” in example 3.2. In that case the common sense reasoner is undecided,

because, although it has an argument for “look-for(sailor1)”, it also has an argument for

“¬look-for(sailor1)”, and it cannot be say if one argument is better than the other.

Definition 4.4 : Undecided-answer set

Let P be a dlp. The undecided-answer set of P is a finite set L of literals, such that for

each h ∈ L, it holds one of the following conditions:

a) for each argument A of h, A has not proper defeaters, although it has a blocking

defeater (i.e., it has defeaters that interfere the justification, but we cannot prove they

were better than A).

b) there is not argument for h but the following situation holds: (i) there exists a minimal

set of literals J that cannot be entailed from P , (ii) J and P allow the formation of

an argument A for h, and (iii) for some l ∈ J , ∼l ∈ S.

2

Finally, there exist queries for which we have not information at all, and their answers

are simply unknown. For example the tomorrow lottery’s winner number.



Definition 4.5 : Unknown-answer set

Let P be a dlp. The unknown-answer set of P is a possible infinite set of literals L, such

that for each h ∈ L, h does not belong to any of the previous answer sets. 2

Observation 4.1 : Given a dlp P , its positive and negative-answer set are both consis-

tent sets (i.e., they not contain a pair of complementary literals). On the other hand, its

undecided-answer set is normally an inconsistent one.

Once we have defined the four possible answer sets of a dlp, we will establish how a dlp

interpreter must behave in order to resolve a given query.

Definition 4.6 : Given a dlp P and a goal m, a dlp interpreter might answer:

• yes, if m belongs to the positive-answer set of P .

• no, if m belongs to the negative-answer set of P .

• undecided, if m belongs to the undecided-answer set of P .

• unknown, if m belongs to the unknown-answer set of P .

2

5. CWA clauses

As we have already said, program clauses could contain both classical negation (¬) and

negation as failure (not). In a dlp P the CWA of a predicate p could be expressed just

by writing the clause “¬p(X) ← not p(X)” in P . Logic programming languages have the

CWA for all predicates, i.e., for any predicate q if the proof of q fail, they assume ¬q. The

problem is that for some predicates in some circumstances the CWA could be a good police,

but sometimes could not. The advantage here is that we can use CWA for some predicates,

and not for others.

For example, it could be useful to have the rule “¬dead(X) ← not dead(X)” (i.e., if you

cannot prove that X is dead, assume it is not dead), or the clause “¬back(X) ← not back(X)”

in example 3.2. On the other hand, if a pilot, ready to land a 747, uses the following rule:

“¬busy-runway(X) ← not busy-runway(X)” (if he does not know if the runway is busy, then

assume it is not busy), the passengers could be in trouble if the pilot knows nothing about

the runway. Thus, it seems to be convenient that the CWA could be used only for specific

predicates, in a particular context.



The availability of using both types of negations allows us to define a new

version of CWA: “p(X) ← not ¬p(X)”, i.e., if you cannot prove that ¬p is valid,

then assume that p is valid. For example in the case of the pilot, the rule

“busy-runway(X) ← not ¬busy-runway(X)” would be better than the previous one. In

example 3.1, the rule “dangerous(X) ← not ¬dangerous(X)” was also used as a form

of being prudent. This type of rule can also express optimism or hope, for example,

“pass-exam(I) −−≺ not ¬pass-exam(I)”.

In addition to the previous CWA clauses, where the antecedent is complementary of the

consequent, there exist two CWA clauses that preserve the same literal: “p(X) ← not p(X)”

and “¬p(X) ← not ¬p(X)”. Both of them have the same meaning.

On the other hand, if we use a defeasible clause instead of an epc, another type of CWA

could be represented: “¬p(X) −−≺ not p(X)”, i.e., the failure of the proof of p(X) is a good

reason to assume ¬p(X).

6. Conclusions

In this work, we have defined a defeasible logic programming language expressive enough

to capture most of the examples we try to represent with this sort of reasoning. We have

also shown that an argument could be seen as a subset of a dlp, thus, a dlp define an

appropriate knowledge representation language for defeasible argumentation. In addition,

the answer sets (based on defeasible argumentation concepts) represent a simple form of

defining the behavior of a dlp interpreter.

Since classical negation and negation as failure are both available in the dlp language, the

CWA could be represented as a program clause inside a dlp, and only for those predicates

that would be convenient. Furthermore, new types of CWA could be used, improving the

expressiveness of the language.

7. Appendix: a framework for defeasible argumentation

In this section the main definitions of a defeasible argumentation framework are introduced

(see [13, 12] for further details). Here the set K corresponds to the set S of epc.

Definition 7.1 : Two argument structures 〈A1, h1〉 and 〈A2, h2〉 disagree, denoted

〈A1, h1〉 ./ 〈A2, h2〉, if and only if the set K ∪ {h1, h2} is inconsistent.



Definition 7.2 : We say that 〈A1, h1〉 counterargues 〈A2, h2〉 at literal h, iff

1. There exists a subargument 〈A, h〉 of 〈A2, h2〉 such that 〈A1, h1〉./ 〈A, h〉.
2. For every proper subargument 〈S, j〉 of 〈A1, h1〉, it is not the case that 〈A2, h2〉 coun-

terargues 〈S, j〉.
Definition 7.3 : 〈A1, h1〉 defeats 〈A2, h2〉 at literal h, denoted 〈A1, h1〉 Àdef

〈A2, h2〉, if

and only if there exists a subargument 〈A, h〉 of 〈A2, h2〉 such that: 〈A1, h1〉 counterargues

〈A2, h2〉 at the literal h and

1. 〈A1, h1〉 is strictly more specific4 than 〈A, h〉, or

2. 〈A1, h1〉 is unrelated by specificity to 〈A, h〉.
In case (1) 〈A1, h1〉 will be called a proper defeater, and in case (2) a blocking defeater. If

〈A1, h1〉 defeats 〈A2, h2〉, we will also say that 〈A1, h1〉 is a defeater for 〈A2, h2〉.
Definition 7.4 : Let 〈A, h〉 be an argument structure. A dialectical tree for 〈A, h〉, denoted

T〈A, h〉, is recursively defined as follows:

1. A single node containing an argument structure 〈A, h〉 with no defeaters (proper or

blocking) is by itself a dialectical tree for 〈A, h〉. This node is also the root of the tree.

2. Suppose that 〈A, h〉 is an argument structure with defeaters (proper or blocking)

〈A1, h1〉, 〈A2, h2〉, . . ., 〈An, hn〉. We construct the dialectical tree for 〈A, h〉, T〈A, h〉,

by putting 〈A, h〉 in the root node of it and by making this node the parent node of

the roots of the dialectical trees of 〈A1, h1〉, 〈A2, h2〉, . . ., 〈An, hn〉, i.e., T〈A1, h1〉, T〈A2, h2〉,

. . ., T〈An, hn〉. If an unacceptable argument line gets formed (see [12]) during the con-

struction of this tree, it suffices to clip the subtree rooted in the offending argument

that violates a condition in the definition of acceptable argumentation line.

Definition 7.5 : Let T〈A, h〉 be a dialectical tree for an argument structure 〈A, h〉. The

nodes of T〈A, h〉 can be recursively labeled as undefeated nodes (U-nodes) and defeated nodes

(D-nodes) as follows:

1. Leaves of T〈A, h〉 are U-nodes.

2. Let 〈B, q〉 be an inner node of T〈A, h〉. Then 〈B, q〉 will be an U-node iff every child of

〈B, q〉 is a D-node. 〈B, q〉 will be a D-node iff it has at least an U-node as a child.

Definition 7.6 : Let 〈A, h〉 be an argument structure, and let T〈A, h〉 be its associated

dialectical tree. We will say that A is a justification for h (or simply 〈A, h〉 is a justification)

iff the root node of T〈A, h〉 is an U-node.

4We use here specificity as a comparison criterium, but any other partial order among argument structures

can be used without changing the meaning of the system.



References

[1] Garćıa A. J., Chesñevar C. I., and Simari G. R. Making Argument Systems Computa-

tionally Attractive. Proc. XIII Int. Conf. of the Chilean Society for Computer Science,

October 1993.

[2] Garćıa A. J., Chesñevar C. I., and Simari G. R. Bases de Argumentos: su manten-

imiento y revisión. XIX Conferencia Latinoamericana de Informática. Buenos Aires,

August 1993.

[3] Gelfond M. and Lifschitz V. Logic Programs with Classical Negation. Proc. of 7th. Int.

Conf. on Logic Programming (ICLP) 1990

[4] Inoue K. Extended Logic Programming with Default Assumptions. Proc. of 8th. Int.

Conf. on Logic Programming (ICLP) 1991.

[5] Kowalski R. and Sadri F. Logic Programs with Exceptions. Proc. of 7th. Int. Conf. on

Logic Programming (ICLP) 1990

[6] Lloyd J. W. Foundations of Logical Programming. 2nd. edition, Springer-Verlag 1987

[7] Nute Donald, Basic defeasible logic, in Intensional Logics for Programming, Ed by Luis

Fariñas del Cerro, Claredon Press – Oxford (c) 1992.

[8] J. L. Pollock. Defeasible Reasoning. Cognitive Science, 11:481–518, 1987.

[9] Poole D. A logical framework for default reasoning. Artificial Intelligence 36 (1988).

[10] Prakken H. Logical Tools for Modelling Legal Arguments (Ph.D. Thesis). Vrije Univer-

sity, Amsterdam, Holanda. January 1993.

[11] Simari G. R. , Chesñevar C. I., and Garćıa A. J. Focusing Inference in Defeasible

Argumentation. IV Iberoamerican Congress on Artificial Intelligence, October 1994.

[12] Simari G. R. , Chesñevar C. I., and Garćıa A. J. The Role of Dialectics in Defeasible

Argumentation. XIV Int. Conf. of Chilean Computer Science Society, November 1994.

[13] Simari G. R. and Loui R. P. A Mathematical Treatment of Defeasible Reasoning and

its Implementation. Artificial Intelligence, 53: 125–157,1992.

[14] Vreeswijk G. Studies in Defeasible Argumentation (Ph.D. Thesis). Vrije University,

Amsterdam, Holanda. March 1993.


