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Abstract

In A Mathematical Treatment of Defeasible Reasoning [8], or MTDR, a clear and the-
oretically sound structure for a reasoning system was introduced. Since its publication
other proposals have been advanced [2, 9, 6, 1], some of them containing valuable obser-
vations on this foundation.

This paper presents further developments based on the MTDR framework. Two main
results are shown. Firstly, several alternative implementations of MTDR were based on
dialectical concepts, which needed proper formalization. Secondly, the confrontation of
the resulting formalism with the above-mentioned work of other researchers has shown
that some of the original definitions needed to be honed to avoid fallacious reasoning.

The resulting, evolved, system presented here exhibits robust behavior and we contend
that it establishes the ideal basis for the implementation of several extensions of defeasible
reasoning, which are already being pursued.

1. Introduction

In A Mathematical Treatment of Defeasible Reasoning [8], or MTDR, a clear and theoretically
sound structure for an argument-based reasoning system was introduced. Since its publication
other proposals have been advanced [2, 9, 6, 1], some of them containing valuable observations
on this foundation. This paper presents further developments based on the MTDR framework.

An Argumentative System [8, 4, 2, 9, 1] is a formalization of the process of defeasible rea-
soning. An argument A for a hypothesis h is a tentative piece of reasoning an agent would
be inclined to accept, all things considered, as an explanation for h. In presence of new in-
coming information, the argument A may lose support or become weakened, and therefore the
hypothesis h may no longer be regarded as valid. In that manner nonmonotonicity arises.

1Published in proceedings of the XIV International Conference of the Chilean Computer Science Society
Concepcion, Chile, November 1994.
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Research on many aspects of Argumentative Systems has recently produced some interesting
results. In this direction, the works of Loui [3], Simari [8], Garćıa [2], Prakken [6] and the
research on defeasible argumentation of Vreeswijk [9] are most relevant.

An important aspect of argumentative systems concerns the question of how the hypothesis
supported by an argument becomes accepted as part of the current knowledge of the agent.
Some approaches are based on multiple extensions [9, 6], while others consider consistency
checking. In this respect, the framework presented in MTDR accepts an argument A as a
defeasible reason for a conclusion h if A is a justification for h. The justification process
involves the construction of an acceptable argument for h from the system’s knowledge base.
To decide the acceptability of this argument, possible counterarguments are generated, which
will be also tested for acceptability. Those counterarguments that become accepted will be then
compared with the original argument using a preference relation (specificity), which defines a
partial ordering among arguments. The original argument will be considered a justification if
it is “better” (i.e., strictly more specific) than every acceptable counterargument.

Thus, the characterization of defeasible inference turns out to be conceptually simple. Nev-
ertheless, the confrontation of the ideas presented in MTDR with several alternative implemen-
tations, as well as the work of the researchers mentioned above, have shown that some important
definitions need to be honed to avoid fallacious reasoning. To handle such undesirable cases
properly, some refinements became necessary.

This paper presents a refined, dialectics-based approach to defeasible argumentation, defined
in terms of the basic concepts and definitions of MTDR. This approach allowed us to detect
the necessity of introducing some refinements and modifications on the original framework,
which do not affect the structure of the system itself, but rather turn the process of finding
a justification into a more robust one. The resulting, evolved, system shows correct behavior
and we contend that it represents the ideal basis for the implementation of different systems
for defeasible reasoning, which are already being pursued.

The paper is structured as follows. Section 2 gives an overview of the main ideas and defini-
tions of the MTDR argumentative system (a complete description can be found elsewhere [8]).
In section 3 we will introduce some new, evolved definitions that characterize the formalism in
dialectical terms. Section 4 describes a technical problem, namely the possibility of introducing
mutually defeating arguments in the reasoning process. We will show how this problem can
appear in more general forms. As a result, we will be able to characterize different patterns
of flawed, fallacious argumentation. In section 5, we will see how the former definitions can
be strenghtened with the help of dialectical concepts, allowing us to cope with the technical
problems presented before. Finally, we will detail the most important conclusions that have
been obtained.

2. The MTDR framework

We will briefly introduce the main concepts and definitions of the MTDR framework (see [8] for
further details). The knowledge of an intelligent agent A will be represented using a first-order
language L, plus a binary meta-linguistic relation “>−−” between sets of non-ground literals of
L which share variables. The members of this meta-linguistic relation will be called defeasible
rules, and they have the form “α >−− β ”. The relation “>−−” is understood as expressing that
“reasons to believe in the antecedent α provide reasons to believe in the consequent β”.

2



Let K be a consistent subset of sentences of the language L. This set, called the context,
can be partitioned in two subsets KG, of general (necessary) knowledge, and KP , of particular
(contingent) knowledge.

The beliefs of A are represented by a pair (K, ∆), called Defeasible Logic Structure, where
∆ is a finite set of defeasible rules. K represents the non-defeasible part of A’s knowledge and
∆ represents information that A is prepared to take at less than face value. ∆

↓
denotes the set

of all ground instances of members of ∆.

Definition 2.1 Let Γ be a subset of K∪∆
↓
. A ground literal h is a defeasible consequence of

Γ, abbreviated Γ |∼ h, if and only if there exists a finite sequence B1, . . . , Bn such that Bn = h
and for 1 ≤ i < n, either Bi ∈ Γ, or Bi is a direct consequence of the preceding elements in the
sequence by virtue of the application of any inference rule of the first-order theory associated
with the language L. The ground instances of the defeasible rules are regarded as material
implications for the application of inference rules. We will also write K∪A |∼ h distinguishing
the set A of defeasible rules used in the derivation from the context K.

Definition 2.2 Given a context K, a set ∆ of defeasible rules, and a ground literal h in the
language L, we say that a subset A of ∆

↓
is an argument structure for h in the context K

(denoted by 〈A, h〉K, or just 〈A, h〉) if and only if: 1) K ∪ A |∼ h, 2) K ∪ A 6|∼ ⊥ and 3)
6 ∃A′ ⊂ A, K∪A′ |∼ h. Given an argument structure 〈A, h〉, we also say that A is an argument
for h. A subargument of 〈A, h〉 is an argument 〈S, j〉 such that S ⊆ A.

Example 2.1 Given (K, ∆), K = {d→b, d, f, l}, ∆ = {b ∧ c>−−h, f >−−c, l ∧ f >−−¬c}, we say
that 〈{f >−−c, b ∧ c>−−h}, h〉 is an argument structure for h.

Definition 2.3 Two argument structures 〈A1, h1〉 and 〈A2, h2〉 disagree, denoted
〈A1, h1〉 ./ 〈A2, h2〉, if and only if K ∪ {h1, h2} ` ⊥.

Definition 2.4 Given two argument structures 〈A1, h1〉 and 〈A2, h2〉, we say that 〈A1, h1〉
counterargues 〈A2, h2〉 at literal h, denoted 〈A1, h1〉

h⊗→ 〈A2, h2〉, if and only if there exists a
subargument 〈A, h〉 of 〈A2, h2〉 such that 〈A1, h1〉 ./ 〈A, h〉. 〈A, h〉 will be also called the dis-

agreement subargument. If 〈A1, h1〉
h⊗→ 〈A2, h2〉, we also say that 〈A1, h1〉 is a counterargument

for 〈A2, h2〉.
Definition 2.5 Let D = {a ∈ L : a is a ground literal and K∪∆

↓ |∼ a}, and let 〈A1, h1〉 and
〈A2, h2〉 be two argument structures. We say that A1 for h1 is strictly more specific than A2

for h2, denoted 〈A1, h1〉 Âspec 〈A2, h2〉, if and only if
i) ∀S ⊆ D if KG ∪ S ∪ A1|∼ h1 and KG ∪ S 6|∼ h1, then KG ∪ S ∪ A2|∼ h2.
ii) ∃S ⊆ D such that KG ∪ S ∪ A2|∼ h2, KG ∪ S 6|∼ h2 and KG ∪ S ∪ A1 6|∼ h1.

Definition 2.6 Given two argument structures 〈A1, h1〉 and 〈A2, h2〉, we say that 〈A1, h1〉
defeats 〈A2, h2〉 at literal h, denoted 〈A1, h1〉 Àdef

〈A2, h2〉, if and only if there exists a subar-
gument 〈A, h〉 of 〈A2, h2〉 such that: 〈A1, h1〉 counterargues 〈A2, h2〉 at the literal h and
1. 〈A1, h1〉 is strictly more specific than 〈A, h〉, or
2. 〈A1, h1〉 is unrelated by specificity to 〈A, h〉.
If 〈A1, h1〉 Àdef

〈A2, h2〉, we will also say that 〈A1, h1〉 is a defeater for 〈A2, h2〉. In case
(1) 〈A1, h1〉 will be called a proper defeater, and in case (2) a blocking defeater. 3

3During this research, it was observed that it is convenient to distinguish between these two kinds of defeaters.
In MTDR [8], this distinction was not drawn.
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Example 2.2 Given (K, ∆) as defined in example 2.1, we have the following relations between
arguments.

〈{l ∧ f >−−¬c},¬c〉 ./ 〈{f >−−c}, c〉
〈{l ∧ f >−−¬c},¬c〉 c⊗→ 〈{f >−−c, b ∧ c>−−h}, h〉
〈{l ∧ f >−−¬c},¬c〉 Âspec〈{f >−−c}, c〉
〈{l ∧ f >−−¬c},¬c〉 À

def
〈{f >−−c, b ∧ c>−−h}, h〉

3. Defeasible argumentation in terms of dialectical trees

We will accept an argument A as a defeasible reason for a conclusion h if A is a justification
for h. The justification process involves the construction of an acceptable argument for h. To
decide the acceptability of an argument A for a literal h, its associated counterarguments B1,
B2, . . .Bk will be obtained, each of them being a (defeasible) reason for rejecting A. If some
Bi is supported on “better” (or unrelated) evidence than A, then Bi will be a candidate for
defeating A. As we have mentioned before, specificity is the preference criterion for deciding
between two conflicting arguments. When specificity cannot decide, a blocking situation occurs.

Since counterarguments are also arguments, the former analysis should be in turn carried
out on them. Now, Bi will defeat A unless there exists an argument Cj (which corresponds to
one of the counterarguments C1,C2,. . .Cr associated to Bi) that defeats Bi. In that case, we will
be forced to reject Bi, and hence our original argument A would be reinstated. If it turns out
that there is a defeater Dk among the counterarguments of Cj, then Bi would be reinstated as
defeater for A. Thus, the acceptance of an argument A will result from a recursive procedure,
in which arguments, counterarguments, counter-counterarguments, and so on, should be taken
into account. The above description leads in a natural way to the use of trees to organize that
dialectical analysis.

In order to accept an argument A for a conclusion h, a tree structure can be generated.
Every inner node in this tree will represent a defeater (proper or blocking), and the root of the
tree will correspond to the original argument A. Nodes in this tree can in turn be recursively
labeled as defeated or undefeated nodes. If all children nodes of the root turn out to be labeled
as defeated, we say that A is an acceptable argument. The procedure just described closely
resembles an argumentation between two parties, i.e., it is a dialectical process. Next, we will
formalize the concepts examined so far.

Definition 3.1 Let 〈A, h〉 be an argument structure. A dialectical tree for 〈A, h〉, denoted
T〈A, h〉, is recursively defined as follows:

1. A single node containing an argument structure 〈A, h〉 with no defeaters (proper or block-
ing) is by itself a dialectical tree for 〈A, h〉. This node is also the root of the tree.

2. Suppose that 〈A, h〉 is an argument structure with defeaters (proper or blocking) 〈A1, h1〉,
〈A2, h2〉, . . ., 〈An, hn〉. We construct the dialectical tree for 〈A, h〉, T〈A, h〉, by putting 〈A, h〉
in the root node of it and by making this node the parent node of the roots of the dialectic
trees for 〈A1, h1〉, 〈A2, h2〉, . . ., 〈An, hn〉, i.e., T〈A1, h1〉, T〈A2, h2〉, . . ., T〈An, hn〉.

According to the preceding definition, every argument has an associated dialectical tree. Nodes
in this tree correspond to directly related arguments via the defeat relation. This characteri-
zation leads us to a labeling procedure, after which we can conclude whether the root of the
dialectical tree corresponds indeed to an acceptable argument.
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Definition 3.2 Let T〈A, h〉 be a dialectical tree for an argument structure 〈A, h〉. The nodes
of T〈A, h〉 can be recursively labeled as undefeated nodes (U-nodes) and defeated nodes (D-nodes)
as follows:

1. Leaves of T〈A, h〉 are U-nodes.
2. Let 〈B, q〉 be an inner node of T〈A, h〉. Then 〈B, q〉 will be an U-node iff every child of
〈B, q〉 is a D-node. 〈B, q〉 will be a D-node iff it has at least an U-node as a child.

This definition suggests a bottom-up labeling procedure, through which we are able to
determine if the root of a dialectical tree turns out to be labeled as defeated or undefeated.

Definition 3.3 Let 〈A, h〉 be an argument structure, and let T〈A, h〉 be its associated dialectical
tree. We will say that A is a justification for h (or simply 〈A, h〉 is a justification) iff the root
node of T〈A, h〉 is an U-node.

According to this definition, an argumentative knowledge-based system has four possible
answers for a given query h.

• Yes, if there is a justification 〈A, h〉.
• No, if for every possible argument structure 〈A, h〉, there exists a justification for at least

one proper defeater of 〈A, h〉.
• Unknown, if there exists no argument structure 〈A, h〉.
• Undefined, if for every possible argument structure 〈A, h〉, there are no proper defeaters

for 〈A, h〉, but there exists at least one blocking defeater for 〈A, h〉.
Now we will introduce two additional concepts, already suggested in [8], which will prove

to be useful in what follows.

Definition 3.4 Let 〈A0, h0〉 be an argument structure, and let T〈A0, h0〉 be its associated di-
alectical tree. Then every path λ in T〈A0, h0〉 from the root 〈A0, h0〉 to a leaf 〈An, hn〉, denoted
λ = [ 〈A0, h0〉, 〈A1, h1〉, 〈A2, h2〉, . . . , 〈An, hn〉], constitutes an argumentation line for 〈A0, h0〉.

Definition 3.5 Let T〈A0, h0〉 be a dialectical tree, and let λ = [ 〈A0, h0〉, 〈A1, h1〉, 〈A2, h2〉, . . . ,
〈An, hn〉] be an argumentation line for 〈A0, h0〉. Then every 〈Ai, hi〉 in λ can be labeled as a
supporting or interfering argument as follows

1. 〈A0, h0〉 is a supporting argument in λ, and
2. If 〈Ai, hi〉 is a supporting (interfering) argument in λ, then 〈Ai+1, hi+1〉 is an interfering

(supporting) argument in λ.

We will denote as Sλ and Iλ the set of all supporting and interfering arguments in λ, respec-
tively.

As we can see from this definition, an argumentation line λ can now be thought of as an
alternate sequence of supporting and interfering arguments as in any ordered debate.
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4. Fallacious Argumentation

4.1. Reciprocal Defeaters. Our characterization of the notion of justification in terms of
trees can help us to understand why the associated procedure will eventually terminate. The
answer seems to be simple: since we start with a finite knowledge base, and arguments must
be non-redundant because of the minimality condition, we can only generate a finite number
of them. An argument can only have a finite number of tentative defeaters, i.e., the number of
nodes at any level of the dialectical tree is finite. Now, any argumentation line could at most
involve every possible argument structure. Even in that case, its length would be finite, and
the justification procedure should terminate.

Nevertheless, the correctness of this last statement rests on the assumption that there can
be no loops in the tree. And this assumption is flawed, as we can see in the following example
mentioned by Prakken in [6]:

Example 4.1 Let K = {a, c} and ∆ = {a>−−¬b, c>−−¬d,¬b∧c>−−d, a∧¬d>−−b} be a defeasible
logic structure. Given the argument structures 〈A, d〉 = 〈{a>−−¬b,¬b ∧ c>−−d}, d〉 and 〈B, b〉 =
〈{c>−−¬d, a ∧ ¬d>−−b}, b〉, then 〈A, d〉 defeats 〈B, b〉, and 〈B, b〉 defeats 〈A, d〉.

The situation in our example can be graphically represented as follows. 4
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In this example, we are dealing with some kind of reciprocal defeaters. However, such a
situation makes intuitively no sense: 〈A, d〉 claims to defeat 〈B, b〉, because the latter contains
a subargument structure 〈T,¬d〉. However, 〈B, b〉 is a defeater for a subargument structure
〈S,¬b〉 of 〈A, d〉. As a consequence, a cyclic pattern may now arise as we generate the dialectical
tree for 〈A, d〉, since we are facing an infinite argumentation line [〈A, d〉, 〈B, b〉, 〈A, d〉, 〈B, b〉, . . .]
(i.e., 〈A, d〉 is defeated by 〈B, b〉, 〈B, b〉 is defeated by 〈A, d〉, and this pattern repeats indefi-
nitely). The inference mechanism would loop forever. Therefore, there are both intuitive and
technical reasons for rejecting the presence of such “reciprocal” defeaters in an argumentation
line.

4Argument structures can be seen as trees and therefore can be graphically represented as triangles abstract-
ing a tree shape. The upper vertex of the triangle will be labeled with the argument’s conclusion, and the name
of the argument will be associated to the triangle itself. Subarguments will be represented as smaller triangles
inside a big one, which corresponds to the main argument at issue. Those arguments in disagreement will be
connected with a straight line.
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4.2. Circularity. In order to avoid reciprocal defeaters, a first approach would be to ana-
lyze the internal structure of the arguments involved, and find out if they defeat each other.
Nevertheless, this does not suffice for avoiding undesirable situations, since there still exists
the possibility of constructing cycles of any length in an argumentation line. In this respect,
Loui observes [3] that, according to his formalism, the defeat relation is not acyclic. Recently,
Vreeswijk [9] makes a similar remark about Loui’s formalism: “Justification can be circular,
. . ., it is possible to construct odd cycles of arguments, in which each argument interferes with
the next argument, so that, indirectly, each argument is self-defeating.” The same situation
arises in the MTDR framework. Consider the following example:

Example 4.2 Let K = {e1, e2, e3} and ∆ = {e1 >−−p, e2 >−−q, e3 >−−r, e3 ∧ p>−−¬r,
e1 ∧ q >−−¬p, e2 ∧ r >−−¬q} be a defeasible logic structure. Given the argument struc-
tures 〈A,¬r〉 = 〈{e1 >−−p, e3 ∧ p>−−¬r},¬r〉, 〈B,¬p〉 = 〈{e2 >−−q, e1 ∧ q >−−¬p},¬p〉, 〈C,¬q〉 =
〈{e3 >−−r, e2 ∧ r >−−¬q},¬q〉, we have that 〈B,¬p〉 defeats 〈A,¬r〉, 〈C,¬q〉 defeats 〈B,¬p〉 and
〈A,¬r〉 defeats 〈C,¬q〉. Pictorially:
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However, the ability of conceptualizing what a justification is in terms of supporting and
interfering arguments will help us to detect how the fallacies come to be. We claim that the
fact of accepting the argumentation line in the example as valid should be blamed for causing
cycles rather than the justification procedure itself.

In the example above, the argument structure 〈B,¬p〉 defeats 〈A,¬r〉, but 〈C,¬q〉 defeats
〈B,¬p〉 allowing 〈A,¬r〉 to be reinstated. 〈C,¬q〉 is then defeated by 〈A,¬r〉. We must be aware
of the fact that 〈C,¬q〉 was intended as a supporting argument for 〈A,¬r〉, not as an interfering
one, and in this way 〈A,¬r〉 becomes an interference argument for itself. Hence, it is clear that
there should exist a certain agreement among supporting arguments in any argumentation
line. Note that the same situation arises for interfering arguments. This internal coherence is
essential to the dialectical process of argumentation: supporting (interfering) arguments should
not contradict each other. However, this requirement cannot be inferred from the definitions
of counterargument and defeat in MTDR, so that they must be fixed.

Finally, we will consider a generalization of example 4.1, that is, an even cycle of defeaters
in an argumentation line.

Example 4.3 Circular argumentation. Consider a defeasible logic structure, with K =
{e1, e2, e3, e4}, and ∆ = {e1 >−−p, e2 >−−q, e3 >−−s, e4 >−−r, e4 ∧ p>−−¬r, e1 ∧ q >−−¬p, e2 ∧
s>−−¬q, e3 ∧ r >−−¬s}. Given the argument structures 〈A,¬r〉 = 〈{e1 >−−p, e4 ∧ p>−−¬r},¬r〉,
〈B,¬p〉 = 〈{e2 >−−q, e1 ∧ q >−−¬p},¬p〉, 〈C,¬q〉 = 〈{e3 >−−s, e2 ∧ s>−−¬q},¬q〉, 〈D,¬s〉 =
〈{e4 >−−r, e3 ∧ r >−−¬s},¬s〉, we have that 〈B,¬p〉 defeats 〈A,¬r〉, 〈C,¬q〉 defeats 〈B,¬p〉,
〈D,¬s〉 defeats 〈C,¬q〉, and 〈A,¬r〉 defeats 〈D,¬s〉.
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In this case, supporting (interfering) arguments are not in conflict. However, the inference
mechanism takes us again to an endless argumentation line. Here, the fallacy lies on how the
argumentation line was constructed. We must somehow be able to assure that every step along
a given argumentation line will be progressive (see [7]).

In the preceding example, the fourth argument 〈D,¬s〉 contains a subargument 〈Z, r〉 which
is again counterarguing the first argument 〈A,¬r〉. This situation is often described as “circular
argumentation” in the literature. The original argument 〈A,¬r〉 is being indirectly interfered
by another argument 〈D,¬s〉, but 〈D,¬s〉 was constructed on the assumption of the falsehood
of 〈A,¬r〉’s conclusion. This kind of argumentation is not dialectically sound, and as such
should be rejected. The reasons for doing so are similar to those we argued against reciprocal
defeaters. Once again, this situation cannot be properly captured within MTDR’s framework,
since it lies beyond the scope of the existing relations among arguments.

5. Avoiding Fallacies

In this section, we will show how to fix the problems discussed before. We claim that in
order to do so, it suffices to introduce some additional restrictions on the original definitions,
without modifying any conceptual feature in the framework. First, we will define a relation
between arguments, already introduced in MTDR, which will allow us to accept two arguments
simultaneously, without taking the risk that they contradict each other.

Definition 5.1 Given two argument structures 〈A1, h1〉 and 〈A2, h2〉 we will say that they
are concordant iff K∪A1 ∪A2 6` ⊥. In general, a family of argument structures {〈Ai, hi〉}n

i=1 is
concordant iff K ∪ ⋃n

i=1 Ai 6` ⊥.

It has been shown[8] that the family of all subarguments of a given argument structure is
pairwise concordant.

We must now consider how to avoid reciprocal defeaters (i.e., those pairs of arguments that
defeat each other). Actually, the defeat relation is a subset of the counterargument relation [8].
This suggests that we need to take a closer look to the characterization of what a counterargu-
ment should be. We will introduce now a new, stronger definition of counterargument.

Definition 5.2 Given two arguments 〈A1, h1〉 and 〈A2, h2〉, we say that 〈A1, h1〉 counterargues

〈A2, h2〉, denoted 〈A1, h1〉
h⊗→ 〈A2, h2〉 iff

1. There exists a subargument 〈A, h〉 of 〈A2, h2〉 such that 〈A1, h1〉./ 〈A, h〉.
2. For every proper subargument 〈S, j〉 of 〈A1, h1〉, it is not the case that 〈A2, h2〉⊗→ 〈S, j〉.

Proposition 5.1 Given two argument structures 〈A1, h1〉 and 〈A2, h2〉, there exists an effective

procedure for determining if 〈A1, h1〉
h⊗→ 〈A2, h2〉.
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Nevertheless, strengthening the notion of counterargumentation does not suffice for eliminat-
ing cyclic patterns occurring in an argumentation line. As we have already seen, it may still be
the case that an argumentation line contains contradictory supporting (interfering) arguments
(odd cycles), or that it does not convey any progress in the process of finding a justification
(even cycles). To cope with these problems, we will strengthen the notion of argumentation
line as follows.

Definition 5.3 Let λ= [〈A0, h0〉, 〈A1, h1〉, 〈A2, h2〉, . . . , 〈An, hn〉] be an argumentation line.
Then, λ will be called an acceptable argumentation line iff

1. Supporting (interfering) arguments in λ are concordant pairwise, i.e., K ∪ Ai ∪ Aj 6` ⊥,
for every 〈Ai, hi〉, 〈Aj, hj〉 ∈ Sλ (Iλ).

2. Let 〈Ai, hi〉 be an argument structure in Sλ (Iλ). There is no argument 〈Aj, hj〉 in Iλ
(Sλ), such that i < j and 〈Ai, hi〉 defeats 〈Aj, hj〉.

The first condition causes supporting (interfering) arguments in an argumentation line to be
consistent among themselves. The second condition prevents circularity, forcing interfering
arguments not to be defeated by previous arguments in a given argumentation line. Interfering
arguments must be constructed considering which arguments have been already offered. It can
be shown that these two conditions suffice for avoiding fallacious argumentation. From these
definitions we can now give the central definition in the framework.

Definition 5.4 Let 〈A, h〉 be an argument structure. An acceptable dialectical tree for 〈A, h〉,
denoted T〈A, h〉, is recursively defined as follows:

1. A single node containing an argument structure 〈A, h〉 with no defeaters (proper or block-
ing) is by itself an acceptable dialectical tree for 〈A, h〉. This node is also the root of the
tree.

2. Suppose that 〈A, h〉 is an argument structure with defeaters (proper or blocking) 〈A1, h1〉,
〈A2, h2〉, . . ., 〈An, hn〉. We construct the dialectical tree for 〈A, h〉, T〈A, h〉, by putting
〈A, h〉 in the root node of it and by making this node the parent node of the roots of
the acceptable dialectical trees of 〈A1, h1〉, 〈A2, h2〉, . . ., 〈An, hn〉, i.e., T〈A1, h1〉, T〈A2, h2〉,
. . ., T〈An, hn〉. If an unacceptable argument line gets formed, during the construction of
this tree, it suffices to clip the subtree rooted in the offending argument that violates a
condition in the definition of acceptable argumentation line.

In particular, introducing the definition of acceptable dialectical tree prompts the following
lemma.

Lemma 5.2 Let 〈A, h〉 be an arbitrary argument structure. Then its acceptable dialectical tree
T〈A, h〉 is finite.

6. Conclusions

MTDR’s formalism proved to be robust enough for introducing significant refinements and
modifications on the inference mechanism without affecting the structure of the framework
itself. Thus, some flawed patterns of reasoning concerning the justification procedure could be
eliminated, by just constraining the inference mechanism to a certain extent.

After imposing some restrictions on the construction of argumentation lines, we arrived at
the definition of acceptable argumentation line, through which we were able to characterize an
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alternate sequence of arguments and defeaters as dialectically sound. In this respect, dialectics
provided the adequate frame for modeling and understanding anomalous situations, allowing
us to recognize those aspects of the justification procedure that had to be modified.

The implementation issues deserve separate study. Computational aspects concerning the
new concepts and definitions introduced in this paper are being worked on at the time.
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