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Abstract

An argumentative system constitutes a formalization of the process of defeasible rea-
soning. An argument is a tentative piece of reasoning that an agent would be inclined to
accept, all things considered, as an explanation for a certain hypothesis. If new informa-
tion becomes available, arguments may lose support or become weakened, and no longer
be regarded as valid.

In [11, 3] an argument-based reasoning system was introduced. One of the most
significant aspects of this system consists in its conceptual simplicity with respect to other
alternative frameworks. As a result, the inference mechanism is natural to understsand,
and implementation issues can be solved in a rather straightforward way.

Nevertheless, the acceptance of an argument as a valid inference involves a justification
procedure, which turns out to be computationally expensive, since arguments are gener-
ated by unguided search. This represents both a simplified model of the argumentation
process and higher demands on computational resources.

This paper presents some ideas about how to focus the inference process on those
arguments which turn out to be decisive for the final outcome of the justification process.
Preference criteria are introduced, based on the need of preserving consistency along the
generation of the arguments involved.

1Published in proceedings of IBERAMIA’94 Iberoamerican Conference of Artificial Intelligence, Venezuela,
1994.



1. Introduction and motivations

An argumentative system [11, 6, 5, 12] constitutes a formalization of the process of defeasible
reasoning. An argument A for a hypothesis h is a tentative piece of reasoning an agent would be
inclined to accept, all things considered, as an explanation for h. If new information becomes
available, that argument may lose support or become weakened, so that A may no longer be
regarded as valid. In that manner nonmonotonicity arises.

In A Mathematical Treatment of Defeasible Reasoning [11], or MTDR, a clear and theoreti-
cally sound structure for defining an argument-based reasoning system was introduced. Further
developments in this direction were recently presented in [3]. One of the most significant aspects
of the MTDR framework consists in its conceptual simplicity compared to other alternative for-
malisms. As a result, the inference mechanism is natural, and implementation issues can be
solved in a rather straightforward way.

Nevertheless, even though arguments are relatively easy to construct using backward chain-
ing (they are just a special kind of proof trees), their acceptance as valid defeasible inferences
involve a justification procedure, which turns out to be computationally expensive. In order
to improve the perfomance of this procedure, some extensions have been proposed [5], which
involve the use of an arguments base, to keep account of those arguments already generated by
the system.

However, the intrinsic complexity of the specificity checking used for deciding between
conflicting arguments, as well as the need of an exhaustive analysis of the search space associated
with a justification are important aspects, which deserve also a special treatment. In order
to obtain a justification, the existing implementations of the framework generate arguments
through a trial-and-error search. This is clearly not the way we humans perform argumentation
in the course of a debate, since we usually try to keep arguments “to the point”, in order to
support (or refute) a particular fact.

On the other hand, it is clear that in this case unguided search represents also higher
demands on computational resources. This becomes even worse if we consider that specificity
checking as a criterion for preferring one argument from another is quite expensive, and it
must be carried out every time two conflicting arguments (argument and counterargument) are
generated.

This paper presents some ideas about how to face the problems described above. First, we
will show that the dialectical tree associated with a justification can be characterized as a kind
of and-or search tree. This will help to understand why an ordering in argument generation
plays a meaningful role in the perfomance of the system. Then, we will introduce a selection
criterion for generating arguments as the justification process is being carried out. This selection
criterion is based on a dynamical stratification of defeasible rules, which originates on the need
of preserving consistency within argumentation lines in the debate.

2. Defeasible Argumentation

We will briefly introduce the main concepts of our framework for defeasible argumentation
[11, 3] (see the appendix for definitions and further details). The knowledge of an intelligent
agent A will be represented using a first-order languageL, plus a binary meta-linguistic relation
“>−−” between sets of non-ground literals of L which share variables. The members of this



meta-linguistic relation will be called defeasible rules, and they have the form “α >−− β ”. The
relation “>−−” is understood as expressing that “reasons to believe in the antecedent α provide
reasons to believe in the consequent β”.

The beliefs of A are represented by a pair (K, ∆), called Defeasible Logic Structure, where
∆ is a finite set of defeasible rules. K represents the non-defeasible part of A’s knowledge and
∆ represents information that A is prepared to take at less than face value. ∆

↓
denotes the set

of all ground instances of members of ∆.

An argument A for a conclusion h (see definition 6.4) is a set of ground defeasible rules,
that together with K allow us to infer h. An argument constitutes a defeasible support for a
conclusion h, since there may exist better counterarguments which defeat A, so that h may no
longer be regarded as valid.

We will accept an argument A as a defeasible reason for a conclusion h if A is a justification
for h. The justification process involves the construction of an acceptable argument for h.
To decide the acceptability of an argument A for a literal h, its associated counterarguments
(see definition 6.6) B1, B2, . . .Bk will be obtained, each of them being a (defeasible) reason
for rejecting A. If some Bi is supported on “better” (or unrelated) evidence than A, then Bi

will be a candidate for defeating A (see definition 6.8). Specificity is the preference criterion
for deciding between two conflicting arguments. When specificity cannot decide, a blocking
situation occurs.

Since counterarguments are also arguments, the former analysis should be in turn carried
out on them. Now, Bi will defeat A unless there exists an argument Cj (which corresponds to
one of the counterarguments C1,C2,. . .Cr associated to Bi) that defeats Bi. In that case, we will
be forced to reject Bi, and hence our original argument A would be reinstated. If it turns out
that there is a defeater Dk among the counterarguments of Cj, then Bi would be reinstated as
defeater for A. Thus, the acceptance of an argument A will result from a recursive procedure,
in which arguments, counterarguments, counter-counterarguments, and so on, should be taken
into account. The above description leads in a natural way to the use of trees to organize that
dialectical analysis.

In order to accept an argument A for a conclusion h, a dialectical tree can be generated
(see definition 6.9). Every inner node in this tree will represent a defeater (proper or blocking),
and the root of the tree will correspond to the original argument A. Nodes in this tree can in
turn be recursively labeled as defeated (D-node) or undefeated nodes (U-node). If all children
nodes of the root turn out to be labeled as defeated, we say that A is an acceptable argument.
The procedure just described closely resembles a logical discussion or argumentation, i.e., it is
a dialectical process. This characterization leads us to a labeling procedure, after which we can
conclude whether the root of the dialectical tree corresponds indeed to an acceptable argument.

Besides, as arguments are labeled as U -nodes or D-nodes within a dialectical tree, they
are stored in an arguments base [5]. In that way, arguments appearing several times in the
same dialectical tree are generated and labeled just once. Additional occurences of those
arguments and their associated labels can be retrieved from the arguments base, without having
to construct them again.



3. Speeding up inference

As we have shown in [3], the number of nodes (arguments) in a dialectical tree is finite. Nev-
ertheless, this number could be large enough for making exhaustive search impossible within
reasonable time constraints. In this section, we will introduce a pruning strategy which allows
us to reduce the search space associated with the dialectical argumentation process.

According to the definition 6.10 (see appendix), nodes (arguments) in a dialectical tree can
be recursively label as U-nodes (undefeated arguments) or D-nodes (defeated arguments). In
order to label a node as “undefeated”, all his child nodes (defeaters) must be defeated. Similarly,
a node can be labeled as “defeated” if it has at least one undefeated child node (defeater). That
way, as far as the labeling procedure is concerned, a dialectical tree is a kind of and-or tree:
U -nodes correspond to and-nodes, and D-nodes to or-nodes.

This feature allows us to carry out a pruning strategy on a dialectical tree (similar to α-β
pruning [4]). Thus, in order to determine if a given argument is or not a justification, it will
not be necessary to perform an exhaustive analysis involving every argument in the dialectical
tree. As a result, the inference process can be speeded up.

Example 3.1 Consider the following dialectical tree. The arguments marked with an asterisk
had not to be taken into consideration in order to label the root of the tree as D (defeated).
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The possibility of performing such a pruning on the dialectical tree shows clearly that
the order in which arguments (counterarguments, counter-counterarguments, etc.) are to be
considered plays a meaningful role. Not every argumentation line2 in the dialectical tree with
root A must be tested in order to determine if the argument A is indeed a justification.

Since most arguments do not have the same number of counterarguments, a dialectical tree
will be seldom balanced. The depth of the tree will correspond to the longest argumentation
line in the tree. According to our preceding analysis, the evaluation for labeling the arguments
on this argumentation line should be delayed as long as possible, since –all things being equal–
shorter argumentation lines have the same chances of “breaking the debate”, and they can be
evaluated faster than longer ones. This fact implies that the size of the search space associated
with the justification procedure will be different, depending on the order in which argumentation
lines are going to be generated. Thus, if the first counterargument taken into consideration

2An argumentation line in a dialectical tree is a path from the root to a leaf (see definition 6.12)



turns out to remain undefeated, the size of the search space will be minimal. The worst case
will arise when we need to analize all the search space.

Assuming that argumentation lines within a dialectical tree were sorted on their length (this
can be done recursively), a sorted dialectical tree would result, as shown on the left in the figure
below.
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Given an arbitrary dialectical tree, we analize on the average half of the tree (assuming
depth-first search), and this should be on the average half of the search space (i.e., we should
consider half of the number of arguments in that dialectical tree). As we can see from the
drawing above, half of the sorted tree is clearly less than half of the whole search space, so that
the pruning strategy would have its best perfomance if it were carried out on such a tree.

Thus, in order to prune the search space, it turns out to be particulary important to
have a criterion for preferring the most promising counterargument first. The words “most
promising” mean here “that one belonging to the shortest argumentation line”. Should this
counterargument be defeated, then the next argumentation line must be again kept as short
as possible, and so on. The longest argumentation line should be delayed as long as possible,
since on the average, it will be the one which involves the most complex analysis.

However, there are several intuitive reasons which lead us to believe that such a criterion
could not be applied in defeasible argumentation. As Vreeswijk [12] correctly observes, the
only way of actually determining the strenght of an argument is throwing it into the debate.
We cannot know beforehand how many counterarguments a particular argument could have.
A counterargument which looks strong enough for defeating a given argument may have more
counter-counterarguments than a weaker counterargument without counter-counterarguments.
In this respect, Vreeswijk ( [12], page 151) observes that:

. . . But would it not be a good idea, for example, to let each party present its strongest ar-
guments first? In that way, the discussion is not distracted by weak arguments that hold up the
progress, so that interests are soon heading towards the right direction. Or, if that idea does not
work, then maybe it will help to forbid each party to play out the less promising arguments first,
again to ensure that needless detours in the dialectical structure will be avoided. Unfortunately,
both suggestions do not really contribute to a solution of the problem. The last suggestion is even
useless, since there is no other way of finding out whether an argument is promising or not, then
to actually ‘throw’ it into the discussion. In fact, it begs the whole question of what is involved
in testing the credibility of an argument. So this suggestion does not help us much further. The
first suggestion, although it is valid, is not of much use either, since the conclusive force of an
argument does not say much about its effectivity in the course of the debate. . . .



We claim that some criteria can be given, based on some theoretical considerations, in order
to know in advance how promising an argument can be in the course of a debate. These criteria
will be formally stated and discussed in the next section.

4. Stratifying defeasible rules

In this section, we will analyze how to determine when a counterargument is more promising
than other for breaking a debate. Appealing to our intuition, “good” counterarguments are
those which are “difficult” to refute. As a first approach, we can then say that, in general,
argumentation lines will be shorter when every argument involved has as few literals as possible
at which it can be further counterargued. Thus, the branching factor of the dialectical tree
would be minimized.

As already said in the previous section, an argumentation line in a dialectical tree is a
path from the root of the tree to a leaf. In other words, an argumentation line constitutes
a sequence [A0, A1, A2, . . . , An] of arguments, where A0 is the root of the dialectical tree, An

is a leaf (U-node), and Ai+1 is a defeater of Ai (0 ≤ i ≤ n − 1). Within an argumentation
line [A0, A1, A2, . . . , An], A0 and any other even-subindexed argument will correspond to sup-
porting argument (S-arguments). On the other hand, odd-subindexed arguments correspond to
interfering arguments (I-arguments).

In [3], we introduced an important constraint for constructing argumentation lines: support-
ing and interfering arguments must be consistent among themselves. Thus, once a supporting
(interfering) argument A has been thrown into the debate, any other supporting (interfering)
argument in further stages of the debate is forced not to contradict those conclusions that can
be inferred from A. Breaking this rule causes supporting (interfering) arguments to no longer
be consistent among themselves. This leads us to the following claim:

Claim 4.1 Let 〈A, h〉 be an argument structure, and let 〈B, q〉 be a counterargument for 〈A, h〉.
〈B, q〉 will be a ‘good’ counterargument if A ∩B is as large as possible. 2

That is to say: a S-argument (I-argument) which uses as much information as possible from
previous I-arguments (S-arguments) will belong, on the average, to shorter argumentation
lines than the ones associated with ordinary counterarguments obtained randomly from the
knowledge base.

Besides, the structural resemblance of argument and counterargument would help simplify
the specificity checking, by eliminating the analysis on literals supported on the same set of
ground defeasible rules in both the argument and the counterargument involved. This structural
resemblance can be established without considering the system’s knowledge base, from which
arguments have been obtained. Consider the following example.

Example 4.1 Given the set K = {d, e, p, g, h, r}, and ∆ = {d>−−b, e>−−c, b ∧ c>−−a, b ∧ c ∧
r >−−¬a, p>−−¬a, g ∧ h>−−¬a}, we can construct the following argument structures:

A = 〈{d>−−b, e>−−c, b ∧ c>−−a}, a〉
B1 = 〈{d>−−b, e>−−c, b ∧ c ∧ r >−−¬a},¬a〉
B2 = 〈{p>−−¬a},¬a〉
B3 = 〈{g ∧ h>−−¬a},¬a〉



In this example B1 is a proper defeater, and B2 and B3 are blocking defeaters for A.

According to our previous discussion, in order to prove that A is a justification for a,
we would like to consider the best defeaters first as the dialectical tree is being constructed.
Following our claim, the best defeater in this example would be B1. Moreover, we do not
need to purse the analysis any further, since an argument C attacking B1 at an inner literal
would mean not to keep supporting argument consistent among themselves. Thus, in order to
counterargue B1, a counter-counterargument C must necessarily attack B1’s conclusion (i.e.,
¬a) or the literal r. B1’s conclusion cannot be attacked (there are no other counterarguments
to consider), and the literal r is a fact from K (so it cannot be defeated). 2

We will introduce some definitions, in order to formalize our claim. The set of supporting
and interfering arguments up to a certain point i in an argumentation line can be characterized
as follows.

Definition 4.1 Let λ = [ 〈A0, h0〉, 〈A1, h1〉, 〈A2, h2〉, . . . , 〈An, hn〉] be an argumentation line.
Then

S i
λ =

⋃
Ak where k = 2p, p ≥ 0, k ≤ i

I i
λ =

⋃
Ak where k = 2p + 1, p ≥ 0, k ≤ i

represent the sets of all the defeasible rules that belong to both supporting and interfering
arguments up to the argument 〈Ai, hi〉 in λ.

Definition 4.2 Let R be a set of ground defeasible rules. Then Co(R) denotes the set of
consequents of the ground defeasible rules in R.

The efectiveness of our former claim becomes now clear with the following lemma:

Lemma 4.1 Let λ = [ 〈A0, h0〉, 〈A1, h1〉, 〈A2, h2〉, . . . , 〈An, hn〉] be an argumentation line, and

Ri = S i
λ ∩ I i

λ . If c ∈ Co(Ri), then it cannot be the case that 〈Ak, hk〉
c⊗→ 〈At, ht〉, for all

k > i and t ≤ i.

When constructing interfering (supporting) arguments, we will prefer those defeasible rules
already used by previous supporting (interfering) arguments in the same argumentation line,
since the conclusions of these rules cannot be counter-counterargued because of the consistency
constraints described before.

From the previous lemma, it is also clear that the conclusions of ground defeasible rules
present in both supporting and interfering arguments can be thought of as ground facts of the
system’s knowledge base.

As an argumentation line is being constructed, the set KP expands dynamically as we go
deeper into the dialectical tree, and shrinks as we discard arguments which turned out to be
defeated. The augmented set corresponds to two different supersets: one containing the conclu-
sions of ground defeasible rules belonging to supporting arguments in an argumentation line,
and the other contains those conclusions of ground defeasible rules that belong to interfering
arguments in that argumentation line.

As stated in the lemma above, those grounded defeasible rules shared by an S-argument
and an I-argument in the same argumentation line cannot be defeated in further stages of the
debate within that argumentation line.



As the argumentation line progresses, the possibility of counterarguing becomes more dif-
ficult, since the rules used for constructing arguments in the first stages impose consistency
constraints for the formulation of new arguments, and conclusions based on defeasible knowl-
edge (accepted by both parties in the debate) are no longer questionable, being its epistemic
status similar to particular facts.

Then, as λ is being constructed, the system’s knowledge base would be expanded as follows
(the numbers on the right column correspond to the current depth of the argumentation line).

Preferred defeasible rules Preferred defeasible rules
for S-arguments for I-arguments

0 – –
1 I 1

λ S 1
λ

2 I 2
λ S 2

λ

3 I 3
λ S 3

λ

...
k I k

λ S k
λ

KP for S-arguments KP for I-arguments
0 KP KP

1 KP ∪ Co(S 1
λ ) KP ∪ Co(I 1

λ )
2 KP ∪ Co(S 2

λ ) KP ∪ Co(I 2
λ )

3 KP ∪ Co(S 3
λ ) KP ∪ Co(I 3

λ )
...
k KP ∪ Co(S k

λ ) KP ∪ Co(I k
λ )

Augmented KG

0 KG

1 KG ∪ { S 1
λ ∩ I 1

λ }
2 KG ∪ { S 2

λ ∩ I 2
λ }

3 KG ∪ { S 3
λ ∩ I 3

λ }
...
k KG ∪ { S k

λ ∩ I k
λ }

The preference ordering used for constructing I-arguments (S-arguments) will be the fol-
lowing:

1. Use KP for I-arguments (S-arguments), if possible; else

2. Use augmented KG; else

3. Use preferred defeasible rules for I-arguments (S-arguments); else

4. Use defeasible rules from ∆.



5. Conclusions

The need of preserving consistency within a debate has proven to be an important issue in
argumentative reasoning. In [3], by introducing a dialectics-based approach, we were able
to detect fallacious argumentation. The problem was solved by introducing some consistency
constraints on argumentation lines.

In this paper, we have discussed the intuitive ideas which led us to think about inference and
its relation to consistency in argumentation lines. We were able to distinguish the knowledge on
which S-arguments and I-arguments are supported. This consistency-based approach seems
to give us criteria for guiding the debate, in order to find out if our original argument is a
justification or not. These criteria allowed us to refine the original, simplified model of the
process carried out for constructing arguments (exhaustive search). As a result, the use of the
computational resources needed for performing argumentation could be improved.

We think that this topic needs further research, in order to incorporate it into the existing
frameworks for argumentative reasoning. A more precise formalization of the ideas discussed
in this paper is being worked on at the time.

6. Appendix: a framework for defeasible argumentation

In this appendix, the main definitions of a defeasible argumentation framework are introduced
(see [11] and [3] for further details). The knowledge of an intelligent agent A will be represented
using a first-order language L, plus a binary meta-linguistic relation “>−−” between sets of non-
ground literals of L which share variables. The members of this meta-linguistic relation will be
called defeasible rules. The defeasible rule “α >−− β ” is to be understood as expressing that
“reasons to believe in the antecedent α provide reasons to believe in the consequent β”.

Definition 6.1 Let K be a consistent subset of sentences of the languageL, called the context.
This set can be partitioned in two subsets KG, of general (necessary) knowledge, and KP , of
particular (contingent) knowledge.

Definition 6.2 The pair (K, ∆), called Defeasible Logic Structure, represents the beliefs of
A. The set K corresponds to the non-defeasible part of A’s knowledge. The set ∆ is a finite set
of defeasible rules, representing information that A is prepared to take at less than face value.
∆
↓

will denote the set of all ground instances of members of ∆.

Definition 6.3 Let Γ be a subset of K∪∆
↓
. A ground literal h is a defeasible consequence of

Γ, abbreviated Γ |∼ h, if and only if there exists a finite sequence B1, . . . , Bn such that Bn = h
and for 1 ≤ i < n, either Bi ∈ Γ, or Bi is a direct consequence of the preceding elements in the
sequence by virtue of the application of any inference rule of the first-order theory associated
with the language L. The ground instances of the defeasible rules are regarded as material
implications for the application of inference rules. We will also write K∪A |∼ h distinguishing
the set A of defeasible rules used in the derivation from the context K.

Definition 6.4 We say that a subset A of ∆
↓

is an argument structure for h in the context
K (denoted by 〈A, h〉K, or just 〈A, h〉) iff: (1) K ∪ A |∼ h, (2) K ∪ A 6|∼ ⊥ and (3)
6 ∃A′ ⊂ A, K∪A′ |∼ h. A subargument of 〈A, h〉 is an argument 〈S, j〉 such that S ⊆ A. Given
〈A, h〉K, we can also say that A is an argument for h.



Example 6.1 Given (K, ∆), K = {d→b, d, f, l}, ∆ = {b ∧ c>−−h, f >−−c, l ∧ f >−−¬c}, we say
that 〈{f >−−c, b ∧ c>−−h}, h〉 is an argument structure for h. 2

Definition 6.5 Two argument structures 〈A1, h1〉 and 〈A2, h2〉 disagree, denoted
〈A1, h1〉 ./ 〈A2, h2〉, if and only if K ∪ {h1, h2} ` ⊥.

Definition 6.6 We say that 〈A1, h1〉 counterargues 〈A2, h2〉 at literal h, denoted

〈A1, h1〉
h⊗→ 〈A2, h2〉 iff

1. There exists a subargument 〈A, h〉 of 〈A2, h2〉 such that 〈A1, h1〉./ 〈A, h〉.
2. For every proper subargument 〈S, j〉 of 〈A1, h1〉, it is not the case that 〈A2, h2〉⊗→ 〈S, j〉.

If 〈A1, h1〉
h⊗→ 〈A2, h2〉, we can also say that 〈A1, h1〉 is a counterargument for 〈A2, h2〉.

Definition 6.7 Let D = {a ∈ L : a is a ground literal and K ∪ ∆
↓|∼ a}, and let

〈A1, h1〉,〈A2, h2〉 be two argument structures. We say that A1 for h1 is strictly more specific
than A2 for h2, denoted 〈A1, h1〉 Âspec 〈A2, h2〉, if and only if
i) ∀S ⊆ D if KG ∪ S ∪ A1|∼ h1 and KG ∪ S 6|∼ h1, then KG ∪ S ∪ A2|∼ h2.
ii) ∃S ⊆ D such that KG ∪ S ∪ A2|∼ h2, KG ∪ S 6|∼ h2 and KG ∪ S ∪ A1 6|∼ h1.

Definition 6.8 〈A1, h1〉 defeats 〈A2, h2〉 at literal h, denoted 〈A1, h1〉 Àdef
〈A2, h2〉, if and only

if there exists a subargument 〈A, h〉 of 〈A2, h2〉 such that: 〈A1, h1〉 counterargues 〈A2, h2〉 at
the literal h and
1. 〈A1, h1〉 is strictly more specific than 〈A, h〉, or
2. 〈A1, h1〉 is unrelated by specificity to 〈A, h〉.
In case (1) 〈A1, h1〉 will be called a proper defeater, and in case (2) a blocking defeater. If
〈A1, h1〉 defeats 〈A2, h2〉, we will also say that 〈A1, h1〉 is a defeater for 〈A2, h2〉.

Example 6.2 Given (K, ∆) as defined in example 6.1, we have the following relations between
arguments.

〈{l ∧ f >−−¬c},¬c〉 ./ 〈{f >−−c}, c〉
〈{l ∧ f >−−¬c},¬c〉 c⊗→ 〈{f >−−c, b ∧ c>−−h}, h〉
〈{l ∧ f >−−¬c},¬c〉 Âspec〈{f >−−c}, c〉
〈{l ∧ f >−−¬c},¬c〉 À

def
〈{f >−−c, b ∧ c>−−h}, h〉

2

Definition 6.9 Let 〈A, h〉 be an argument structure. A dialectical tree for 〈A, h〉, denoted
T〈A, h〉, is recursively defined as follows:

1. A single node containing an argument structure 〈A, h〉 with no defeaters (proper or block-
ing) is by itself a dialectical tree for 〈A, h〉. This node is also the root of the tree.

2. Suppose that 〈A, h〉 is an argument structure with defeaters (proper or blocking) 〈A1, h1〉,
〈A2, h2〉, . . ., 〈An, hn〉. We construct the dialectical tree for 〈A, h〉, T〈A, h〉, by putting
〈A, h〉 in the root node of it and by making this node the parent node of the roots of the
dialectical trees of 〈A1, h1〉, 〈A2, h2〉, . . ., 〈An, hn〉, i.e., T〈A1, h1〉, T〈A2, h2〉, . . ., T〈An, hn〉. If an
unacceptable argument line gets formed (see definition 6.15), during the construction of
this tree, it suffices to clip the subtree rooted in the offending argument that violates a
condition in the definition of acceptable argumentation line.



Definition 6.10 Let T〈A, h〉 be a dialectical tree for an argument structure 〈A, h〉. The nodes
of T〈A, h〉 can be recursively labeled as undefeated nodes (U-nodes) and defeated nodes (D-nodes)
as follows:

1. Leaves of T〈A, h〉 are U-nodes.
2. Let 〈B, q〉 be an inner node of T〈A, h〉. Then 〈B, q〉 will be an U-node iff every child of
〈B, q〉 is a D-node. 〈B, q〉 will be a D-node iff it has at least an U-node as a child.

Definition 6.11 Let 〈A, h〉 be an argument structure, and let T〈A, h〉 be its associated dialec-
tical tree. We will say that A is a justification for h (or simply 〈A, h〉 is a justification) iff the
root node of T〈A, h〉 is an U-node.

According to this definition, an argumentative knowledge-based system has four possible
answers for a given query h.

• Yes, if there is a justification 〈A, h〉.
• No, if for every possible argument structure 〈A, h〉, there exists a justification for at least

one proper defeater of 〈A, h〉.
• Unknown, if there exists no argument structure 〈A, h〉.
• Undefined, if for every possible argument structure 〈A, h〉, there are no proper defeaters

for 〈A, h〉, but there exists at least one blocking defeater for 〈A, h〉.
Now we will introduce two additional concepts, already suggested in [11], which will prove

to be useful in what follows.

Definition 6.12 Let 〈A0, h0〉 be an argument structure, and let T〈A0, h0〉 be its associated
dialectical tree. Then every path λ in T〈A0, h0〉 from the root 〈A0, h0〉 to a leaf 〈An, hn〉, denoted
λ = [ 〈A0, h0〉, 〈A1, h1〉, 〈A2, h2〉, . . . , 〈An, hn〉], constitutes an argumentation line for 〈A0, h0〉.
Definition 6.13 Let T〈A0, h0〉 be a dialectical tree, and let λ = [ 〈A0, h0〉, 〈A1, h1〉, 〈A2, h2〉,
. . . , 〈An, hn〉] be an argumentation line for 〈A0, h0〉. Then every 〈Ai, hi〉 in λ can be labeled as
a supporting or interfering argument as follows

1. 〈A0, h0〉 is a supporting argument in λ, and
2. If 〈Ai, hi〉 is a supporting (interfering) argument in λ, then 〈Ai+1, hi+1〉 is an interfering

(supporting) argument in λ.

We will denote as Sλ and Iλ the set of all supporting and interfering arguments in λ, respec-
tively.

As we can see from this definition, an argumentation line λ can now be thought of as an
alternate sequence of supporting and interfering arguments as in any ordered debate.

Definition 6.14 Given two argument structures 〈A1, h1〉 and 〈A2, h2〉 we will say that they
are concordant iff K∪A1 ∪A2 6` ⊥. In general, a family of argument structures {〈Ai, hi〉}n

i=1 is
concordant iff K ∪ ⋃n

i=1 Ai 6` ⊥.

Definition 6.15 Let λ= [〈A0, h0〉, 〈A1, h1〉, 〈A2, h2〉, . . . , 〈An, hn〉] be an argumentation line.
Then, λ will be called an acceptable argumentation line iff

1. Supporting (interfering) arguments in λ are concordant pairwise, i.e., K ∪ Ai ∪ Aj 6` ⊥,
for every 〈Ai, hi〉, 〈Aj, hj〉 ∈ Sλ (Iλ).

2. Let 〈Ai, hi〉 be an argument structure in Sλ (Iλ). There is no argument 〈Aj, hj〉 in Iλ
(Sλ), such that i < j and 〈Ai, hi〉 defeats 〈Aj, hj〉.

The first condition causes supporting (interferig) arguments in an argumentation line to
be consistent among themselves. The second condition prevents circularity, forcing interfering
arguments not to be defeated by previous arguments in a given argumentation line. Interfering
arguments must be constructed considering which arguments have been offered already.
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